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Abstract. In this paper we review the state of the art in the field of coinof vortex
dynamics. We focus on problems governed by two-dimensiagr@mpressible Euler
equations in domains both with and without boundaries.dwoiig a comprehensive review
of earlier approaches, we discuss how methods of modernat@mid optimization theory can
be employed to solve control problems for vortex system. dditton, we also address the
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approach to the control of Euler flows involving finite—aremticity distributions. The paper
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1. Introduction

The goal of this article is to review the recent progress atttess some open questions in the
area of control of vortex—dominated flows. This article istten from the interdisciplinary
perspective grounded in the theoretical fluid dynamics aradidling the fields of the control
and optimization theory. We will first clarify what we mean fgontrol” problems. Let us
consider a system characterized by a state varigbleither finite—dimensional or infinite—
dimensional, and depending on timand some input (control) variablg, i.e., X = X(t,U).
We will also assume that the system evolution is governeddiffexential equatiore (X, U) =

0 with suitable initial conditions. The control problem cdrus$ be stated as follows:

Problem 1 (control) Given an initial stateX; = X(0) of the system and a prescribed final
stateX, = X(T), determine the contrdl that will move the system froKy to X, during the
time interval[O, T].

We refer the reader to the monograph by Sontag [1] for a modeaount of the theory
of control, and to [2] for a historical overview. A relatedgimiem concerns system
“optimization” and can be stated thus:

Problem 2 (optimization) Find the optimal input parameterd®Pt and the corresponding
optimal state X°P' which extremize a measure of the system performance eggress
mathematically by the function5 j(X,U), i.e.,

(XOPL UPY) = argminy yj(X,U),

. 1)
subjecttoE(X,U) =0

(the function “argmin” returns the values of the argumexisndU for which j(X,U) attains
a minimum). The foundations of the modern theory of optirtic@awere laid by Kantorovich
and Dantzig (for which the former was honored with the Nolr&é®in Economics in 1975),
and developed further by many scholars. A modern accourtigfield can be found in the
monographs [3, 4, 5]. At an intersection of the optimizateord control theory one finds
the field of “optimal control” where one seeks to solve Prablkin an optimal way, i.e., by
requiring the controU to extremize some performance criterion as in Problem 2ofg
earlier related developments in the calculus of variatitimes field of modern optimal control
theory originated with the work of Pontryagin [6]; we reféetreader to the monograph [7]
for an up—to—date account of this field. In general, solutibsuch problems usually involves
an open-loopcontrol U which depends on the initial and final states of the systemeds w
as the time. An important subclass of control problemsstabilizationproblems defined as
follows:

Problem 3 (stabilization) Consider a system governed by an equatityX,U,W) = 0,
whereW represents stochastic inputs. Determine a control ingtibat will contain the state
X of the system in a neighborhood of some solu¥gneither time—dependent or steady, of
the deterministic probler&(Xo,U) = Ew(Xo,U,0) = 0.

The solution of stabilization problems usually invohassed—-loogfeedbackcontrol which
depends on the instantaneous state of the system onlyJi-e.UJ(X). In practice, optimal
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control and stabilization problems sometimes occur togretiamely, when systems actuated
with optimal open—loop controls require additional stedaition in order to reject exogenous
disturbances and in this way to achieve robustness. Anotags of problems which can also
be cast as optimal control problems are state estimatidvigmes defined thus:

Problem 4 (estimation) Reconstruct the stab¢ of the system given its incomplete and noisy
measurements.

A common feature of Problems 1-4 is that they represewmeérse problemsn which,
instead of merely looking for solutions of a system of equadiE(X,U) = 0, one looks
for input parameters) such that the solutioX has some desired properties. The study of a
control problem usually involves two stagemalysisof the control system seeks to identify
conditions under which Problems 1-4 can be solved and oéiquires an examination of
the controllability andobservabilityof the systemsynthesiof the control is the subsequent
phase during which the actual control is determined. A dismn of all relevant details of
problems 1-4 would take us far outside the scope of this pafieerefore, when surveying
different results, we will usually emphasize the new coneegmnd refer the reader to the
control-theoretic literature for details.

During the last 15 years or so the state—of-the—art compuatdtfluid dynamics (CFD)
on the one hand, and control methods for Problem 1-4 on ther dind, both reached a
degree of computational efficiency which made it possibkgaot to tackle realistic problems
of flow control in a systematic manner. While in principle tbentrol theory for infinite—
dimensional systems described by partial differentiabdiqus (PDES) is, at least in the linear
setting, relatively well understood [8, 9], actual compigtaal solution of such problems still
remains very difficult. Despite several remarkable sucegg¢see the monographs [10, 11]
and the survey articles [12, 13, 14] for a broad and up—te-petspective), solution of many
real-life problems continues to present formidable cingléss. They are mostly related to the
computational resources, both in terms of the CPU time amichge, required to obtain the
solution: for example, solution of Problem 2 for a time—dagent system often requires as
many asO(10' — 10?) solutions of the system of governing equations over the-timiedow
of interest. On the other hand, determination of the feeklkamels needed in the “simplest”
solutions to Problems 3 and 4 requires the solution of a efi@d operator equation with
O(N?) variables, whereN is the number of the computational degrees of freedom in the
discretization of the flow problem. Despite the steady iaseeof the computational power
available, these limitations will at least for some time eamprohibitive when it comes to
solution of control problems for high—Reynolds number flawsontrivial domains. This
realization has motivated the pursuit of various simpiifyiapproaches that, by reducing
significantly the number of the relevant degrees of freed@mger solution of such control
problems feasible. The first of the two main trends relies lo@ tise of the truncated
Galerkin bases with small dimensions. Such bases, whictesigned to optimally capture
the system evolution in the energy norm, can be construcsatyithe proper orthogonal
decomposition (POD) techniques [15]. POD-based apprgaichsolution of flow control
problems are currently the subject of active research [¥§, The second of these trends
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relies on a simplification of the mathematical model of thelgem by neglecting the effects
considered less important in a given setting. For instaadamily of amplitude equations,
known as the Landau—Ginzburg models, have been quite sfateescribing the onset
and development of various hydrodynamics instabilitie8],[Jand control of such model
problems was investigated in [20, 19, 21, 22]. Another sucksjbility is to neglect the
viscous diffusion which is equivalent to using the Euleraipn instead of the Navier—Stokes
equation as the mathematical model of the flow problem. laisiqularly relevant to high—
Reynolds number phenomena dominated by nonlinear “vorgeamics”, i.e., the dynamics
of localized vortical structures embedded in a quasi-atiohal flow. Such vortex—based
approaches to solution of flow control problem are currealp the subject of active research,
and the purpose of the present article is to review the remgveinces in this area. An earlier
review of this field was written by Vainchtein and Mezi¢ [23]

The concept of the vortex dynamics in its modern sense gagstbahe seminal paper
by Helmholtz [24]. Since the year 1858 when it was publishied,theory of vortex motion
has been elaborated by many eminent scholars. Insteacoftthg to review this immense
body of work, we refer the reader to the monograph by Trué$a®] which contains many
bibliographical references and the recently publishedidmibaphy collected by Meleshko
and Aref [26] which, to the author’s best knowledge, is thestnmomprehensive resource
available as regards the literature on this topic publigi@d the middle of the 20th century.
Vortex motion was also discussed at length in many classgdbooks on the theoretical
fluid dynamics including [27, 28, 29, 30, 31] in addition to deon monographs [32, 33] and
review papers [34, 35]. This subject was also treated froenpibint of view of the modern
mathematical analysis in [36, 37]. In the present paper wWepsimarily focus on vortex
systems as “models” of fluid flow, however, it should be empeasthat starting with the
seminal work of Rosenhead [38], they have also given risbdédtortex methods” [39], an
autonomous family of numerical methods designed for thetsmi of a class of evolutionary
PDEs.

It is well-known that certain important properties of thertea motion in two—
dimensional (2D) and three—dimensional (3D) flows can b&qiifferent. However, since
most of the control problems dealt in fact with vortex flows2iD, this is the setting we will
be concerned with in this article. We will assuf@eC R? to be our domain, either bounded
or unbounded, witldQ denoting its boundary, if it is present. Using the time—adwejant
streamfunctiony(t,-) : Q — R, the motion of the inviscid incompressible fluid is descdbe
by the Euler equation which can be written in the form [37]

(3§—tw+J(AqJ,qJ):o inQ x (0,T],

Wlog = Wb, (2)
l'IJ|t:O = l-IJO7

whereJ(f,g) £ g_;g_g - 3-5% is the Jacobian witkx, y) € Q (the symbol

by definition”),A £ aixzz + aiyzz is the Laplacian operatof, is the length of the time interval we
are interested in, wheredg, and Yy are, respectively, the boundary and initial conditions.

2" means “equal to



Vortex Dynamics Models in Flow Control 5

Given the streamfunctio) as a solution of (2), the velocity field can be expressed as

u=J[uv = [%%,—%%] so that it satisfies by construction the incompressibilitydition

0-u=0. We remark that in view of the identity%—‘f’aQ 2 .0y 0= u-njo, Where
n andt are, respectively, the outward facing normal and the aasettitangent unit vectors
on the boundaryQ, the boundary condition in (2) is in fact equivalent to prédsag the
wall-normal velocity component?. In the case of steadyegteoblems system (2) reduces
to a nonlinear boundary—value problem [37], namely
{Am —FW) inQ, -
Wlag = Wb
whereF (U) is an arbitrary function. We emphasize that this non—deiteany of the function
F (W) is a signature of the lack of uniqueness of solutions of (3)sMtontrol problems have
been considered for a particular family of (weak) solutioh§2) and (3), namely, systems of
point vorticesin which all the vorticity is concentrated in isolated sitgyities. In addition to
reviewing these results, we will also present some novelsd®ncerning the optimal control
of another family of solutions of (2) and (3) which generaizhe concept of point vortices.
These will be thePrandtl-Batchelor flow$40, 41] distinguished by the presence of vortex
patches with constant vorticity.

Vortex models have been employed in a vast range of apmitatin science and
engineering which it is impossible to review here. In orderfik attention and provide
motivation for the subsequent discussion of some idealcaests, we mention here three
specific applications that have received a lot of attention:

e modeling coherent structures in 2D turbulent flows [42], meheome of the ideas are
due to the seminal work of Onsager [43]; in addition to untdarding the fundamental
properties of 2D turbulence, such models found applicationthe Geophysical Fluid
Dynamics [44],

e modeling recirculation regions attached to objects sudbl@§bodies and airfoils [45];
models of this type are relevant to the problem of lift enleament via stabilization of
trapped vortices in aeronautical applications [46],

e modeling generation of thrust in fish—like locomotion [48, 49].

Over the years several different control techniques haea bgplied to vortex dynamics
problems, many of which were based on ad-hoc and/or spasuktguments. While in
our survey we will attempt to do justice to most noteworthpm@aches, our focus will be
primarily on techniques based on solid mathematical fotiods. Therefore, our presentation
will involve a blend of mathematical analysis and resultawierical computations.

The structure of the paper is as follows: in the next Sectienstate some basic facts
concerning vortex motion in 2D domains with and without bdames; in this Section we

¥ We remark that whe® is multiply—connected)y, is defined up to a constant on any closed boundary segment,
and formulation (2) must be modified to account for the cyotinstants representing the circulations around the
contours [27, 30, 31].
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also analyze different vortex equilibria and their stdpifproperties, next in the rather short
Section 3 we discuss the control of vortex systems in domaiti®ut boundaries, whereas
in Section 4 we will discuss it in the case of domains with bdames where most of our
attention will be on vortex flows past bodies§, then in Sec&owe will discuss the dual
concept of the state estimation for vortex systems, whare&ection 6 we will introduce
some novel concepts concerning the optimal control of xditavs with finite—area vorticity
distributions, summary, conclusions and a discussion ofestuture research directions are
deferred to Section 7.

2. Point Vortex Systems — Dynamics and Equilibria

In this Section we discuss the equations governing the matfopoint vortices, first in
unbounded, then in bounded, domains. Subsequently, watrédoese equations into a
formalism employed in the modern control theory [1, 7]. Hiyaowing to their importance
for stabilization problems, we discuss point vortex edpié in flows past objects focusing on
their stability.

2.1. Point Vortex Dynamics in Domains without Boundaries

Description of the vortex motion can be made more succinictgusiethods of the complex
analysis and hereafter we will frequently employ this folisra. Identifying the position of
a point vortex with a point in the complex plane, ia.= x; +iy; € C, where i= v/—1, and
in view of the identityAy = —w [37], wherew is the vorticity, the complex potenti&V(z)
induced at a point € C by a point vortex located & in an unbounded domain is given in
terms of complex Green’s function for the Laplace equati@an,

M1
W(z) = —=In(z—z 4
( ) 2T ( 1)7 ( )
wherel 1 is the circulation of the vortex. The complex velocity caenlbe obtained as
dw(z T 1

V(2) £ (u-iv)(2) =

=— : 5
dz 2Mz—271 )
Assuming that there amg such vortices in the plane with the coordinatgs C,k=1,...,N
and circulations{rk}{z‘:l, their evolution is governed by the following system of rinaar
complex differential equations (ODES)

/
dze 1 XN
—=—9y ——, k=1,...,N, 6
dt  2nm45 %17 (6)
where the overline denotes complex conjugation and thegpomthe summation symbol
indicates that the singular self-induction terms vith | are omitted. Separating the real and

§ Here we emphasize the distinction between bounded dormathdomains with boundaries, as the latter may
in general be unbounded, at least in some directions, butpossess some internal boundaries.
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imaginary parts in (6) we obtain
dy 1 N (=)

dt _anl i v
dy 1 N (= %) B
E _— E[lz T, k _— l, ceey N7 (7b)

=1

A

where ry = /(% —x)2+ (Yyk—VY1)2.  System (@—(7b) is known to possess several
remarkable properties [33]. For example, defining the Hamian as

H A 19 /F Minr (8)
=—— k1 Inrg
4ﬂk;1

and defining the generalized coordinates and momenta tasgg@sa, = x andpx = Mk,
k=1,...,N, (7a)—(7b) can be cast into the Hamiltonian form

dok 0H
dat - op (92)
d p¢ 0H
T k=1,...,N. (9b)

In addition to the Hamiltonia¥/, system (@)—(7b) also conserves the two components of
the linear impulse and the angular impulse. The Hamiltofmd@malism can be made even
more elegant using methods of the geometric mechanics [B3jortex systems admit many
different equilibria, including asymmetric states [50).38s shown by Grobli [51], see also
[52], system (@)—(7b) is integrable forN < 3 and is in general non—integrable fidr> 3.
Point vortex dynamics is an area of mathematical physicshha traditionally served as a
“playground”, to use the term recently employed by Aref [3®f methods stemming from
fairly disparate areas of mathematics, both applied and.pur

2.2. Point Vortex Dynamics in Domains with Boundaries

In the presence of solid boundaries the most important coatn stems from the fact
that the evolution of system (6) is now constrained by thedd@n that the normal velocity
component vanish on all solid boundariesn|;o = 0, or equivalently|,, = Wp. Arguably
the most straightforward approach to satisfy this constigito use the “method of images”
[27, 30] which treats solid boundaries as streamlines of & field defined in the entire
complex planeC and then, for every point vortex present@ uses suitably chosen images
located inC\Q. The location of these image vortices is geometry—depénatahis chosen
to ensure that the normal velocity induced together by tigiral and image systems vanish
everywhere on the boundadf). For example, for a vortex in the exterior of a cylinder with
radiusRthe image vortices can be determined using the “circle #gm@d{30] which states that

if W(2) is the complex potential of a flow in a domain without boundagand with singularities
at some pointg, such thatvy, |z| > R, then the complex potential of the corresponding flow
past the cylinder is given by the expressio(z) = W(2) +V_V(§). The second term in the
expression fow(z) represents “image singularities” located inside the atieta
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Incorporation of nontrivial boundary conditions could@alse done using other, more
general, techniques applicable to the case when the \grtistribution includes finite—area
vortex regions and the domain boundaries have more conglicghapes. The method of
images can be reformulated in terms of suitably modified @sefinctions constructed to
ensure that the boundary conditions are satisfied on alldemigs [30]. Using such modified
Green’s functions it is possible to generalize Hamiltorfiamulation (8), (%), (9b) for the
case of vortex motion in bounded domains as was done by Lih(f68 Hamiltonian#
generalized for the case of bounded domains is often refeoras the Kirchhoff-Routh path
function [32]). These results were recently brought to aplementable form by Crowdy and
Marshall in [54] where methods of the classical functionotlyewere used to derive explicit
expressions for modified Green’s functions. Yet anothesitil#ty to account for the presence
of impermeable boundaries is by using a singular vorticiggribution on the boundary, a so—
called “vortex sheet” [32]. While such techniques turn aube quite useful in numerical
computations [39], they are less tractable from the aradi/point of view. In most examples
discussed in this survey it is sufficient to use the methodnafges. Needless to say, as will
be evident from examples presented in Section 2.4, incatjgor of solid boundary effects
complicates the mathematical structure of system (6).

2.3. Vortex Models as Control Systems

In this Section we recast systemaf#(7b) modified to account for the presence of the solid
boundaries and the free stream at infinity as a generic control system. This will involve
identifying explicitly the systemnput (control) and systenoutput(measurements). Using
this generic notation we will be able to analyze the invedtans of vortex control problems
carried out by different researchers in a uniform settingendting the state vector of the
system at time X (t) £ [x1(t) y1(t) ... xn(t) yn(t)]" € R?N, the system evolution can be
concisely expressed as (unless needed for clarity, we kidlthe argument)

dxX

i
wheref : RN — RN js the function describing the advection velocities of tetices due
to the induction of all the vortices and their images, as \aslthe effect of the free stream
Uo. DenotingU : R — RM a time—dependent control input wit degrees of freedom,
autonomous system (10) can be generalized to include thatawt as follows

X
c:j—t — £(X) +b(X)U, (11a)
whereb(X) : RM — R?N is thecontrol operator describing how the actuatinaffects the
system dynamics. Evolution equation §1s complemented with an equation describing

how the system output (measurements RK is obtained, i.e.,
Y =¢(X)+ DU, (11b)

wherec : RN — RK andD : RM — RX are suitable observation operators. While the form
of the functionf is determined by @&—(7b) augmented, if necessary, to include the image

f(X), (10)
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vortices and the free stream, the specific forms of the cboperatorb and the observation
operatorsc andD will be made clear in the discussion of the different conprblems in
Sections 3 and 4. Denotintp an equilibrium solution of (10), i.e., a state such thiaxty) =0,
X'(t) £ X (1) vit) ... x(t) yn1)]T € RN the vector of the perturbation variables and
Y’ the vector of the output perturbations, equationsajldnd (1b) can be linearized in a
neighborhood oKy yielding theperturbation system

/
%:Ax’+8u, (12a)
Y =cCX'+DU, (12b)

whereA £ [Of(Xo) andC = [Oc(Xo) are the Jacobians 6fandc evaluated at the equilibrium
Xo, whereas for the control operator we for simplicity assureeetthatb(X) = b(Xg), so
that B = b(Xp). Approaches derived using the modern theory of optimal robmhake it
possible to account systematically for the presence of hmagancertainties and exogenous
disturbances [7]. This is particularly relevant when cohéipproaches derived based on point
vortex models are then to be applied to problems governedhéyNavier—Stokes system,
including actual laboratory experiments. Modeling unaieies are usually regarded as
additive disturbances represented by a stochastic pracessch is referred to as thgystem
(plant) noise It affects the linearized system dynamics &L%ia a [2N x 1] matrix G and
the linearized system output (BRvia a [K x 1] matrix H. Furthermore, we assume that
the system measurements may be additionally contaminadtadisem = [mg ... mg]T,
wherem,...,mk are also stochastic processes. With these definitions wa@amut the
linearized point vortex system into the standard statesesfiam which will serve as the basis
for the development of methods based on the linear contearth[1, 7]

dx’ .
¢ =AX'+BU+Gw (139)

Y =CX'+DU+Hw+m. (13b)

However, a majority of problems to be discussed below areaat formulated in a purely
deterministic setting, so that unless stated otherwisewi@ssume thatv= 0 andm = 0.
We finish this Section by stating two definitions of fundana¢imhportance for the analysis
of control system (18)—(13):

Definition 1 ([1, 7]) System (13a) is said to be (state) controllable if, for angahcondition
X'(0), it is always possible to determine a conttbthat will drive the system to an arbitrary
final stateX’(T) in a finite time T.

Definition 2 ([1, 7]) System (13a)—(13b) is said to be observable, if its stdtean always
be reconstructed in finite time using only the system outputs
2.4. Vortex Equilibria in Flows Past Bodies

Evidently, important properties of perturbation systen3a)t(13b) will depend on the
properties of the equilibriunXg around which the linearization is performed. In problems
involving flows past objects these vortex equilibria rev&aie intriguing features which we
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b=y

0

(a) (b)

Figure 1. Schematic showing the main features of the recirculatioreza (a) Kirchhoff’s
model and (b) Batchelor's model of the steady wake flow in tifanite Reynolds number
limit.

will now discuss starting with flows past bodiegthouta fixed separation point such as the
circular cylinder. 1t is well-known that steady—state Ewdguations (2) possess nonunique
solutions, and that there is an infinite number of them. Thestjan which of this infinite
number of solutions is actually tirelevantone, in the sense of being the infinite Reynolds
number Re— o) limit of the corresponding solutions of the Navier—Stokgstem, is one
of fundamental questions of hydrodynamics which, as of gghain unanswered [55, 56].
Below we briefly present the main families of solutions thaténbeen considered as possible
candidates for this limit. Fundamentally, there are twohsiaenilies: flows characterized by
anopenrecirculation zone obtained using the “free—streamlietry of Kirchhoff [57] (see
Figure 1a), and flows featuring @osedrecirculation zone arising as manifestations of the
Prandtl-Batchelor theorem [40] (see Figure 1b).

In regard to the first class, the solutions are constructedgupposing the existence
of a “free streamline” which separates the potential flonnfra stagnation region behind
the obstacle where the flow velocity vanishes identically, [30]. The pressurgg in the
stagnation zone is assumed equal to the pressure at infigjtgo that the free streamline
coincides with a vortex sheet, with the jurBpn the tangential velocity constant and equal to
the free stream at infinity. For a given geometry the fre@astline model does not depend on
any parameters. It can be shown [30] that Euler flows con&dia this way have a non—zero
drag, and therefore do not give raise to d’Alembert’s parkado

Concerning the second class of flows, the Prandtl-Batctibkwrem [40] stipulates
that in the infinite Reynolds number limRe — o the regions in an incompressible flow
characterized by closed streamlines must necessarilggmond tacconstantvorticity wp. In
regard to Euler equation (2), this corresponds to the falgwechoice of the RHS function

F(W)

F (W) = —woH (Wo — W) — 2BH (Yo — W), (14)
whereH(-) andd(-) are the Heaviside and Dirac distributions, which represeagions of
constant vorticitywg = g—‘; — g—‘)‘, surrounded by a vortex sheet of strenBtand embedded in an

irrotational flow (the boundary of this vortex region is cheterized by the conditiogy = Yy,
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wherey € R is a parameter). The strendgdof the vortex sheet can also be interpreted as the
jump of Bernoulli’'s constant when crossing the streamline- Yp. Euler flows satisfying
(2) with (14) and featuring a symmetric pair of counter—tioig vortices touching each
other are referred to as “Sadovskii flows” [58] and were cotedun unbounded domains
by Pierrehumbert [59], and Saffman and Moore [60]. From tbhmtpof view of modeling
bluff body wakes, the more relevant problem concerns findtngndtl-Batchelor vortices
in equilibrium with the cylinder. This problem was solved Bjcrat et al. [61] who also
assumed for simplicity thaB = 0, i.e., that there is no vortex sheet surrounding the vortex
region. Elcrat et al. discovered several distinct famibésuch vortex flows, each depending
on two parameters (Figure 2). The families consisting ofesoregions witHinite area have
the remarkable property that fixing the circulatior= —wy (o H (o — ) dQ of an individual
vortex patch and allowing its area to shrink to zero (Y& ,— —) one obtains a continuous
family of solutions approaching a point—vortex system imitlgrium with the obstacle as
the asymptotic limit. In the case of the families charactli by pairs of vortex regions
above / below the flow centerline and behind the obstacle pihint vortex solution is the one
discovered by Foppl in 1913 [62]. The point vortex equiliion corresponding to a pair of
vortices behind the cylinder (Figure 2, top row, second ooilis referred to as the “Foppl
system”. It has given rise to a number of interesting corproblems, therefore below we
provide a few details concerning this particular solutidhe Foppl system consists of a pair
of counter—rotating point vortices placed symmetricalipee and below the flow centerline
behind the cylinder (Figure 3a). These vortices are comeigred by a pair of image vortices
inside the cylinder whose location is determined by thdeitlteorem [30]. As shown already
by Foppl, there exists a one—parameter family of Foppiesyis characterized by the following
algebraic relationship

(120% = 1)? = 41203,

(1201* = 1)*(|20]*+12) (15)
|20]° ’

wherezg = Xp + iyp is the position of the top vortex (the bottom vortex is lochtt zg =

Xo —1Yo), wheread™ = —I'1 = I is the circulation of the vortices. Thus, for every nonzero

value of the circulatiof” there exists an equilibrium position of the vortices and tbcus

is referred to as the “Foppl line” (see also top row, firsturoh in Figure 2). A remarkable

property of Foppl equilibrium (15) is that its flow pattergatures a recirculation bubble. In

addition, the Foppl equilibrium possesses some intergstiability properties which will be

reviewed in Section 2.5. As shown by Protas [63], one canrgdine this “classical” Foppl

system by incorporating in it higher—order terms represgrthe corrections due to the finite

area of the vortex region, so that the new system can appat&imith arbitrary accuracy the

solutions of Euler equation (2) characterized by finiteaarertex regions, i.e., with the RHS

given by (14). Below we outline the main idea of this condfinre. Consider a compact region

P of vorticity embedded in an irrotational flow past a circutgtinder and characterized by a

constant vorticity distributiony. Using complex Green’s function (4), the complex potential

induced by such a vortex patch in a 2D unbounded domain caxpressed for points outside

M=2m
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the patctz ¢ P as
Vib(2) = (0 +i)(2) ‘*’O/m 2-7)dAZ), (16)

wheredA(Z) = dXdy. Tilde () indicates that this potential represents a flow in a domain
without boundaries, whereas the subscript indicates teapbtential is due to the patéh

We now choose a poit € P as the origin of the local coordinate system associatedtivéh
patchP and set = Z — z,. Complex potential (16) can now be expressed as

Vib (2) = 2r—mln 72— 2 +—/ <1— )dA(Z). (17)

The second term in (17) can, f(r— z5| > |Z — z|, be expanded in a Laurent series which
yields

7Z—

. r 1 & G T
VVp(Z):ﬁ| - _z_zﬁ ~2)", |z—2z| > U, (18)
where
~ o [ T"dAQ) 19)

and{m = maXy7)cp |¢|- Thus, the points represents also the location of a singularity which,
for the moment, remains unspecified. The quantitigzs), n=1,...,Np are the moments of
the vorticity distribution in the patcP with respect to the poirds and therefore are related
to the eccentricity of the patdft; ), its ellipticity (cp), etc. The zeroth momeuwg is equal to
the total circulatior o of the patch. The complex potential due to a finite—area xqrégchP
can be approximated for points of the plane lying outsidg plaitch by truncating expression
(18), i.e., replacing it with a finite sum of singularitiesaied at the poirds

Wh(2) = Wen, (2) = r—m_ In(z—z) — ori nzlc—r:‘(z_ z) ", |z—2z| > {m. (20)
The order of truncatioiN is represented by the second subscripf\orThe complex potential
VN\/QvNO(z) due to the patcl with the opposite—sign vorticity-wg and located symmetrically
below the flow centerline (Figure 1b) can be representedgusimanalogous expression in
which zg is replaced wittes andc, with —¢, forn=1,...,No. We now use these expressions
to construct potential flows approximating solutions of stkeady—state Euler equations in the
sense that the velocity field of the potential flow will coryerforz¢ P andz ¢ Q, to the
velocity field of the Euler flow adlg — . These potential flows are constructed using the
potentialsib, (2) andWq N, (2), and employing the circle theorem [30] to generate suitable
image singularities inside the obstacle in a way ensurig thhe boundary conditions for
the wall-normal velocity component are satisfied. As wasvshim [63], the equilibrium
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solutions of such “higher—order” Foppl systems are charazed by the condition

Y (1 R2> Mo 1 1 1
© T2 | om | 2\ _ > 2
)| e g) W g
1 & n+1 Rzén El
A i e
(ZNo‘%) °
g Ra L
(ZN0_7N0>n+1

which is a complex—valued equation characterizing one ¢exnpnknownzy,, i.e., theNg—
order Foppl equilibrium. The sum in Equation (21) represethe No—order correction to
the classical Foppl system resulting from the finite areshefvortex region. Assuming a
fixed circulationlg of this vortex region, the higher—order Foppl equilibrg represent a
two—parameter family of solutions of (21) depending on tiu@dation ordeiNg, which is a
discrete parameter, and the set of momenRtg,), n = 1,...,Np, which vary continuously
with the aregA| of the vortex region desingularizing classical Foppl dgdum (15). Thus,
whenNg = 0 we recover the classical Foppl system with one equilibrgiven by (15). In the
caselNp > 1 the qualitative and quantitative properties of the loahafhigher—order equilibria
zn, Were studied in [63]. While a detailed review of these residtbeyond the scope of the
present paper, we mention one result which is quite relewethte vortex control problem. In
[63] it was proven that, for a fixed truncation ordey, the locus of equilibrium solutiora,,
forms a curve parametrized by the ai@a of the vortex region and starting at the classical
equilibriumzy. Therefore, the higher—order equilibig, can be regarded as perturbations of
the classical equilibriura such that the distandey, — zo| is a continuous function of the area
|A| of the vortex region desingularizing classical equililni15) (Figure 3b). We conclude
this discussion by remarking that all the flows belonginghte Prandtl-Batchelor family of
solutions of (2), together with the limiting point—vortexyssems, are characterized kgro
drag.

The question of existence of vortex equilibria becomes rsat#le when one considers
flows past objects with fixed separation points, such as e®mecusps. In such cases the
flow must satisfy one additional condition, namely the Kdftaukowski condition, which
requires that the separation should occur at a singulat.ploithe context of equation (2) this
is enforced by specifying the value of the streamfunctioa pbint adjacent to the prescribed
separation point, thereby restricting the class of posssolutions. Indeed, the flow past a
finite plate normal to the oncoming uniform stream [64] is aaraple of a potential flow in
which no vortex equilibrium exists that would also satisife tKutta—Joukowski condition
(in fact, in the past some authors had staked claims to thesugpeffect, and we refer
the reader to [26] for some interesting remarks concernivg History of this problem).
This issue was recently revisited by Zannetti [65] who ingged the existence of point
vortices in equilibrium with a flow past a locally deformedlirhat also need to satisfy the
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point vortices isolated vortices attached vortices infinite vortices
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Figure 2. (first column) One—parameter families of point vortices quiibrium with the
cylinder and (remaining columns) the associated two-pataniamilies of isolated, attached
and infinite vortex regions computed in [61]. The family ofifite vortices (fourth column)
is a perturbation of the potential flow. [Figure reproduceathvpermission of the publisher
(Cambridge University Press).]

€Y (b)

Figure 3. (a) Schematic of the classical Foppl system; the dashed rigpresents the

separatrix streamline delimiting the recirculation buhklb) loci of the higher—order Foppl

equilibriazy, parametrized by the area| of the vortex region for different truncation orders
(No =1,3,5,10,15) [63]; the circle represents the classical Foppl ebriiim.
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Figure 4. The Foppl (“Equil.”) and Kutta manifolds with their asynopés showing no
intersection points [65]; the domain boundary is in the faha symmetric Ringleb snow
cornice [46]. [Figure reproduced with permission of the lmher (Cambridge University
Press).]

Kutta—Joukowski condition. The problem was analyzed byshg the intersection points
of the “Foppl manifold”, representing the locus of the gaiartex equilibria, and the “Kutta
manifold” representing the locus of point vortices saiisfythe Kutta—Joukowski condition.
Criteria concerning the existence of such intersectiom{gowere linked to the geometry
of the domain, more specifically, to the properties of thefeomal mapping employed to
transform the original domain into the half—plane. In partar, it was shown that there exist
domain boundaries with fore—and—aft symmetry for whichRbepl and Kutta manifolds do
not intersect, so that there is no vortex equilibrium sgiigf the Kutta—Joukowski condition
(Figure 4).

The same questions also pertain to the problem of existefrfecgte—area vortex regions
described by equations (2) and (14), and also required tefpahe Kutta—Joukowski
condition. In this regard it was conjectured by Zannetti6b][that nonexistence of point
vortexin equilibrium with the flow and satisfying at the same time tkutta—Joukowski
condition would preclude the existence of the correspapdamily of finite—area vortex
regions satisfying analogous conditions. While this issueurrently under investigation,
claims supporting an opposite point of view had been madeusfu3 et al. [66, 67]. The
latter results however were recently questioned by Gallj@B] as a computational artifact
related to insufficient numerical resolution. On the othandh when the body placed in
the flow does not possess the fore—and—aft symmetry, it isilpego find equilibrium point
vortex configurations satisfying the Kutta—Joukowski dtind. Indeed, using an inclined flat
plate as the obstacle, Saffman and Sheffield [45] found akfamilies of equilibrium vortex
configurations satisfying the Kutta—Joukowski conditiangd one such solution is shown in
Figure 5a. Such solutions are in fact quite interesting fthenpractical point of view, because
configurations as shown in Figure 5a feature an increageaklifompared to the flow without
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Figure 5. (a) Streamline pattern in one of the equilibrium solutioaarfd by Saffman and
Sheffield [45] and involving a vortex attached to an inclifiatiplate; (b) modified Joukowski
airfoil with a cornice—shaped cavity (“Kasper wing”); elijpiium position of the vortex in

the cavity is denote® [121]. [Figures reproduced with kind permission of the psiérs

(Wiley-Blackwell and Springer Science for Figures (a) abyl (espectively).]

attached vortices. Since most such equilibrium solutisadiaearly unstable, one possibility
to obtain more robust configurations consists in “trappitigg’ vortices in a suitably—designed
cavity on the upper surface of the airfoil (Figure 5b). Theysh of the cavity is closely
related to a “snow cornice” and one of the first investigatorstudy vortex equilibria in such
geometries was Ringleb [46]. The concept of a vortex trapgpeal cornice—shaped cavity
on the top surface of an airfoil, known also as the “Kasperg¥{69], has been explored in
the aerospace industry [70] and still remains the subjetttehse research efforts [71]. The
existence of solutions characterized by finite regions ofstant vorticity, i.e., satisfying (2)
with (14) in addition to the Kutta—Joukowski condition, ich geometries was stipulated by
Bunyakin et al. [72], however, to the author's best knowkedsuch flows have not actually
been computed yet. There also exist other models of the wakes ftorresponding to the
Re— oo limit, such as the Riabouchinsky flow [73] which is a hybridfyimg some features
of the Kirchhoff and Prandtl-Batchelor flows. However, wél wot discuss them here, since
they do not strictly satisfy Euler equations (2).

A salient feature of real flows past bluff bodies is the spoataus formation of an
array of counter—rotating vortices, the so—called Bénaoth Karman vortex street, when the
Reynolds number is sufficiently high. This phenomenon was firodeled mathematically
using point vortices by von Karman [74] who found equililon configurations of two arrays
of point vortices extending indefinitely in the upstream atmlvnstream directions. \Von
Karman also established that, while the symmetric aeargnts are always unstable, the
staggered arrangements are linearly stable, but only fdaioecombinations of the intra—
vortex separations and the distance between the two linesmites, a result that was
subsequently made more precise by Heisenberg [75]. Thés cmodels was also studied
by Villat [76] and was recently revisited using modern teicues by Aref et al. [77] who
found more complicated equilibrium patters involving savarrays of vortices. A weakness
shared by all models based on periodic arrangements otearis that they extend to infinity
also in the upstream direction, so that it is not possibletmant for the presence of the solid
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body generating the wake. This is most likely the reason wlghs/ortex models have not
been investigated in the context of flow control problems.

2.5. Stability of Vortex Equilibria in Flows Past Bodies

Having surveyed different vortex configurations in equilil;n with solid bodies, we now
turn to an analysis of their stability. These propertiesgowag to play a central role in the
development of methods based on the optimal control th&geywill focus on analyzing the
stability of the Foppl system, since this is the equilibmigonfiguration whose stability has
been researched the most thoroughly. As will be argued, latany other vortex equilibria
have analogous properties as regards the linear stabilitye stability properties of the
classical Foppl system and their relevance for the modadintransition to vortex shedding
were thoroughly analyzed by Tang & Aubry [78]. In an earliardy, Smith [79] identified
an error in Foppl's original derivation which concernec tstability of solution (15) with
respect to symmetric perturbations. This issue was agaisited by Cai et al. [80] who
also derived a more general stability criterion and appited study the stability of point
vortices in equilibrium with elliptic cylinders and circad cylinders with splitter plates. De
Laat & Coene [81] analyzed the frequency of the neutrallylstascillatory mode as a
function of the downstream coordinatg. The linear stability analysis of the Foppl system
is performed by adding the perturbatioris= X, +iy; andz, £ x, + iy, to the coordinates
1 = Xp+iyp and z = Xg — iyp of the upper and lower vortex in equilibrium solution (15),
and then linearizing governing system (10) arodid= [Xo Yo X —Yo|' assuming small
perturbations (Figure 6a). Thus, evolution of the perttidves is governed by system (@g
whereX’ = [X; ¥; % Y,|T andB = 0, and the system matrix is given by (see [78])

a b c d
e —-a f C
A= c —-d a -b (22)

—f cC —e —-a

with the following entries

_ 3> 20
20® |20/
1t 5 1 2 1
2|° 20" 2|z0|° |22 |20|
_ X0
|20|%’
. 1 1 1 (23)
= 2l 2 Jal
ol 1 5 3 1
201°  2l|" 2205 |z0|
1 3 1
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Figure 6. (a) Schematic indicating the perturbatiofisof the classical Foppl equilibriuio;
the big dots represent the equilibrium and the small dotsessmt the perturbed positions, (b)
the three modes of motion characterizing the linearizegpFgystem with the system matrix
A given in (22); note that another pair of the modeandf3 can be obtained by reversing the
direction of the corresponding eigenvectors.

We remark that (18) is a linear time—invariant (LTI) system. Eigenvalue amsaéyof the
matrix A reveals the presence of the following modes of motion (Fedil):

¢ unstable (growing) mode corresponding to a positive real eigenvalye= A; > 0,
¢ stable (decaying) mod&corresponding to a negative real eigenvalge= —A; < 0,

e neutrally stable oscillatory modecorresponding to a conjugate pair of purely imaginary
eigenvalueds s = LiA;.

These qualitative properties are independent of the doeeust coordinate, parameterizing
equilibrium solution (15). The linearized system is nellyrstable to symmetric perturbations
and unstable to almost all asymmetric perturbations. eaniore, analysis of the orientation
of the unstable eigenvectorsAfcarried outin [78] revealed that the initial stages of ibgity

of the Foppl system closely resemble the onset of the vatexding in an actual cylinder
wake undergoing the Hopf bifurcation. A question naturaltising in this context concerns
the stability of the solutions of Euler equation (2) with Yidhich desingularize the classical
Foppl solution, cf. Figure 2. This problem was investigkte[82] where it was shown that, in
analogy with the classical Foppl system discussed abbee]dacobians of such solutions are
characterized by one unstable and one exponentially stablie in addition to an infinite
number of neutrally stable modes. The nonlinear stabilfty-@ppl equilibrium (15) has
received only limited attention: it was studied in a weakbnhnear setting by Tordella [83]
and recently for a more general system using the energyr@asiethods by Shashikanth et
al. [84].
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Figure 7. Schematic of a co—rotating vortex pair; dotted lines repnésortex trajectories.

3. Control of Vortex Flows in Domains without Boundaries

As compared to the results concerning vortex flows in domwaitts boundaries, which will
be reviewed in Section 4, the results concerning optimatrobof vortex flows in domains
without boundaries are relatively few. The reason appeatset that such configurations
represent a fairly idealized setting not connected diyectlany specific application. In this
context we mention the work of Vainchtein and Mezi¢ [85hl@rated further in [86], who
considered the problem of optimal control of a co—rotatiogtex pair. Such a system of
two same-—sign vortices represents the simplest pointxaststem with nontrivial behavior
(Figure 7). The nominal dynamics consists of the two vogtig®ving in opposite directions
on circular trajectories around their vorticity centroig = % The control objective
in that investigation was twofold, namely, to moxgfrom an initial to a desired location
and to change the vortex separation=2||x; — X»|| from some initial to a desired value using
(i) a uniform strain field and (ii) a field due to a localized smior sink as the actuation.
The authors considered “adiabatic” control where it wasiaesl that the control field was a
small (of ordere) perturbation of the nominal velocity field. This made it pitde to apply
the method of averaging [87] which “averaged out” the fattion of the vortices arounxt,
yielding in this way a reduced system for the averaged gtiesitk.) and(r) as the new state
variables. For example, in the case of the uniform straiul fisded as the control, governing
equation (14) for the control system now takes the specific form

) b, (24)
whereb((x¢)) = [(X.) — (Yc)]T. The solutions of this averaged system describe the behavio
of the original state variables with an accuradye) over time intervalsO(e~1) [87]. In
the case when the strain field was used as the control, thenalpprotocols could be
found applying direct methods of calculus to minimize thetoof the control. Assuming
the control input to be bounded in the mean sense over a cyalertex rotation resulted
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in an impulsive control in the form of a combination of Diraelth measures applied at
optimal phases of the vortex rotation. On the other handjrasgy the control input to
be bounded at all times resulted in a “bang—bang” control hctv the actuation either
vanishes, or is equal to its maximum allowed value. The “bé#agg” control often arises
in optimal control problems in which the control is restedtby some lower and upper bound,
and the resulting solution for the optimal control intenittly switches between these two
values [7]. In the case when a sink / source was employed aacthation, the solution of
the optimal control problem was more complicated and reguthe use of the Pontryagin
maximum principle applied to the averaged equations. TherPagin maximum principle
is a general technique providing necessary conditionsacierizing the solution of optimal
control problems involving constraints on both the staté #re control [7]. This approach
will be described in more detail in the context of anothertoainproblem in Section 4.2;
here we mention only that it also resulted in an optimal aantr the form of a set of Dirac
delta measures applied at the optimal phases of the vortatian. A generalization of this
problem was considered by the same authors in [23] wheredhn portices were replaced
with elliptic vortex patches possessing more internal degrof freedom. A solution of the
associated problem of state estimation for a co—rotatimgexgair was proposed by Tadmor
[88] and will be discussed in Section 5.

4. Control of Vortex Flows in Domains with Boundaries

Control of vortex flows in domains with boundaries has atgdcsignificant attention. This
in particular concerns vortex flows past objects such aggl&tiuff bodies and airfoils placed
in a uniform stream which serve as models of flows arising imyrienportant applications.
In order to place the following discussion in an appropr@etext, we begin by stating some
general results concerning control and stabilization oE2ler equation (2) in a domain with
boundaries. The following result is due to Coron [89]:

Theorem 1 If the controls act on an arbitrary small open sub&aif the boundargQ which
meets every connected component of this boundary, then 2D &guation (2) is exactly
controllable.

The proof of this theorem relies on the so—called “returnhodt and for further details
concerning this proof we refer the reader to the monogra@h yéhich also outlines the
relevant control-theoretic background. Theorem 1 has tsipally—relevant implication
that, if the control does not act on certain internal boupdagments of a multiply—connected
domain, then the Euler system in that domain may not be clbeitte, which is a consequence
of the fact that such control will not have the authority oseme cyclic motions (i.e., motions
with prescribed circulations around holes in the domain).

4.1. Control of Vortex Flows in Bounded Domains

One of the first systematic studies of a vortex control pnbie a domain with boundaries
was the investigation by Péntek, Kadtke and Toroczkai{@®) employed methods of “chaos
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(a) (b)

Figure 8. (a,b) Symmetric three—vortex configurations with unstgigeiodic orbits whose
stabilization was investigated in [90] using the OGY appfgaach configuration rotates with
a specific angular velocity (figures not to scale).

control” [91] allowing one to stabilize an otherwise undeaperiodic orbit embedded in the
chaotic attractor of the system. Péntek et al. studied thblem of controlling symmetric
arrays of three same—sign point vortices contained in aedl@gcular container (Figure 8).
As is well known, such simple systems already exhibit negrdable (chaotic) behavior in
addition to the presence of unstable periodic motion rdl&tehe rotation of the vortex array
as a rigid body. In terms of the actuation, the authors useskrtranspiration distributed on
the cylinder boundary and characterized by three degregeexfom. Control was performed
using an OGY feedback algorithm due to Ott, Grebogi and Y¢&&. The idea of this
method is to adjust the actuation at every discrete instaimhe so as to drive the state of the
system towards thstablemanifold of the fixed point one seeks to stabilize. In this waly

a small control input is required, as most of the work is dopehe internal dynamics (i.e.,
the transfer along the stable manifold). The OGY approaghires that an eigenvectgg of
the Jacobia’\ associated with the stable manifold of the equilibriXgbe available. Then,
the OGY control method relies on the following ansatz

X'(t+4t) =alX'(t)[&, (25)

where/At < 1 is the time step and € (0.1) is a real parameter. Relation (25) should be
regarded as a condition on the control inpltvhich requires it to align the perturbatiotd
at the following time level with the stable subspace of theobeganA, so that the natural
dynamics of the system can bring it to the unstable equilibiXo. Using (12) to re—express
(25) we obtain
1
At
Truncating the terms proportional fkt?, one obtains a system of linear equations that need
to be solved in order to obtain the conttd(t) at the present instant of time. Evidently, when
M < 2N, system (26) may not have any solutions. This difficulty wasumvented by the
authors in [90] by requiring that the perturbati®h reach the stable manifold aftgrsteps,
i.e., replacing (25) with a modified ansatz

X'(t+ pAt) = al[X(1)]|&s, (27)

[al| X/ (1)]|&— (I +AtA)X'(t)] = AtBU + O(At?). (26)
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so that (26) would now become

1

~ [aIX ()&~ (1 +AtA)PX'(1)] =

At
= (I +MtA)PIBU(L) + (I + AtA)P=2BU(t +At) + ...+ BU(t + pAt) + O(At?).

which can be solved fofU(t),U(t + At),...,U(t + pAt)} provided p is chosen so that
pM > 2N [for pM > 2N, system (28) is underdetermined and some values of theatamput
can be set equal to zero]. Remarkably, the study [90] alsotheaéirst investigation which
employed methods of the modern control theory to study therobiability of the vortex
systems shown in Figure 8a,b which allowed the authors totifyethe forms of actuation
with insufficient control authority (e.g., changing the phaof the domain boundary from
cylindrical to elliptical). We postpone a detailed disdossof the controllability concept to
Section 4. The computational results reported in [90] cardil that the OGY control strategy
was indeed capable of preventing the chaotic behavior bytaiaing the periodic motion.
The OGY approach was also applied to control vortex systemsbounded domains which
will be reviewed in Section 4.

The next investigation we discuss in this category is thexgdtcontrol of a point vortex
in a potential “corner flow” studied by Noack et al. in [93] ¢tire 9a). The objective in this
control problem was to enhance mixing which was quantifieddnsidering a time—averaged
integral of the mass flux across an invariant manifold of tliin€aré map characterizing
particles’ trajectories. This invariant manifold is a uniof the stable and unstable manifolds
emanating from the stable and unstable fixed points of thadacé map (Figure 9b). In
Figure 9b we can also see the regions occupied by the fluidieatt and detrained to and
from the recirculation zone, denoted D and E, respectividig state variable was the position
of the vortexX = [xy y\,]T and the control actuation had the form of a perturbation ef th
potential stream in the corner flow and was characterizedngytone—dependent parameter,
so that in (1&) we haveU € R and

(28)

Xv
—W
wherek € R is a parameter . A key result demonstrated in [93] was thaabwve control
problem can be solved by transforming governing equatida)(vith b(X) given by (29) to

the flat coordinates z= a1 (X, Yv) andz; = az(xy,Yv), wherea; anday are suitably chosen
transformations. With thus redefined state variables, tvwening system takes the form

d Z1 - Vi) 0
dt [ p2) ] B [ P(z1,22) ] ” [ 0(z1, 22) ] Y (30)

We note that the first new dependent variable (the flat coatd)z; can be prescribed as
7 = 7, whereZ is some chosen function, and the corresponding control eafetermined

afterward as
4-p#,2)
U= 45— -=*%° 31
9.2 5D

b(X) =k [ : (29)
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Figure 9. Corner flow with a point vortex studied in [93]: (a) the uncatied system with
the solid symbol denoting the equilibrium position and tine$ representing periodic orbits,
(b) features of the Poincaré map of particle trajectori@sesponding to the natural vortex
dynamics, and (c) optimal vortex trajectories with the esgonding frequencies of rotation.
[Reprinted with permission from [93]. Copyright (2004), Anican Institute of Physics.]

providedqg # 0 andz‘zj = z‘lj Thus, existence of an invertible transformation to the flat
coordinates is equivalent to controllability of the origirsystem. The trajectorg‘f was
then represented with a few Fourier basis functions whosfficeents were optimized
computationally using a linear programming (simplex) aidgoon to maximize the cost
functional, and examples of optimal vortex trajectoriesnir[93] are shown in Figure 9c.
Noack et al. presented also a general theory concerningftianation of equations of vortex
motion (11a) to the flat coordinates in arbitrary domains and in situgimvolving multiple
vortices. The flux—maximizing optimal control°Pt is clearly of an “open—loop” type, and it
is not evident if the corresponding optimal trajectory webirl practice be stable with respect
to disturbances and modeling errors. Therefore, Noack etaposed to stabilize control law
(31) with proportional feedback terms, so that it would newket the form

 B-pa,n)-k@-F)-k(z-28)
B d(z1,2)

where the coefficientl; andk, were chosen to ensure that the deviatinns z‘lj andz, — zg
vanish with time. For such feedback stabilization to be i@pple in practical settings one
must be able to recover the instantaneous valueg ahdz, from some measurements of
the systems. In [93] this was accomplished employing a lslyit@lesigned observer whose
discussion is however deferred to Section 7. For complstewe also mention investigations
[94] and [95] which employed 2D vortex models to study theefffof various passive flow
control strategies in engineering applications.

U : (32)

4.2. Control of Vortex Flows Past Bodies

We now proceed to discuss investigations concerning cbofrdifferent vortex flows in
domains with internal boundaries. Some of the first systenstiidies of this problem were
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Figure 10. (a) Trajectory of the vortex under the action of the nonlimfe@dback controller
developed in [96] to ensure invariance of the vortex cirtatg the dashed lines divide the
flow domain into different controllability regions, the wvas of (b) the steady actuatibhand
(c) circulationl” corresponding to the equilibrium solutions of the con&dlsystem discussed
in [97]; note that the positive circulation correspondstie tlockwise rotating vortices, a
convention which is opposite to the one adopted everywHsed this paper, (d) trajectories
of a single vortex and the vorticity centroid (i.e., the eclive coordinate) of the high—order
model proposed in [98]. [Figures (a), (b) and (c) reprodus@ld permission of the publisher
(Cambridge University Press). Figure (d) reprinted withirpission from [98]. Copyright
(1997), American Institute of Physics.]

carried out by Cortelezzi et al. [96, 97, 98]. The first stu@g][was concerned with the
control of the unsteady separated flow past a semi—infirgtie plith the transverse motion of
the plate serving as the actuation (Figure 10a). The rolbfujpe separated shear layer was
modeled by a point vortex whose time—dependent circulati@aspredicted using an unsteady
Kutta condition. When circulations of the point vortices atlowed to change during the flow
evolution, equations governing the particle trajectofpés(7a)—(7b)] need to be modified, for
instance, by incorporating the so—called Brown—Michaelextion [99]. Using the condition
that the circulation of the vortex remain constant, a nadinfeedback control algorithm was
designed in [96] that determines the instantaneous trassvelocity of the plate as a function
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of the instantaneous coordinates of the vortex. Using nistbbnonlinear dynamical systems
it was then shown that the state space of the system, cangordih the flow domain, consists
of three controllability regions separated by rays emagaiom the separation point along
which controllability was lost (Figure 10a). In this Figunee also notice that, despite the
fact that the vortex circulation remains constant, theesois swept downstream and exhibits
oscillations with the amplitude increasing with the doweam distance. This effect was
accompanied by a systematic increase of the magnitude cadhmtion. The following
investigation [97] concerned a similar flow configuratioxcept that the plate was assumed to
be finite, the vortices were assumed to separate symmétricah the top and bottom edges,
whereas the flow actuation had the form of a blowing / suctioimtpmodeled as a source /
sink at the rear side of the plate. As in the earlier invesittga a nonlinear controller was
found which ensures the circulation of the shed vorticegsstanstant. This is equivalent
to containing the wake to a pair of counter—rotating vogi¢kat remain attached to the
obstacle. Furthermore, it was also shown in [97] that thedstestate actuation corresponding
to a forced equilibrium solution of the point vortex systeamde found in an explicit form
(the expressions are rather lengthy and therefore we douwieghem here). As is evident
from Figure 10b,c, the forced equilibrium exhibits an im&ing behavior characterized by
a bifurcation of the actuation value: for vortices with aiatockwise circulation the required
actuation is in the form of blowing and the resulting equililn locus is close to the plate; on
the other hand, for vortices with clockwise circulation tequired actuation is in the form of
suction and the resulting equilibrium locus extends doveash. For vanishing actuation
the flow configuration becomes symmetric with respect to thex¥ and, in agreement
with Zannetti's criteria [65] discussed in Section 2.4, slo®t admit equilibrium solutions.
Only a limited section of the equilibrium locus was shown ® lmearly stable, and the
associated basin of attraction represents the vortex agatigns that can be stabilized with
this approach. Numerical simulations performed for a flowhvai periodically oscillating free
stream velocity indicated that the system approached &diyule with the vortex on a closed
trajectory circumscribing the equilibrium position caponding to a steady free stream. A
similar behavior will later be shown to occur also in othentrolled vortex systems. An
interesting extension of this control approach was progpas¢d8] where the authors studied
the possibility of transferring a control strategy detamed for a simpler (“lower—order”)
model to a more complex (“higher—order”) model. This is ictfa very relevant problem,
because given the complexity of the mathematical techsiguelved, a rigorous design
of the controller is often possible only for significantlyrglified models, whereas accurate
description of the system usually requires that more cotaptedels be used. In terms of the
higher—order model, the authors proposed in [98] a vortéal’bsystem which, comparing
to the model introduced in [97], consisted of a larger nundigrarticles, each of which was
characterized by a finite core size (i.e., a desingularizadtpsortex). A “bridge” linking
the lower—order and higher—order models is todlective coordinatevhich determines the
state of the lower—order model corresponding to the stateeohigher—order model, thereby
making it possible to apply to the latter a control law dedivier the former. For vortex
systems such a collective coordinate can be the positiorvoftax that represents a “cloud”
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of vortex blobs used in the higher—order model. The locusiohs substitute point vortex can
be determined by enforcing the conservation of the totaldation and the linear momentum
which in the presence of solid boundaries is a somewhatatelimatter, as it requires one to
also take into account the image vortices. Numerical coatprts employing this approach
and reported in [98] confirmed that the structure of the élguilm loci in the lower-order
model and the higher—order model (expressed in terms of dflective coordinates) are
gualitatively equivalent. Likewise, the behavior of thentolled system in the presence
of free—stream fluctuations was quite similar in both casek faatured vortex trajectories
approaching a limit cycle (Figure 10d).

The nonlinear controllers investigated in [96, 97, 98] pdevclosed—form expressions
for the actuation, but requireompleteinformation about the state of the system and the
mathematical model which in practical situations may béadaiift to obtain. An approach
which relaxes these requirements was studied in [100] whezeproblem of controlling
the higher—order model from [98] was considered. The goa teadesign a “black—box”
controller that will not require any information about thetnematical model of the system,
and will only use the systermutputin the form of some measurements, for instance of the
velocity at some point at the rear side of the plate, so thebtiservation operatarin (12b)
is given by

¢(X) = [-U[V(zm)]] - DU, (33)
wherezm £ xm+ iym is @ measurement point located downstream of the plate, eskBr=

[ Zmz(m&:_ll)d] represents the velocity induced at the measurement pothiegource / sink and
is Included in (33) in order to remove the feed—through eff@cgeneric framework for such
feedback control is provided by the Proportional—Integitafferential (P1D) controller [7]. In
[100] the authors employed a simplified version of this applg hamely, the Proportional—
Integral (P1) controller in which the instantaneous adtwralt)(t) was assumed proportional to
a measure of the instantaneous egf@) between the actual outp¥t(t) [cf. (12b) with (33)]
and the prescribed outpﬁt(t), and also proportional to the error accumulated over some ti
window and represented by an integralegf), Thus, denotindy the current time step and

settinge(t) = ||Y (t) — Y (t)||, the discrete PI control algorithm yields

Ul(t) = —Kpe(to) — K, i%&
|=
=U(t-1) — (KP+ K| %) e(t) — <_KP+ K| %) €(tk—1), (34)

where Kp and K; are proportionality constants and the trapezoidal rule wasd to
approximate the integral. We emphasize that the simple PID&pproach does not guarantee
optimality of the control in any sense. With a steady freeastn at infinity, the PD approach
performed similarly to the controller derived by Corteleet al. in [98], i.e., it was able
to stabilize the system and contain the wake to a pair of @vdrdtating vortices attached
to the obstacle (analogous performance was also obtainesh \wie total circulation, or
the circulation centroid was used as the system output). edew when the free stream
was allowed to oscillate, the resulting state of the systachthe system output exhibited
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Figure 11. (a) Instantaneous positions of vortex blobs and (b) theesponding time—
dependent trajectory of the center of circulation in the floast a flat plate broadside to the
oncoming stream with a steady suction applied at the redl[dal]. [Figures reproduced
from [101] with kind permission of the publisher (Springai&ce and Business Media).]

significant oscillations, an effect not observed when thalinear controller of [98] was
applied. As a step towards resolving this problem, the astdeveloped in [100] a system
identification (SI) strategy. In an effort to keep the présgaction focused, we defer the
discussion of this strategy to Section 5.

The problem of controlling vortices interacting with a fldage was also addressed by
Zannetti and lollo [101] who considered the more generalfigaration of the plate at an
arbitrary angle with respect to the oncoming flow. The pgatifinding of this investigation
was that a forced vortex equilibrium can in fact be estalelisapplyingsteadysuction at the
rear side of the plate, i.e., no feedback is necessary. Tthealso argued that applying such
steady actuation has a similar effect to replacing a sttatgtie with a cambered one, in the
sense that the resulting breaking of the symmetry with retspehe Y—axis makes it possible
for the equilibrium solutions to also satisfy the Kutta citimehs at the separation point (cf. the
discussion of the relationship between the symmetry of thmain and the existence of
intersection points of the Foppl and Kutta manifolds in tibec2.4). The results of the
mathematical analysis were illustrated applying the steactuation to a time—dependent
vortex—blob model of the wake past a plate oriented broadgidhe oncoming flow, i.e.,
a problem analogous to the higher—order model studied i [B8 computations confirmed
the feasibility of this approach and in Figure 11 we repradacsample result concerning
the evolution of the vortex blobs (Figure 11a) and the cq@oesling trajectory of the center
of circulation in the controlled flow, i.e., the collectiveardinate (Figure 11b). We remark
that this center of circulation approaches a circular ttajgy circumscribing the equilibrium
position of the point vortex system, a generic behavioraalyeobserved in Figure 10b.

Several investigations addressed the problem of comptthaotic trajectories of point
vortices advected by the free stream and interacting withr@ular cylinder in uniform
rotation. While a single point vortex in such a configuratioiows a regular trajectory
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Figure 12. (a) Streamlines of a system consisting of a single vortestamting with a cylinder
considered in [102]; the intersection point of the dottee liepresents the unstable equilibrium
of this system, (b) trajectory of the center of vorticity oflaotic vortex pair in an analogous
configuration as in (a); the dotted line represents thedtajg of one of the vortices [102], (c)
convergence of the point vortices (denoted by empty ciye¢tethe unstable equilibrium under
the action of the OGY control scheme [103] (note that the flawFigures (a)—(c) is from
the right to the left). [Figures (a) and (b) reprinted withrpéssion from [102]. Copyright
(1994), American Institute of Physics. Figure (c) repragilierom [103] with permission of
the publisher (Elsevier).]

(Figure 12a), when the system integrability is destroyedimposing a time—dependent
perturbation to the free stream [102], or replacing the peartex with a vortex pair [103],
the trajectories of the vortex (pair) become chaotic. A atgre of this chaotic behavior are
the “capture events” during which the time of interactiorivibeen the vortex (pair) and the
cylinder is significantly longer then otherwise (Figure L2Brhe unperturbed system has
an unstable equilibrium (a saddle) located directly belbe ¢ylinder (for the free stream
approaching from the right and the cylinder rotating in theumterclockwise direction).
The problem of stabilizing this equilibrium was studied byethyshenko in [104] who
used a zero mass flux transpiration, modeled as a point sesindepair, as the actuation.
Employing methods of asymptotic analysis similar to theragimg technique investigated
by Vainchtein and Mezic [86] (see Section 3), it was demmst that a high—frequency
alternating blowing and suction can modify the type of digbof this equilibrium from a
saddle to a center, thereby rendering the equilibrium adytstable. Another method to
stabilize this equilibrium, based on the OGY approach [82s proposed by Kadtke, Péntek
and Pedrizzetti [103] who applied the cylinder rotation las &ctuation. A result indicating
the success of this approach is reproduced in Figure 12cO@3% control approach derived
in [103] based on a simple point vortex system was then aghplia similar setting to control
the flow of a viscous fluid described by the Navier—Stokes ggonaand the computations
reported in [105] showed a good performance of this contrethad.

Next we go on to discuss investigations concerning the obofrthe classical Foppl
system described in Section 2.4. In our opinion, out of & wWortex dynamics problems,
this configuration has received the most complete chafaatem from the control-theoretic
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point of view. The first control study concerning this prablesas the work of Tang and Aubry
[106] who considered passivaechnique based on including in system (10) a symmetric pair
of counter—rotating control vortices with the circulatgofl . andfixedlocationsz, = X; +iyc
andz; = X —iyc (Figure 13a). Thus, the actuation functibfX)U in (11a) was given by

L le—zc T zll—zc T Zl_ll/zc N Zl—ll/zc
_ _Te —u lezc + lezc + zl—ll/ic N Zl—ll/zc
b(X)U_b(X)_ET S AR RN . (35)
-2 ' % ' -1/ -1/z
i [ i [
i Neztzzterz s A

Interestingly, the classical Foppl system augmented adthation (35) was shown to possess,
for sufficiently large values of ¢, two new families of solutions (Figure 14). Remarkably,
one of these new families was shown to be neutrally stable thi¢ Jacobiar = Of (Xo) +
Ob(Xp) characterized by purely imaginary eigenvalues only. THaysjntroducing in the
flow a suitably chosen pair of control vortices, the origitiakarly unstableconfiguration
(cf. Section 2.5) could be replaced with a modifrezlitrally stableconfiguration, a behavior
that, as was demonstrated in [106] using numerical comiputgt also occurs for the
viscous fluid flow governed by the 2D Navier-Stokes equatiblowever, a disadvantage
of this control strategy from the practical point of view fsetdifficulty of introducing and
maintaining control vortices with fixed circulations ana&ions.

The next investigation concerning the control of the Fogydtem, carried out by Li
and Aubry [107], employed a slow and small-amplitude trans motion of the cylinder
described by the vertical displacemé(t) as the flow actuation (Figure 13b). The goal was
to construct deedbaclcontrol algorithm that would instantaneously adjust thagiation in
order to cancel the lift force at every instant of time. As islMknown [109], the lift force is
intrinsically related tcasymmetryof the vorticity distribution in the wake, and therefore can
be considered a signature of a developing symmetry—brgakstability. In the context of
the controlled point vortex model (&)lthe cylinder displacement was represented as a vortex
sheet with the strengthe(t,y), wherey is the azimuthal angle (Figure 13b), appearing on the
cylinder boundary in response to the perturbation of theaigf boundary condition resulting
from the displacemerd(t) (cf. our discussion of the different methods for enforciogibdary
conditions in potential flows in Section 2.2). Noting that,the first—order approximation,
Me(t,y)=-2 cos{y) ’V , the actuation term in (H) takes the form [107]

0 ( 2i IZTrcos(y

1| -0 2If2"§fs<lé v) | o

—0 2|f2"§§s<y y

wherezs(y) £ €Y +id(t) is a point on the boundary of the displaced cylinder. The rabnt
input 8(t) was determined by the condition that the lift be equal to zrevery instant of
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Figure 13. Different forms of actuation considered in the stabiliaatstudies of the Foppl
system: (@) control vortices a andz: introduced in [106], (b) transverse motion of the
cylinder studied in [107], (c) cylinder rotation represetiby a vortex ¢ inside the contour
and (d) blowing and suction modeled by a source—sink pain witensity A investigated in
[108]. [Figures (a) and (b) reprinted with permission frof0f] and [107], respectively.
Copyright (2000,2003), American Institute of Physics.]

)

Figure 14. (Squares) The equilibrium locus of uncontrolled system) (e “Foppl line”)
and (triangles, circles, and diamonds) the three equilibrioci obtained in the Foppl system
using the passive control developed in [106] with the citioh of the control vortices equal
to ' = 0.06mand the locationg = 5.392+ 1.35i, Z. = 5.392— 1.35i. The circulation$™ of
the Foppl vortices are as indicated [106]. [Figure repatlwith permission of the publisher

(Elsevier).]
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time which, after using asymptotic expansions in (36) amaméeng the leading—order (linear)
terms only, resulted in the following closed—form expresador the displacement

o(t) = a(Xo)pa(t) +b(Xo)aa(t), (37)
wherea(Xo) andb(Xp) are functions determined by the equilibrium stftgand available in
closed forms, wheregm (t) = /(X)2+ (Y;)2— /(X5)2 + (Y5)2 andaa(t) £ arctarfy; /x) —
arctarty,/x,). We emphasize that the form of feedback relation (37) is sthett the
displacemend(t) depends on thasymmetrigart only of the perturbation from equilibrium
(15) and described by the quantitigs(t) andaa(t). While investigation [107] did not furnish
any a priori control-theoretic guarantees concerning #ropmance of this controller, the
computational results concerning its application to a 26ceus wake flow governed by the
Navier—Stokes equation indicated that it was essentially # eliminate the lift force in that
case as well.

Control problems for the Foppl system were investigatedgimethods of the modern
control theory by the present author [108, 110, 111]. The gbahis research effort has
been to design optimal output—feedback control algorithmstabilize system (&) and
at the same time extremize some measure of performancesespesl by a suitable cost
functional. In terms of the actuation, these investigatipnmarily focused on using the
cylinder rotation represented by a point vortex with thewglationU = I'c(t) located inside
the cylinder (Figure 13c). We remark that a vortex systenmwitch an actuation does not in
fact satisfy Kelvin’s principle [30, 31] which stipulatdsat in an inviscid flow the circulation
along any material contour is conserved (when a time—degrerattuatior ¢(t) is applied,
the circulation along the cylinder boundary is equdl¢gt) and hence is not constant). Since
Kelvin’s principle is applicable tinviscid flows only, deviations from this principle may be
regarded as a way of accounting qualitatively for viscodsot$ (after all, actuating a real
flow via cylinder rotation is essentially a viscous effecfhis admittedly simple form of
actuation was also employed in [103]. Another form of adaratonsidered briefly in [108]
used wall transpiration distributed over the cylinder badarny and modeled as a source—sink
pair (Figure 13d). The source—sink pair was assumed to haeecanet flux, hence at every
instant of timet it is fully determined by a single parametdr= A(t). As shown in [108], the
control matrices corresponding to the two forms of actuatice given by (Figure 13c,d)

—Yo
A 1 X0
o ol | o | (39)
X0
K
Bp L sin(o) X (39)
T(X2+K2) | K |’
X

wherex £ x2 — y2 — 2xgcog0) + 1 andk £ —2yg[xo — cog0)]. In order to formulate an
optimal control problem we need to identify a cost functiahat the control algorithm will
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seek to minimize. This cost functional will be expressedemts of system outputs, i.e.,
certain measurable quantities that characterize thersyastelution [cf. (1d)], and the system
input, i.e., the control. Investigation [108] focused on attenuation of vortex shied as the
control objective which was quantified by measuring the e#yjoat a pointzy, = Xn+i0 on
the flow centerline. Choosing this quantity as the systermuyuequation (1) becomes

)]
)]
where the matrixD £ 0 [0 xmT represents the feed—through effect of the control on
the measurements (i.e., the control-to—measurements. nTdp$ particular choice of the
observation operatar(X) was motivated by practical considerations, as pointwisecity
measurements are relatively easy to implement in a labgratgeriment (for instance, using

a hot wire). Linearizing relation (40) around the Foppl giQuum X we obtain (18) in
which the linearized observation operator is given by

Y £ +Drc, (40)

O (Xm
—0ON (Xm
1

alg(xm) al:)(xm) alg(xm) al:)(xm)
_ o loyo) P lxoye) P2 lixoyo) P2 (xo.v0)
Cv= OV(Xm) ° OV(Xm) ° OV(Xm) ° OV(Xm) ° ’ (41)
% oy M ooy P2 looy) W2 lxoyo)

where u(Xm) + iv(xm) = V(Xm). In investigation [108] we also considered other possible
forms of the system output, such as the pressure differapég) = p(¢) — p(—¢) between
two points located symmetrically above and below the flowtedine and making with it an
angle$ and—¢, respectively. The quantip(¢) is important, since- [5'Ap($) sin(¢p) dd
represents the form lift. In a potential flow with known velydield the pressure at a given
boundary point can be calculated from the Bernoulli equesispy = po+ 5 (|Vo|? — [Vs |2),
wherepg and\j are the pressure and the complex velocity at some arbiti@int pelonging

to the streamline which coincides with the boundary, spds the complex velocity at the
boundary point. Thus, the vertical pressure differencelimexpressed asp = 3(|V_¢|? —

Vs |?) and the corresponding linearized observation operatarfig{2b)]

Cr [6Ap(¢) 0Ap(¢) 0Ap(¢) 0Ap(¢)
Ap —

0x1 )(XONO) ay1 )(XONO) 0X2 ‘(XO,yo) ay2 ‘(m,yo)} - 42
Our objective is to find deedbackcontrol lawU = —KX’, whereK is a [l x 4] feedback
matrix, that will stabilize system (B} while minimizing a performance criterion represented
by the following cost functional

JU)LE {/OOO(Y’TQY’JrUTRU)dt} : (43)

whereE denotes the expectatio is a symmetric positive semi—definite matrix aRdis

a symmetric positive—definite matrix. Cost functional (48)efined in a statistical sense
(i.e., using an expectation), because governing syster-{{B33) may include stochastic
disturbances. We remark that cost functional (43) balattvedinearized system outpiy
[i.e., the linearized velocity at the sensor locat{gg, 0), or the linearized pressure difference
on the cylinder boundary] and the control effort, whereasfdedback control law provides a
recipe for determining the actuation (i.e., the circulata$ the control vorteX ¢ representing
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Figure 15. Schematic of a compensator composed of an estimator andralbemn

the cylinder rotation, or the intensit#y of the mass transpiration) based on the state of the
linearized system (i.e., the perturbatidi of the equilibriumXg). In practice, however,
the stateX’ will not be known. Instead, some noisy and possibly incotepfieeasurements

Y € RX of the actual system [i.e., nonlinear Foppl modelgjidr another plant that the control
strategy is applied to] are available and can be used #stimation procedurto construct a
time—dependent estimak, of the model stat&’. The evolution of the state estimaxg is
governed by thestimatorsystem [1, 7]

d -
g ke=AXe+BU+L(Y —Ye), (44a)
Ye =CX,+DU, (44b)

whereL is a feedback matrix that can be chosen in a manner ensuanghi expectation of
the estimation error vanishes in the infinite time horizas., ithate [|| X, — X'||] — 0 ast — co.
Thus, the estimator assimilates available observatidoglire system model, so as to produce
an evolving estimate of the state of the system. Finallyctir@roller and the estimator can
be combined to form aompensatomn which the feedback control is determined based on the
state estimatX; as

U= —KXg, (45)

rather than the actual stad¢’. The flow of information in a compensator is shown
schematically in Figure 15. The compensation problem cas lie stated as follows:

Problem 5 (compensation) Assuming that the disturbances w amdn (13a) and (13b) are
white, zero—-mean and Gaussian, determine the feedbacklgandL for the controller and
estimator systems (13a)—(13b) with (45) and (44a)—(44spectively, that will minimize cost
functional (43) in addition to stabilizing the controllend estimator systems.

Before we set out to design a compensator for systera){{33), we need to analyze the
control system in order to verify that this is in fact feasilgiiven the internal structure of the
Foppl system with its different possible inputs and ouspiithis can be done by investigating
controllability and observability of system (&3-(13b).
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For a linear time—invariant system such asg)li?is possible to assess controllability by
examining a simple algebraic condition for the matrix g, B}, and in [108] it was shown
that

Nr £ rank[Br ABr A%Br A%Br| =2, (46)
Na £rank[By ABp A%Bp A®Bp] =4. (47)

SinceNr < N = 4, linearized Foppl system (&2with the cylinder rotationBr) used as the
actuation isnot controllable. On the other hand, sinbig = N = 4, when the blowing and
suction Bp) is used as the actuation, linearized systena)13fully controllable.

By the same token, it is possible to assess observabilityystesn (12)—(120) by
examining a simple algebraic condition for the matrix gar,C}, and in [108] it was shown
that

N, 2rank[C] ATC] (AT)?Cy (AT)3C]] =4, (48)
Nap 2 rank[Ch, ATCR, (AT)?Ch, (AT)3CR,l =2 (49)
Thus, sinceN, = N = 4, linearized system (E)—(12b) with the centerline velocity
measurements,) is observable. On the other hand, when the pressure differen the
cylinder boundanAp is used as the system outp(p(), the linearized Foppl system is not
observable. Hereafter we will focus on the case when thaendgli rotation is used as the
control (i.e.,U =I'c andB = Br) and the centerline velocity measurements are used as the
system output (i.eC = C,). We note that the differende — N = 2 is equal to the number
of modes which are not controllable [7], and it is illumimgito see which modes cannot
actually be controlled. For this purpose we can deduoc@ramal representatiof system
(13a)—(13p) consisting of those modes only which are both controllaipie observable. This
can be done by introducing an orthogonal transformatiomirmat
1/2 0 -1/2 0
A 0 1/2 0 1/2
Te2 V2 1/2 0 1/2 0 (50)
0 1/2 0 —-1/2

Xa

and making the following change of variablg4, = [ X!
b

] = TX’. The corresponding
form of system (13)—(13) is

d [ x, An 0 |[xy] [Bal Ga
— + c+ W, ola
dt | X} 0 A [ Xp| [0 TGy (512)
Yo 0 G |[x4] [y [ Hy |
= r m. 51b
Ya Ca O [ x| |Da| S | H |V (51b)
Our minimal representation is thus given by the upper rowqoagion (5h) and the lower
row in (51b), i.e.,
%xg = AaXj +Balc + Gaw, (522)

Ya = CaX/a-l- Dol ¢ +How+mo. (520)



Vortex Dynamics Models in Flow Control 35

We remark that the state vector in minimal representatid2a)(552) is expressed as

X=X yilT = X/%X/? @]T which means that the new variables are simply averages
of the original ones. Eigenvalue analysis of the matrikgsandAy, reveals that\,; has two
real eigenvalues (positive and negative) correspondingeogrowing and decaying modes
o andf3, whereas the matriA, has a conjugate pair of purely imaginary eigenvalues which
correspond to the neurally stable mod@-igure 6b). This observation allows us to conclude
that the uncontrollable part of the system dynamics is astat with the neutrally stable
oscillatory modey. In other words, the actuation (i.e., the cylinder rota}ioan affect the
growing and decaying modea @ndf3), but has no authority over the neutrally stable mode
y. Consequently, original system @)3is stabilizable but is notcontrollable As will be
shown below, this fact will have important consequencesnadwe linear control strategy is
eventually applied to stabilize nonlinear Foppl systedajl

We now proceed to discuss the synthesis of the control. Thet amonmon approach to
solution of such problems offered by the control theory is thinear—-Quadratic—-Gaussian
(LQG) compensator. Construction of an LQG compensator isaadard result and we
outline it below only briefly referring the reader to the del monographs [1, 7] for
further details. Assuming that all the stochastic varialteandm are white, zero—mean and
Gaussian, theeparation principleean be applied which means that the control and estimation
problems can in fact be solved independently of each otreese® on the above assumptions,
solution of the control problem can be further simplified byaking the principle otertainty
equivalencestating that the optimal feedback matKxfor stochastic system (&3 with cost
function (43) is exactly the same as for deterministic systE2a)—(12b) with a corresponding
cost functional (i.e., defined without the expectation)nc8i original system (X8 is not

K
controllable, the optimal feedback matrix is determinedas: 0 a T, whereK, is the

feedback matrix obtained for minimal representatiora}5452b). It is computed as
Ka=R1B!P (53)

in which the matrixP is a symmetric positive—definite solution of tlaégebraic Riccati
equation

AlP+PA;+Cl,QC—PB.RIBIP=0, (54)

0
whereC4 = c. | We note that the feedback mati, and therefore alsk, will depend
a

on the choice of the matrice® and R weighting the system output and control in cost
functional (43).

Since original system (E}—(13v) with the observation operator given in (41) is
completely observable, the estimation problem is solvesan full representation (&B-
(13b), rather than minimal representation €2(52). Thus, the optimal estimator feedback
matrix needed in (44 is given by

L=SC'™M (55)
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where the matriXS is a symmetric positive—definite solution of the algebraiccgti equation
AS+SAT +WGGT —sC'TM~Ics=0, (56)

in which the following disturbance structure is assunigv(t)w(t)'] = Wa(t — 1) and
E[m(t)m(1)T] = M3(t — 1). Such estimator feedback gdin depending on the covariances
of the system and measurement disturbaiweand M, yields an estimator known as the
Kalman filterwhich is an optimal recursive filter designed to estimatestia¢e of a dynamic
system from a series of incomplete and noisy measuremehtsTiie gainL blends the
information from system model (&3 with actual measurementé and is optimal in the
sense that it minimizes the expected mean square estimationE[||X’(t) — Xe(t)]|] for

t — co. Evidently, the key step required to determine the feedlgmiksK andL is solution
of the algebraic Riccati equations, respectively, (54) é®). For the case of the simple
vortex system studied here these equations can be solved sisindard techniques [112].
As a matter of fact, equation (54), corresponding to two-atisional minimal representation
(51a), represents a system of three coupled quadratic equatibich can be reduced to
a scalar quartic equation that, in principle, can be solved closed form. However, the
analytical expressions obtained are extremely complicated in practice it is much more
convenient to use a numerical solution. The LQG compensatan example of ar#b
controller / estimator design in which disturbances aresaesi Gaussian and uncorrelated
with the state and control. Robustness of the compensatobeanhanced by performing
an 4 controller / estimator design where disturbances are &tbto have the worst—case
form [113]. In regard to the problem of determining an optiwvelue ofx, in (40) (i.e., the
“sensor placement problem”), we remark that it can be sqlf@dnstance, by choosingy,

to maximize the observability of the unstable mad§L08]. Finally, we mention that here
the estimation problem is considered under the assumptibas infinite time horizon and
time—invariance of system (43-(44b). Solution of the estimation problem for vortex systems
formulated in a more general setting will be discussed irtiBe&.

We will now discuss some aspects of the application of thealincontrol strategy
developed above to stabilize the originanlinear problem (10). In order to make the
mathematical analysis more tractable [110], instead oficamning the LQG compensator,
we will focus on the simpler case of the state—feedback obeti(i.e., we drop the estimator,
cf. Figure 15) applied to deterministic system &L1Thus, settind(X) = —K we can now
rewrite (11a) as

d

a>“<: (A —BK)X +G(X), (57)

whereX £ X —Xq is notassumed small ar@(X) £ f(Xg+X) —AX [this change of variables
shifts the equilibrium of system (&) to the origin]. The fact that the uncontrollable moge
is only neutrallystable has important consequences, both theoretical actiqal, as regards
the behavior of the closed-loop nonlinear system (57). Aseal known (see, e.g., [87]),
when the Jacobian of a nonlinear system calculated at atitequin has purely imaginary
eigenvalues in addition to stable eigenvalues, it may nqidssible to determine the local
stability of this equilibrium based on this Jacobian alohiee reason is that in such situations
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the leading—order behavior of the nonlinear system in ahi®giood of the equilibrium
is determined by effects not captured in the Jacobian. Towexein order to characterize
completely the behavior of system (57) near the origin wétake into account the nonlinear
partG(X). We will prove below that the uncontrollable modes of sys{@2a) span in fact
a center manifold of system (57). We begin by stating the Htaman form of uncontrolled
system (10). This representation will be needed below inptfo®f of the stability of the
reduced system on the center manifold. As is well known (ggg, [102]), the Hamiltonian
of two point vortices interacting with the free stream and dircular cylinder of unit radius
is given by

ﬂ(xl Y1, %2, Y2) = —In|><1+y2 1|+ In|><2+y2 1|+—|n\/(X1—X2)2+(Y1—Y2)2
(58)
Y1 Y2
——ln 1—2(x1%2 +Y1Y2) + (X +y2) (X5 +y3) — T (yl—i) +T <y2—7),
V )+ 0&+2) (8 +3) e 27
so that equations of motion of the vortices (10) can be espitas
( : 0H
-r =
( )Xl ay17
%2 = gi[,
(-rp=-22
y1= oxt’
: OH
Fyp=——.
\ y2 aXZ

We now shift the equilibrium to the origin using the substin X = Xo+ X and introduce
the followingsymplectidransformation

==[m & & ng’ £ZX (60)
defined by the matrix

10 -1 O
1]01 0 -1
Z2 61
V211 0 1 O (61)
01 0 1

(the reason for the special ordering of the elements of tltové will become apparent
below). As a result of these transformations, system (50 earewritten as

(

. OH
= 6—51’
I_'E o0H
2= FYE)
Mz (62)
&, = oA
1= anla
) 0H
2 6—52’
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where the new Hamiltonian ié[(E) 2 7{(Xo+2Z"=). We now remark that by exchanging
the rows one and three in the mati@xwe in fact recover the transformatioly, [cf. (50)]

introduced earlier in order to convert perturbation sys{é@a) to the minimal representation
in which the controllable and uncontrollable parts are wmpted. Hence, making this
rearrangement in (62) and restoring the feedback controigeve can rewrite system (57)

as
d| & | § 01(&,n)
THE |+ atn | ®

n 92(&;n)
where& £ [€1 &))" andn £ [n1 n2]T. The linear and nonlinear parts of system (63) are
obtained as

Ag O
0 Asg

Ag O

o A =T(A—BK)TT, (64)
&N | | €
| %2(&n) -1e (T [n]) (69)

The first row of (63) corresponds to the uncontrollable palin@arized system (18 and the
matrix Ag has a conjugate pair of purely imaginary eigenvalues, vasetiee second row of
(63) corresponds to the controllable part of systemajEd, due to the effect of the feedback
control term, the matriXAs has eigenvalues with negative real parts only.

TransformatiorT ¢ splits the state spad@® into two subspacest andWs, i.e.,We x Ws =
R4, such tha€ € W, andn € Ws. We now recall (see, e.g., [114]) that ewvariant manifold,
characterized by a smooth functign : W, — W, is a setM C W such that if§(0) € M
andn(0) = ®(§(0)), then&(t) € M andn(t) = P(&(t)) for all timest € R™. The following
theorem, proven in [110], shows that system (63) has aniamviamanifold with a particularly
simple structure:

Theorem 2 System (63) possesses an invariant manifold given by
0
wazlol. (66)

Thus, this invariant manifold coincides with the subsp@ge We note that, since the
matrix Ag has only purely imaginary eigenvalues, the invariant n@difs in fact acenter
manifold(see, e.g., [115]). Given (66), we can now perform an invaniaduction of system
(63) and the reduced system on the center manifold is given by

&0 =Aofy+01(50,0). (67)

We remark that application of the feedback control repreesthy the ternBK X in (57), while
stabilizing locally this system, may in general break itsriiléonian structure. However, we
recall thatT represents a transformation to the minimal representasiothat

0 O
TBKTT =
[ 0 BoKp ] ’



Vortex Dynamics Models in Flow Control 39

whereBgK is a 2x 2 block. This, together with Theorem 2, implies that redusgstem
(67) is in fact invariant with respect to the feedback contibhis observation will play an
important role in the assertion that reduced system (67)hfast periodic solutions and that
its origin is stable. The first part of this result is made Bedn the following theorem proven
in [110]:

Theorem 3 Reduced system (67) has a one—parameter family of closats dperiodic
solutions) in a open neighborhood of the origin.

A

The reduced Hamiltoniarv%(il,ig) = ﬁ[(O,EZ,El,O) may thus serve, after some
trivial modifications, as the Lyapunov function for syste@7) and its invariance along the
trajectories implies stability of the origin. We concludest part by stating a corollary, also
proven in [110], addressing the stability of the fully nerdar Foppl system with feedback
control:

Corollary 1 For initial conditions sufficiently close to equilibrium g), solutions of the
closed—loop Bppl system (57) converge as+ « to periodic orbits.

We are now ready to analyze computational results illustgdhe application of the LQG
compensator to stabilize equilibrium (15) of the Fopplteys. In investigations [108, 111]
the downstream coordinate of this equilibrium was chosexpas 4.32 which ensures that
the length of the recirculation bubble in the Foppl potaiftow is the same as in the unstable
equilibrium solution of the Navier—Stokes systenirat= 75 [116]. In Figure 16a we show the
trajectories of the vortices in system (10), i.e., withdw tontrol, as they escape to infinity
when the equilibriunXg is perturbed with a small perturbatiot(0). We remark that the
directions along which the initial escape takes place argualitative agreement with the
unstable eigendirections shown schematically in FigurdréBigure 16b,c we show how the
system evolution resulting from the same perturbationabized by the LQG compensator.
In Figure 16¢ we also show the corresponding estimatordi@ijg Xe(t) = Xo -+ X4(t) which
starts from the equilibriunXg and then, after some transient, rapidly converges to theahct
system trajector¥(t). We remark that, while the action of the LQG compensatorgmévthe
state of the system from escaping to infinity, it does not eaddn stabilizing asymptotically
the equilibriumXgp. Instead, the state of the system lands on a circular tajeaethich
circumscribes the equilibrium (Figure 16c¢). This circudabit is precisely the center manifold
whose existence and properties were stipulated by Theo?eamsl 3. Thus, we see that, in
agreement with Corollary 1, the long—time behavior of thatoaled system is determined
by the properties of reduced system (67) on the center nldnifbich was proved to sustain,
for bounded initial data, periodic oscillations. We emphaslso that, as is evident from
Figure 16b,c, the LQG compensator is able to stabilize tretesy for fairly significant
magnitudes of the initial perturbatioff (0).

As was also done in several other studies discussed in tsemresview [98, 101, 106,
107], the controller derived based on an inviscid vortexaiyits model was subsequently
applied to stabilize a viscous fluid flow governed by the Nentokes system. In the context
of the LQG compensator this was done by replacing nonlinégpFsystem (10) with a
Navier—Stokes solver as the “plant” (cf. Figure 15). A saemngbrticity field, obtained at the
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Figure 16. Trajectories of the vortices in the Foppl system resultingm a small
perturbation of equilibrium: (a) uncontrolled case, (b3eavith control performed by the LQG
compensator (57), (¢c) same as (b), but showing magnificafitire neighborhood of the lower
equilibrium locus; in Figure (c) the dotted line represethts corresponding estimatg(t) of
the vortex trajectory; the equilibrium points are indighbsy solid circles, (d) trajectories of the
state of (solid line) the classical and (dotted line) higloeder Foppl system stabilized with
an LQG compensator in the neighborhood of the corresporetjingibrium solutions [111].

Figure 17. The vorticity field in a viscous wake flow &e= 75 under the action of the LQG
compensator. The black circles represent the instantanpgositions of the Foppl vortices
estimated by the Kalman filter based on velocity measuresj268]. (multimedia animation)
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Reynolds numbelRe= 75 some time after the LQG compensator was turned on, is shown
Figure 17 [108]. We remark that the downstream part of theenakemarkably symmetrized
by the action of the compensator. On the other hand, the tdvigle velocity fluctuations
in the part of the flow close to the cylinder was in fact incexhsas was the average drag
force [108]. We emphasize that in this case too the time éwaolwof the Foppl vortices as
estimated by the Kalman filter also exhibits the center nodehibehavior already observed in
Figure 16b,c.

Evidently, solution of the Riccati equation, either the @ssociated with the controller
[cf. (54)], or the one associated with the estimator [cf)[5@&quires storage of orded(N?).
Thus, when the system model is high—dimensional, as are tlessilting, for example, from
discretizations used in the direct numerical simulatioBddl$) of high—Reynolds number
turbulent flows, determination of the feedback kernels bez®computationally intractable.
This motivates the pursuit of vortex models which, while eaning low—dimensional, could
approximate infinite—dimensional solutions of Euler equat with desired accuracy. As
an example of such a model we developed the family of the highder Foppl systems
discussed in Section 2.4. Remarkably, the uncontrollaldden of the linearizations of the
higher—order Foppl systems around their equilitzni@a asymptotically stable. Consequently,
the center manifold behavior is no longer present in higbeter Foppl systems with a
linear feedback stabilization, and therefore the higheteo equilibria zy, can now be
asymptoticallystabilized by an LQG compensator (Figure 16d). The disappea of
the center—manifold behavior results from the fact thaefummaginary eigenvalues are a
structurally unstable property of a linear operator whismot preserved when this operator
is perturbed in an arbitrary manner.

We now proceed to discuss the work of lollo and Zannetti [1221] who employed
the methods of adjoint—based optimization to control weditrapped in cavities. These
investigations were motivated by the problem of stabilitthe high—lift vortex configurations
discussed earlier in Section 2.4. While both investigatiosed unsteady mass transpiration,
modeled by a point source / sink, as the actuation, the stLlj] focused on the generic case
of a cornice—shaped cavity on an unbounded flat wall, whetteastudy [121] specialized
these results for the case of a cavity on the surface of a neddfoukowski airfoil. In
both cases the vortex equilibrium located inside the casityeutrally stable and the control
problem consisted in determining a time—dependent sinkrtsantensity\ : [t1,to] — R that,
given an initial perturbation of the vortex position awagrfr the equilibriumXgq, will bring
the vortex back to the equilibrium location. The optimal tohU°Pt = A°P' was determined
by solving a minimization problem of the type (1), where tlstfunctional

9 = 5K = 5 [0 = ol e (68)

represents the integrated distance of the actual vortetigroX (t) from the equilibriumXo,
whereas the constraint equatiBX,/\) = 0 is given by governing system (&}l The optimal
control A°Pt and the corresponding optimal trajectoxyP £ X (A°PY) can be characterized
using the method of the Lagrange multipliers [7]. DefiningaaljpintstateA : [ty tp] — RN,
we can construct the Lagrangiab(X,/A\,A) by augmenting cost functional (68) with the
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constraint equation as follows

dXx

LOGAN) 2 j(X,/\)+/;)\T~ (E—f(X) —b(X)/\) dt. (69)

The optimal controlA\°Pt, the optimal trajectoryX°P! and the adjoint statd are then
determined by the following conditions

0L

g_)[(/(xopt,/\opt,)\opt) -0 — _(2'_)1:\ . [Df<x0pt)}-r)\ = —XOPt_ XO (71)
opt
g_f(xorﬂ,/\"pt,x"p‘) —0 — dﬁt —f(XPY) —b(X°PHAP =0, (72)

where Equation (71) is supplemented with a terminal coodii(ty) = 0, whereas Equation
(72) is supplemented with an initial conditiof(t;) = Xp, with Xp denoting the initial
perturbed position of the vortex. We emphasize that theigaterivatives on the LHS in
(70)—(72) are to be understood in the sense of Fréchet afHs in (70)—(72) are defined for
(almost) allt € [t1,to]. Since solution of system (70)—(72) in one shot is usuallyassible, the
optimal controlA°Pt can be determined using an iterative gradient—based desigemithm

AKD — AW 1 00g9(A0), k=0,1,... (73)

asA°Pi(t) = limy_ AN (t), wherek is the iteration countA(© (t) is an initial guess for the

control andt® is the length of the step in the descent direction (in practime may use

a more advanced version of algorithm (73), such as, e.g.céh@ugate gradients method,
or a variant of the quasi-Newton method [122]). A criticaérakent of descent algorithm
(73) is determination of the cost functional gradiéist(AK). As a matter of fact, it can be
conveniently expressed in terms of the adjoint and statehias as

07AR ) =b(X®Wt)AR M),  telty,ta (74)

Relationship (74) illustrates the important fact that adrayn the saddle point characterized
by (70)—(72), the adjoint variables (i.e., the Lagrangetiplig¢rs) encode information about
the sensitivitiesof cost functional (68) to perturbations of the contral We remark that
A =A(t) is given as a solution of adjoint system (71) which ieaminalvalue problem and,
as such, has to be integratieaickwardgn time. This is a standard approach to computational
solution of optimization problems constrained by diffdrahequations and we refer the reader
to the monograph [10] for an in—depth discussion. A samdeltdrom [121] is presented
in Figure 5b which illustrates the convergence of the poartax from some initial perturbed
positionXp (P) to the equilibriumX (S) under the action of the optimal contraPP!(t). As
recognized by the authors, this vortex model suffers froenithitation that a system with the
vortex perturbed away from the equilibrium no longer satisthe Kutta condition.

We conclude this Section by discussing the recent investigmby Shashikanth et al.
[117, 118] who considered the control of a more general gmobhamely, when the cylinder
is allowed to move freely in response to the forces exerted oy the fluid withN vortices
in it, thereby mimicking a fluid—structure interaction pteim. These investigations rely on a



Vortex Dynamics Models in Flow Control 43

compact Hamiltonian description of the coupled system,misad of the cylinder and all
vortices, which was developed earlier in [84] and revisitecently in [119]. The actuation
is assumed to have the form of a force applied to the centerasfsnof the cylinder and
have magnitude constrained by a lower and upper boupgh andUmax respectively. As
compared to the problems considered above, this problenadermore complicated by the
presence of inequality constraints on the contio/As a result, in particular the adjoint—based
optimization approach of lollo and Zannetti [121, 120] isyplicable, and more general
methods, such as Pontryagin’s maximum principle [6] neebda@mployed. Thus, after
rewriting the governing system in a form consistent withd)l the authors analyzed in [117]
the properties of the optimal controPPt determined using Pontryagin’s technique, i.e., as

U°Pt = argmax, Hp (X, U, \), (75)

where Hp(X,U,A) £ ATf(X) +ATb(X)U + Aofo is Pontryagin's Hamiltonian with € RN
and Ap € R denoting the adjoint variables and the cost functional i@giby 7(X,U) =

ttlz fo(t,X(t),U(t))dt. Considering the point—-to—point transfer problem (cquresling to
fo=1), in[117] the authors used methods of the geometric cotatsiudy general conditions
under which the optimal control will be of the “bang—bangpey i.e., switching between the
lower and upper boundsnin andUmax In [118] the author used the methods of Hamiltonian
mechanics to obtain reduced descriptions of the same sygteoh made it then possible to
develop expressions for controllers designed to alter tireex orbit from the bound to the
scattering type and vice versa.

5. Estimation of Vortex Flows

In this Section we discuss the problenmstédite estimatiofor vortex systems, i.e., the problem
of determining the state of the systexit) based on some incomplete and possibly noisy
measurements obtained via ()2 Since most feedback control algorithms require full estat
information, such estimation methods are necessary iipeaghen partial measurements are
only available. In most situations, the goal is to use meaments of velocity [cf. (40)], or
pressure in the flow domain, or on the domain boundaries timate the positiongs, ..., zy

of the vortices in the system. While this problem has alrebegn partially addressed in
Section 4.2 in the context of the Foppl system, here we segkdsent a more complete
picture. A first attempt at solving the estimation problem &ovortex system was made
by Cortelezzi et al. in the study [96] concerning the contrbla vortex interacting with

a semi—infinite plate (Figure 10a). Based on an analysis @fviiocity signature at the
plate, the authors showed that the position of the vortexdcbe uniquely determined using
measurements of the Y—component of the velocity and its/aigve at the tip of the plate.
Then, the vortex circulatiolm can be determined using the Kutta condition. This setting,
however, represents a rather simple situation in which teasurements are “complete”, in
the sense that their number matches the number of degreeedbim (i.e., 2) and they are not
contaminated by noise. In such situations an exact reamigin is possible at every instant
of time.
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A more complicated problem, from the point of view of the esition theory, was
considered by Anderson et al. in [100] where the authors sgstm identification techniques
to construct an approximate mathematical model for thetigutput map in a higher—order
vortex model proposed in [98]. The input for the system hasftihm of suction at the base
of the plateU(t) = A(t), whereas the output has the form of the velocity measuresggven
in (33). The system identification method used in [100] wasatto—regressive model with
exogenous input (ARX) defined by the formula

Y (t) +|Zla|Y(t —1At) = l;b.u(t —1At), (76)

wheren is the order of the model andhy, by }[_; are coefficients determined by performing a
least—squares fit to the data. The ARX model is a techniquediestructing a mathematical
description of a process based on measured data which dscalso for the presence of a
zero—mean white noise in the measurements. The data ngcessdentify the coefficients
in input—output relation (76) was obtained by actuating\thgex system with zero—mean
white noise as the contrdJ. An optimal value of the order of the model was determined
by requiring that it give the most accurate system response to harmonic input with a
range of frequencies. The ARX model of the input—output napttie vortex system was
thoroughly validated which included analysis of the freggieresponse, mean value (“DC
gain”) response and step response.

The state estimation problem was also considered in imegstn [93] concerning the
control of the “corner flow” (Figure 9). In that study the ob&gion operator corresponded
to the measurements of the tangential velocity componembatndary point, = Xm+i0

Y 2| OV (m)] | +Dre. (77)

whereD = [kxy| represents the feed-through effect of the control on thesoreanents. The
estimation problem was solved in [93] using the governingtey written in terms of flat
coordinates (30) and employing the method developed eanlifl23]. This approach is
based on deriving an estimator system corresponding to iadely

d 21 o 22 0 Ly B
dt [ 2 ] B [ P(21,22) ] + [ q(21.2) ] U+ [ L ] (Y-Y), (78)

whereZz; andZ, are estimates of the flat coordinatgsandz, L = [L1 Lz]T is the feedback
operator, whereagY — Y) represents the difference between the actual and estimated
measurements. The feedback galinsand L, are chosen to ensure that the linearization
of (78) around the equilibrium is stable, so that the estioma¢rrors(2; —z;) and (2 — 22)
decrease with time if the initial estimatesandz, are sufficiently good. While this approach
does not guarantee the optimality of the estimates in angesghe computational results
reported in [123, 93] showed good performance of the estimata neighborhood of the
equilibrium.

A solution to the state estimation problem for an LTI systéat is optimal in the sense
that E[||X’(t) — X4(t)|]] = min fort — o can be obtained using the Kalman filter. Such an
approach, developed in the context of a vortex stabilizagimblem in [108], was already
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discussed in Section 4.2, and here we present some extertditims idea. A more general
problem of state estimation for vortex systems was consdler[124, 125] where the authors
used anExtended Kalman Filte(EKF) over a sliding time windowt,t +T] [7]. EKF is
usually used in the time—discrete setting and consistseofidifowing steps

(i) Dynamic forecast:

Xe(t +At) = Xet + Atf(Xe(t)) 4+ Ath(Xe(t))U(t), (79)
Pe(t +At) = A(t)Pe(t) + Pe(t) [A(1)] T +Q, (80)

whereA (t) = Of (Xe(t)) is the Jacobian dfcomputed at a specific trajectoxg(t). Here
we use system model (&)lto advance the state estimafge and its error covariancBe
over one time step frormtot 4+ At. We note that in the extended Kalman filter equation
(79), but not (80), uses the nonlinear functioXe), rather than its linearizatioA.

(i) Update:

Xe(t +At) = Xe(t +At) +L (t+At) [Y (t+At) — c(Xe(t+AL))],  (81)
Pe(t +At) = Pg(t +At) — L (t +At)C(t + At)Pe(t +At), (82)

whereC(t+At) = Oc(Xe(t+At)) is the Jacobian of the observation operatoomputed
at a specific trajector)Xe and the time—dependent feedback gain is obtained as

L (t+At) = Pe(t+At)[C(t+At)]T {C(t+At)Pe(t+At)[C(t+A)] T+ R} *.(83)

Here one uses the actual measurem¥rtsupdate the state estimateand, in the spirit
of the extended Kalman filter, in (81) the nonlinear obseovedperator is used instead
of its linearizationC.

While EKT does not ensure optimality of the estimate, it ssithost commonly used estimator
for nonlinear problems. The investigations [124, 125] dastmted the possibility of using
EKF to solve the estimation problem for systems consistintyvo and four vortices with
measurement¥ in the form of Lagrangian tracer positions. Another applima of EKF to

a vortex dynamics problem was developed in [88] and concethe vortex pair problem
considered in [85] and discussed in Section 3 of the presgmerp In [85, 88] the system
measurements were also assumed in the form (40) with theityetmmponents recorded at
a pointzy = 0+i0. Assuming a sliding temporal windojv— T,t], the measurements were
expanded as

~

Y(t+T1) :ao+Za| cogl@t) + by sin(lwt), (84)

wheret € [t — T,t], wis the instantaneous frequency ahe- %" The estimation problem in
[88] was then formulated in terms of thhasorsay andb, corresponding to the dominating
harmonics. This problem was solved using an EKF approaamnddy (79)—(80) and (81)—
(82), and the computational results demonstrated the egiplity of the extended Kalman
filtering technique to the considered estimation problenafpoint vortex system.
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(@) N ] " (b)

Figure 18. Prandtl-Batchelor solutions of Euler equation (2) with RidS given by (14)
corresponding to (a) homogeneous and (b) nonhomogenetgtyeboundary conditions.
The thick line in Figure (b) represents a possible targepstaf the vortex regiom in the
optimization problem.

6. Towards Optimal Control of Flows with Finite—Area Vortic es

Most of the discussion presented in Sections 3 and 4 comtemetrol and estimation of
point vortex systems and, as such, was motivated by the messtitice the dimensionality
of the flow model, making it possible in this way to apply methamf the control theory
in a straightforward manner. In the present Section we weaaldially like to step outside
this paradigm and revisit solutions of Euler equation (Zcdssed in Section 2.4. More
specifically, we will formulate an optimal control problewrithe family of Prandtl-Batchelor
flows [61] depicted in Figure 2 (top row, second column). Tgrisblems remain a subject of
the current research and below we only outline a soluticatesgry highlighting some novel
mathematical ingredients required to solve such probléffesremark that passive control of
rotating finite—area vortex regions in unbounded domalressb—called “V—states” [126], was
considered by Friedland et al. [127, 128, 129] who used attdapendent external strain field
as the actuation to obtain autoresonance conditions. ur&ig8 we present two solutions of
problem (2) featuring the Prandtl-Batchelor vortices: gshition in Figure 18a corresponds
to the homogeneous velocity boundary conditions in (2), uen|s = %b = 0, whereas
the solution in Figure 18b corresponds to an arbitrarilyestld wall transpiration given by
u-njs = %k = %Uw cog20). The symbol denotes the part of the domain boundary (i.e.,
the surface of the obstacle) where the control is appled 0Q), wheread is the azimuthal
angle in the polar coordinates. We note that, as a resulti®fpdssive actuation, the shape
and location of the vortex regiofvis significantly changed. The control problem we propose
consists in determining the distribution of the wall-notmelocity u - n|s, or equivalently
the streamfunctionp,, such that the vortex region will have a prescribed shapg, the
shape indicated with a thick line in Figure 18b. Given the ami@nce of vorticity for mixing
processes (see, e.g., [130]), such a problem is relevaptitoiaation of regions where mixing
occurs in highReflows. Moreover, the mathematical tools required to solvus fnoblem
are also representative of a broad family of similar protderdenotingAA(yy,) the region
enclosed between the prescribed and actual patch bousdadestate this problem as follows
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[cf. (D]

min J (l.|J, qu)?
U, Wp (85)
subject to Equatiof2),

where

. 1
J(W,gp) = > / /AA(%) dxdy (86)

is the area of the regioAA(Wp). While this problem can be solved using the method of
Lagrange multipliers described in Section 4.2 [cf. (68R){/ for illustration purposes we
adopt here an alternative approach that has been frequesgty/in the context of flow control
problem (in the continuous setting the two formulationsegeivalent and lead to the same
solution). Since from (2) we haw@ = Y(Yp), we can eliminate the state varialydfrom the
cost functionalj (g, i) by defining areducedcost functionaly () = j(P(Wp), Pp), SO that
constrained minimization problem (85) can be replaced attlunconstrained one

minJ (o). (87)

A local minimizer L|Jgpt of problem (87) is characterized by the vanishing of thee@ak
differential, defined ag’(Yp; W) £ lime—o 2[7(Wp + €Wp) — 7 (Pp)] whereys; is an arbitrary
perturbation, of the cost functiondl(yy) as

Vi, I (Wp"5 W) =O. (88)
Differentiation of expressions such as (86) with respedigds a delicate matter, because the
areaAA(Uyp) is defined by the boundary of the vortex regidrcoinciding with a level set of

the solution of Euler equation (2). Rewriting (2) with RHSH1n the following equivalent
form

|A(Wp) APy =T in A(Wp), (89)
Ay, =0 in Q\A(Wy), (90)
Y1 =y2="yo onoA(p), (91)
0 0

T onOA(Y). (92)
P2 = Yp onoQ (93)

wherey; = llJ|A(qu) andy, = llJ|Q\A(qu) are the solutions defined, respectively, in the interior
and exterior of the vortex region, it is evident that systétypWith (14) is in fact afree—
boundaryproblem, i.e., one in which the internal bounda#yseparating the two subdomains
needs to be determined as a part of the solution of the problBifferentiation of such
equations with respect to a parameter such as the boundadhtiom Y, requires care, because
perturbingyy, also changes thiecation where boundary conditions (91)—(92) are imposed.
A suite of mathematical techniques making it possible tded#tiate solutions of PDEs
defined in variable domains is referred to asshape differentiatalculus [131]. We will use
below a number of specific results belonging to the shaperéffitial calculus to re—express
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the Gateaux differentiad’ (Yp; Y,), and refer the reader to the original source for derivation
details. Thus, this Gateaux differential can be compused a

do, (94)

where z(Y,; ) is the perturbation (displacement) of the boundaA(yy,) and ' the
perturbation of) obtained as a result of perturbing the boundary condiignvith Y. The
last term in (94) arises from the shape differentiation aidhlet boundary condition (91) as
follows [131]

qu / an quO
i loae) ~ 19200+ B Loy 2™ = iy
The perturbation variable)’ satisfies the following linear PDE obtained from shape—
differentiation of (2) with (14), or equivalently (89)—(93

3 (X Xlaayy) ) W

—0. (95)

LY £ [AYp)|AY — ——

on

I l]J/ |

Y= Q 96

| (wb)| <y({3A (W) llJ OA) ) (llJO llJ) in (96)
V= % onoQ.

Note that for convenience this system is now written in thelMldomainQ. Our goal now is
to identify the gradientlJ : ¥ — R is the cost functionaf (Wp) with respect to the boundary
conditionyp, so that we would use it in an iterative minimization algomit as described
in Section 4.2 [cf. (73)]. Existence of such gradient is guméeed by the Riesz theorem
[132] which, under the assumption of square integrabilftyg, allows one to re—express the
Gateaux differential as follows

9'(WiWh) = (09,Wh) ) = .07 Yo, (@7)

where (-,-),z) is anLy inner product of functions defined on the cylinder boundary
Representation (94) is, however, incompatible with (9 8¢cduse the perturbation variable
g, is hidden in the boundary condition for problem (96). Exgies (94) can be transformed
into a suitable form by introducing aadjoint state* : Q — R and using the following
identify

0A(Wy)

(LW W) g = (W L7W) )+ (98)

where the adjoint operatar** is defined as

o ( ST R Gt
o oA ()
5@—mMmQ, inQ  (99)

Lry* 2 |A(Wp) |AY* +

AW

9N |aA(wp)
Y =0 onoQ.
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Performing integration by parts implied by identity (98gids the following form of the term

b
L|J/
b:—ng(w w
b) an

from which, by noting (94) and (97), we finally obtain a sim@epression for the cost
functional gradient

oy*

b= on Iz

This gradient represent tisensitivityof the cost functionaf () with respect to the boundary
control Yp and can be used in combination with algorithm (73) to “deSign optimal
Prandtl-Batchelor vortex. The derivation shown is intehdaly to illustrate the general
framework, and work is ongoing to use this approach to solveactual “vortex design”
problem. Exhaustive analysis of this problem together wamputational results are going
to be presented in a forthcoming paper [133]. Finally, weertbait owing to the presence of
Dirac measures on the vortex bound@#y, adjoint system (99) may be nontrivial to solve
numerically.

do — / w2 do—0 (100)
OAW) z 0 on

(101)

7. Summary, Conclusions and Discussion of Future Perspeeés

In this final Section we summarize the main themes discusselis review. The utility
of point vortex models for solution of flow control problemgems from the very fact
that they offer a low—dimensional description of the flowteys that preserves some of
its key nonlinear features. As was illustrated with sevenehmples in this paper, such
simplified “reduced—order” models often lend themselveart@xplicit design of controllers
and estimators which can be carried out using rigorous naistbbthe modern control theory,
an impossible task for most problems described by the fullidfaStokes system [12]. A
good example was offered in Section 4.2 where a fairly comepémalysis and design of
a linear control approach could be carried out for the Fogydtem [108, 63, 110, 111].
Control algorithms developed using point vortex models @ften subsequently employed
to control “real” flows of viscous fluids, and we presentedesal’examples illustrating this
approach. As regards the analysis of flow control systemsit portex models might be
proposed as a simple paradigm for studying controllabditgl observability of flows. For
example, the fact that the Foppl system with the cylindéatron used as the actuation is
uncontrollable, whereas the same system with the blowidgsantion used as the actuation is
controllable, might explain why the latter form of actuati®nds to be more effective in many
real applications. As regards the control synthesis, teeofitow—dimensional vortex models
bypasses the problems related to the numerical solutidreddlgebraic Riccati equation. This
operator equation, whose solutions are needed in ordertesndime the feedback gains for
optimal linear controllers and estimators, can be excegyidifficult to solve for problems
with a high dimension of the state space.

Our comparison of different controlled point vortex systemeveals certain generic
behaviors. In several problems involving stabilizatiomostable equilibria [98, 101, 108] the
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trajectories of the controlled vortex systems would cogedp circular orbits circumscribing
the equilibrium. Rigorous mathematical analysis carrietiio [110] showed that, at least
for the Foppl system with a linear state feedback conttuok orbit had the structure of a
center manifold, and the stability of the system motion ds thanifold had origins in the
Hamiltonian structure of the point vortex system. While ither cases this has not been
established rigorously, it is plausible that a center n@distructure may also be present in
other systems in which such behavior was observed.

One area omitted in this review are applications of “vortegtimods”, understood as
numerical techniques for certain classes of PDEs rather thaw models”, to solution of
flow control problems formulated in a traditional mannee,,i.with no reference to vortex
dynamics (see, e.g., [134, 135]).

We close this paper by commenting on some possible futuearels directions. We have
seen evidence that solution of control problems for poimtesosystems is now relatively well
understood, so that problems of practical importance camallg be tackled, as was done
for example in a recent experimental study [136]. In SecBowe presented some initial
developments concerning the control of Euler flows with &nD vorticity distributions.
While specific cases have yet to be solved, a general matleainfthmework required to
handle such problems already exists. Work on this problenmerway and results will
be reported in the near future. Another area of vortex dyweamihere virtually no control
problems have been formulated and solved in a systematio@namne 3D flows. The reason
is that point vortices do not in fact have a simple 3D couradrplf such 3D vortex models
could be established, we anticipate that they would be abterta treatment using control
methods analogous to those described in this review in theegbof 2D flows. Yet another
area of vortex dynamics that remains a largely uncharteddsr from the point of view of
control are 2D flows with vorticity distributed along 1D objs (vortex sheets). Recently
there have been some exciting new developments [47, 48,04f@fecning the mathematical
modeling and computation of these flows, in addition to aadrtheoretic investigations [137].
Such vortex models are relevant for problems of animal pigipa, and in our opinion in the
near future this area will be the stage for many interestiog ftontrol problems. Given the
nature of the vorticity support in such flows, we expect tlitison of the resulting control
problems will require shape—differential tools quite danto those introduced in Section 6.
From the point of view of the control theory, other promisiatheit mostly unexplored, topics
include applications of nonlinear control methods [138)]18specially methods of geometric
control, dynamic programming methods based on the Hamiltacobi—Bellmann equation as
well as the Ensemble Kalman Filtering to vortex systems.
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