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Linear feedback stabilization of laminar vortex shedding
based on a point vortex model
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In this paper we use the Foppl point vortex system as a reduced-order model for stabilization of the
steady symmetric solution in an unstable laminar wake. The downstream location of the Foppl
vortices is chosen so as to produce the same recirculation length as in the actual flow at a given
Reynolds number. When the cylinder rotation is used as flow actuation, the linearized Féppl system
is shown to be stabilizable, but not controllable. With centerline velocity measurements as the
system output, the linearized Foppl model is also shown to be fully observable. The
Linear-Quadratic-GaussiahQG) control design is performed based on the linearized Foppl system
which has only four degrees of freedom. Computational results show that thus designed LQG
compensator stabilizes the stationary solution of the nonlinear Foppl system. When applied to an
actual cylinder wake at Re=75, the LQG compensator stabilizes the downstream region of the flow.
Possibilities and limitations of flow control strategies based on point vortex systems as
reduced-order models are discussed2@4 American Institute of Physics

[DOI: 10.1063/1.1808773

I. INTRODUCTION a very large computational cost, these approaches have the
disadvantage that their performance heavily relies on com-
Massively separated flows display complex physicalpiete and accurate knowledge of the system, its initial con-
phenomena and at the same time arise in many importagfition and the absence of external disturbances. Conse-
Fechnical f_;lpplications. Chgracterized by geometrical simplicquenﬂy, such strategies usually serve as optimal benchmarks
ity, the cylinder wake flow is often regarded as a prototype ok, giher algorithms and it is rather unlikely that they will
massively separated flows, since it exhibits many generig, ., fing real-time applications in flow control. Some of the

phenomena occurring in such flows. Con§equently, the Cylé\forementioned difficulties can be mitigated in the frame-
inder wake flow has also been an appealing testbed for ex-

. . ) ~‘work of the feedback controlvhere the actuation dynami-
ploration of various flow control strategies. From the appli- . . . .
. : cally responds to an evolving flow state and incoming distur-
cation perspective, control of separated flows usually see .
. LT .~ Dances. Earlier approaches to feedback control were
to stabilize the wake by eliminating, or at least weakening o . . ) .
. . : heuristically motivated, such as, for instance, the investiga-
organized vortical structures which coalesce from the sepa-

- 9 20
rated boundary layer with the objective of decreasing velocy oS by Park? Park et al,”* and Gunzburger and Lée.

ity fluctuations in the flow, reducing the mean drag force anoﬁegently significant strides v_v.ere.made app,'Y'”g the linear
the lift force oscillations, etc(see Ref. 1 for a review Of optimal control theory to stabilization of transitional and tur-

particular interest aractive control strategiemhich attempt ~ Pulent flows(see Refs. 22-25These results are very en-
to modify the flow by injecting or extracting energy. As re- couraging, however, when the full Nawer—Stokes equa_t|on is
gards the specific form of the flow actuation, various techUS€d as the system model, the problem is computationally

niques have been investigated in the context of wake flowgractable only in a few special casgmfortunately, the cyl-
including distributed blowing and suction, transverse oscillainder wake flow is not one of themThis motivates the
tions and rotation of the obstacle. In the present study wéearch for reduced-order models that can provide a simpler
will focus on the rotary control which is one of the simplest fepresentation of the system dynamics relevant from the con-
forms of flow actuation available in the considered flow con-trol perspective. Among the variety of approacksse, e.g.,
figuration. One of the first implementations of cylinder rota- Ref. 26 for a recent revieyywe choose to focus here on
tion for the purpose of flow control was the experimentalpoint vortex models which are often used to represent
study by Tokumaru and DimotaKisvhich was followed by a Vvortex-dominated flows such as wakes. Unlike Galerkin
series of numericale.g., Refs. 3-Pand experimental inves- model reduction techniques, which attempt to find projec-
tigations(e.g., Refs. 10-1)2 Recent advances in integration tions of solutions of the Navier—Stokes system on some suit-
of optimization and control theory with computational fluid ably chosen sets of basis functiofesg., proper orthogonal
dynamics(see, Bewle)},3 for a review have made it possible decomposition modes, see Ref)1oint vortex models rely
to determine optimal and suboptimal control scenarios for an weak solutions of the Euler equations as a point of depar-
number of wake control problentRefs. 14—18 Apart from  ture (see Ref. 27 for details Properties of ensembles of
point vortices are reviewed by Newton in his monogré’f)h.
dElectronic mail: bprotas@mcmaster.ca In the context of flow control such systems were studied by
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Cortelezziet al.,29‘31ChernyShenk8? Péntek®® Zannetti and y
lollo,** Noack et al.* and Vainchtein and Me&*® In the u T
present investigation we focus on yet another point vortex -
model known as the Foppl systéfhas it provides a particu- Q. A \
larly simple, yet relatively realistic, representation of the on- 0 I,
set of the vortex shedding instability in the cylinder wake. -T,

The purpose of this paper is to characterize the Foppl model (\
from the control-theoretic perspective and then, based on this I, T
model, design a Linear-Quadratic-GaussiaQG) compen- 2
sator that can be used to stabilize the Foppl system and an

unstable laminar wake flow. Stabilization of the cylinder Q /
wake will be studied at the Reynolds number Re=75 which
is slightly above the critical value of Re marking transition to

vortex shedding. This will ensure that the system behavior igg, 1. schematic of the Foppl system. The dashed line represents the
reasonably well captured by the linearized Foppl model useeeparatrix streamline delimiting the recirculation bubble.

as a basis for the LQG compensator design, thereby creating

a clean setting for investigation of the proposed approach. In

fact, the FOppl system has already been used for flow control

purposegsee Refs. 38 and 39however, none of these in- .

vestigations relied on systematic methods of control theorySirculation of the vortex above and below the centerline

The structure of the paper is as follows: in Sec. Il we intro-—X«*1Yie k=1,2), whereasl'c represents the circulation of
duce the Foppl model and describe its relevance to wak1® control vortex(Fig. 1). In the above expression it is as-
flow instabilities, in Sec. Il we use control-theoretic meth- SUmed that the cylinder has unit radigg=1 and the free
ods to characterize its properties relevant from the controplf€am at infinity has unit magnitudg..=1. Hereafter we
point of view and in Sec. IV we derive the LQG compensa—W'” assume that all quantmes are nondimensionalized using
tor, computational results concerning stabilization of thehese values. The Foppl model can be regarded as a nonlin-

Foppl model and an actual wake flow are presented in Se€ar dynamical system with evolution described by
V, final conclusions are deferred to Sec. VI, in Appendix A
we derive an analytical result concerning the Foppl model,

whereas in Appendices B and C we generalize the control d_tx =F(X) +b(X)I'c
framework to account for other forms of actuation and ob-
servations. R V;(z;,2,,1'1,1'5) ]

—1m[Vy(z1,2,,T1,T)]
ReV,(z1,2,,1'1,T)]
= Im[Vy(21,2,,T1,T5)]

Il. THE FOPPL SYSTEM

Our presentation of the Foppl system and its stability
properties in the uncontrolled setting is largely derived from
the study by Tang and Aubf")?.Originally proposed by L.
Foppl in 1913, this systethis constructed based on the po- where X £[x; y; X, Y»]T and the control matrisb(X) is ex-
tential flow theory where the classical symmetric solution,pressed as
consisting of a superposition of a uniform free stream and a
dipole, is supplemented with a pair of point vortices with )
opposite circulations placed above and below the centerline U

[I>

+b(X)I'c, (2

(Fig. 1). In order to enforce the boundary conditions for the A1 Xi/|z4/?
wall-normal velocity component, two image vortices need to b(X) = o yol |22 3)
be placed at suitable locations inside the cylinder. The cylin- %ol| 252

2/ €2

der rotation, which serves as the flow actuation, is repre-
sented by placing another point vortex at the origiate that
it does not affect the wall-normal velocity at the boundary The expression¥; andV, in (2) are given by the velocity
For the sake of compactness, hereafter we will use the confield (1) evaluated atz; and z, with the singular “self-
plex notation withi representing the imaginary unit. The induction” terms 1{z-z;) and 14z-z,), respectively omit-
total complex velocity fieldV(z)2£u—-iv induced by the ted. At this point we are concerned with the properties of the

Foppl system at the poir=x+iy is given by Foppl system without control, therefore in this section we
1 T 1 1 will assume thatl'c=0, which renders(2) autonomous.

V(z)=1——2——l_<—— _) When looking for a reduced-order model of a stationary

z 2m\z-7y z-1lz wake flow, we are interested in the fixed-point solutions of

r,[ 1 1 ¢ (2) which are symmetric with respect to the centerline, i.e.,

- >+ Pyt (1) obtained withz;=zy=Xy+iyq Z=29=Xo—iyo, ';=-T, and
I',=T", whereI'>0. Consequently, the fixed point of the

where{z;,I';} and{z,,I',} are, respectively, the position and Foppl system is characterized by the system of two equations

2mi\z-2 - z-1/z,
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FIG. 2. Schematic indicating perturbatiols of the stationary solutioiX, FIG. 3. The three modes of motion characterizing the linearized Foppl sys-
of the Foppl system. The big dots represent the stationary solution and thiem (6). Note that another pair of the modesand 8 can be obtained by
small dots represent the perturbed positions. reversing the direction of the corresponding eigenvectors.
= EX’ =AX' (6)
Rd:vl(201201 - Fyr)] = O: dt '
(4) A I, ! AT . H f
IM[V, (20,25~ ', T)] =0, where X' £[x; y; X3 Y5]' and the system matrik is given
by (see Ref. 49D
for the unknowns{xy+iyq,I'} which has an implicit-form a b ¢ d
solution Ao @ -2 f ¢ -
s s s | c -d a -b
(ro—1==4rgyo, -f ¢ -e -a
O . .
(ra-1)2(r2+1) with the following entries:
r=2r—m——,
o 33Xy 2%
a=—-5 " "3-
o To
wherero=(x3+y3)*2 We note that solutiori5) may be re-
garded as depending on one parameter, for instance, the 1 5 1 2 1
downstream coordinate,. Thus, X, will determine bothy, b=—- o + o5t + o
andI’, and further below we will present an argument allow- fo 2fo 2fo To To
ing us to fix this parameter.
Stability properties of the stationary solution of the c=- X_O,
Foppl model and their relevance for the modeling of transi- ré
tion to vortex shedding were thoroughly analyzed by Tang G)
and Aubry‘.10 In an earlier study, Smiffidentified an error in
Foppl's original derivation which concerned the stability of | _ 11 1
the stationary solution with respect to symmetric perturba- - ng 2r8 ro’
tions. This issue was again revisited by @aal*? who also
derived a more general stability criterion and employed it to 1 5 3 1

study the stability of point vortices behind elliptic cylinders e=95- -7 -5t
and circular cylinders with splitter plates. de Laat and
Coené® analyzed the frequency of the neutrally stable oscil-
latory mode as a function of the downstream coordingte f=— _
In another work, Saffman and Sheffigldshowed the exis- 2r5 2ry To

tence of an equilibrium solution for a single vortex attachedWe remark that6) is a linear time-invariant system. Eigen-

to an airfoil. The stability analysis of the Foppl system iSvalue analysis of the matrid reveals the presence of the
performed by adding the perturbatiopg,y;) and(x3,ys) to following modes of motion(Fig. 3):

the coordinates of the upper and lower vortex of the station-
ary solution and then linearizing the systef® around (i) unstable(growing) mode « corresponding to a posi-

Xo=[Xo Yo X0 —Yol" assuming small perturbatior{&ig. 2). tive real eigenvalue.;=\,>0,
Thus, evolution of the perturbations is governed by the sysfii)  stable(decaying modeg corresponding to a negative
tem real eigenvalue.,=-\, <0,
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12 earized FOppl systert6) as a reduced-order model for the
Navier—Stokes dynamics at the onset of vortex shedding.
10 This reduced-order model will be used in Sec. IV as a basis
for the systematic design of a linear feedback stabilization
8 strategy that can be applied to control an actual wake flow.
m As remarked in the Introduction, the Foppl system has al-
o ready been used as a reduced-order model in the design of
some heuristically motivated flow control techniques. In the
4 first such study Tang and Auﬁ%howed that by adding two
small control vortices the stability properties of the Foppl
2 system can be favorably modifigddditional neutrally stable
equilibria appear In another study, Li and Aubf’59/ applied

1.5 2.0 25 3.0 35 4.0 4.5 5.0 55 6.0 . . .
Xo perturbation methods to derive a linear feedback control al-

gorithm using the transverse cylinder motion as the actuation
FIG. 4. Dependence of the recirculation lengthon the coordinateg of  and the lift force as the system output. Both of these control
the Foppl vortices in the stationary configuration. techniques were investigated in two-dimensional numerical
simulations yielding encouraging results.

(i) neutrally stable oscillatory modgcorresponding to a As mentioned earlier, the FOppl model involves one free
conjugate pair of purely imaginary eigenvalues, paramete(i.e., the coordinatey) which must be fixed. This
=i\ can be done so as to obtain quantitative agreement of certain

properties of the stationary point of the Foppl model and the

These qualitative properties are independent of thectual symmetric base flow. One such important characteris-
downstream coordinate, characterizing the fixed-point so- tic is the lengthLy of the recirculation bubblésee Zieliiska
lution. The linearized system is neutrally stable to symmetricet al*® and Protas and Wesfréfti defined as the downstream
perturbations and unstable to certain asymmetric perturbaoordinatexg where the streamwise velocityxg, 0) changes
tions. Furthermore, analysis of the orientation of the unstablsign from negative to positiven unsteady flows the defini-
eigenvectors carried out in Ref. 40 revealed that the initiation of Ly is based on time-averaged streamwise velgcity
stages of instability of the Foppl system closely resemble th&he recirculation length characterizing the stationary solu-
onset of vortex shedding in an actual cylinder wake undertion (5) of the Foppl model is a function of the coordinate
going Hopf bifurcation. In most wake control problems oneshown in Fig. 4(see Appendix A for derivation detajlsThe
is concerned with attenuation of vortex shedding, an objectunctional relationship betwedry andx, allows us to deter-
tive which can be alternatively regarded as stabilization oimine the value ok, that results in the desired recirculation
the steady symmetric solution. Consequently, we proposkength. For instance, an unstable base flow at Re=75 has the
here to use the stationary poif®) of the FOppl system as a recirculation length.gr=8.4 which can be reproduced in the
reduced-order model for the unstable base flow and the linFéppl model by settingy=4.32 in(5). Streamline patterns in

FIG. 5. Streamline patterns in the recirculation bubbléirthe actual base flow at Re=75, afiil the corresponding stationary solution of the Féppl model
with xg=4.32.
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the unstable base flow at Re=75 and the correspondingystem outputs, i.e., certain measurable quantities that char-
Foppl model withxy=4.32 are shown in Figs.(& and %b). acterize the system evolution and the system input, i.e., the
We note that the recirculation bubble in the F6ppl model iscontrol I'c. We choose attenuation of vortex shedding as the
significantly wider than in the actual flow. Other possibilities control objective which can be quantified by measuring the
for fixing the coordinatex, may be based, for instance, on velocity at a point on the flow centerline with the streamwise

imposing a specific separation angté. Cai et al*?). coordinatex,, (note that in the stationary symmetric solution
the transverse velocity component vanishes on the center-
Ill. CONTROL-THEORETIC CHARACTERIZATION OF line). Choosing this quantity as an output of syst&nwe
THE REDUCED-ORDER MODEL obtain the following output equation:
In the present study we focus on the circular cylinder REV(%,)]
rotation I'==I"¢(t) as our control variabl€Fig. 1). Other h(zl,zz)é[ Im[V(xm)]] +DI¢, (11

choices of flow actuation are also possible and in Appendix

B we outline the framework corresponding to blovying andwhere the matrixDél/(ZTrxﬁ])[O %] represents the direct
suction at the boundary as an alternative system input. Thgffect of the control on the measuremetits., the control-

effect of cylind.elr r°ta“°T‘ Is rgpresented by' the I,‘"‘St term I, measurements maprhis particular choice of the obser-

EQ. (ﬁ)' Rederiving the nganzed system with this term re-y 4ion operatoh is motivated by practical considerations, as

tained, i.e.I'c#0, we obtain pointwise velocity measurements are relatively easy to
implement in a laboratory experime(for instance, using a

d—tX’ =AX"+BIG, © hot wire). Other choices for the observation operator are also
possible and in Appendix C we outline the corresponding

where framework for the case when the observation operator is
Yo based on two-point measurements of pressure difference on

the cylinder boundary. When considering the evolution of

B2 b(Xy= iz %o . (10) small perturbations<’ of the fixed-point solution, Eq(11)
27rs| Yo can be linearized which yields
Xo

_ h(zy+ 21,75 + 25) = h(zy,7) + CX’, (12
In order to formulate a meaningful control problem we need

to identify a physical objective that the control algorithm will wherez, =x, +iy,, k=1,2, and thdinearized observation op-
seek to achieve. This objective will be expressed in terms oératorC is given by

AU(Xp) (X AU(Xp) AU(Xp)
X Togyy N1 Togvy P2 Loy N2 logyy
C= . (13
I (Xm) A (Xm) I (Xm) A (Xm)
XK Togyy N1 ooy P2 logyy N2 logyy
I
Since our linearized reduced-order model reproduces the Y =CX’'+DI¢c+Hw+m. (14b)

Navier—Stokes dynamics only approximately, the difference

between its predictions and the actual flow behavior can be B&fore we set out to design a controller for systeid)

regarded as disturbances which can be accounted for by iﬂf— has to be verified that this is in fact feasible given the

troducing a stochastic variable referred to as the system internal structure of the system with its inputs and outputs.

(plant noise. It affects the linearized system dynamics via aThis can be done by analyzing controllability and observabil-

[4X 1] matrix G and the linearized system output via a ity of system(14). Controllability is characterized by the

[2x 1] matrix H. Furthermore, we assume that the velocity"umber of modes\; that can be affected by the control

measurements may be additionally contaminated with noisBUtherity available. The difference between the system di-
m<[m, m,]", where m, and m, are stochastic processes. mension(4 in the present cas@and N, gives the number of

With these definitions we can now put the IinearizedIuncomrOIIabIe nf10des. In the present cagecan be calcu-
reduced-order model in the standard state-space fegm ated assee Ref. 4y

Ref. 47 N.2ranKB AB A%B A°B]=2, (15)
d which means that the matrix pafA,B} is not controllable
—X'=AX'+Blc+Gw, (143 and only two out (_)f four m.o.des preserllt. in the system_ can be
dt controlled. In a similar spiritpbservabilityis characterized
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by the number of mode#/,, that can be reconstructed based '
on the measurements available and the difference betweer 09

the system dimension an'd, gives the number of unobserv- 08
able modes. In the present casg can be calculated as 07
Ny2ranCT ATCT (AT)°CT (AT3CT]=4, (16) 06
505

which means that the matrix pafA,C} is completely ob-
servable. It is useful to determine which modes are in fact
controllable. For this purpose we can deduamiaimal rep-
resentationof system(14) consisting of those modes only 02
which are both controllable and observable. This can be done o1

03

by introducing an orthogonal transformation matrix 0.0
1/2 0 -1/2 0
A=l 0 12 0 1/2 FIG. 6. Dependence of the absolute value of the observation resigoél
Te=N (17) the unstable mode on the downstream sensor positiokive note thatc,|

172 0 1/2 0

attains its maximum fox3"=5.53. The vertical dotted line corresponds to

0 12 0 -1/2 Xo-
and making the following change of variablé('{ibé[EZ]
=TX'. The corresponding form of systeth4) is view, as a judicious choice of,, will maximize the informa-
alx: A o 1[x B G tion that can be extracted from the measurements available.
—[ a} = [ a M a] + { a}rc+ { a]W, DecomposingX, in terms of the eigenvectorg; and &, of
dt] Xp, 0 AplLXj 0 Gp A,, we can express the linearized observations of the trans-
(183) verse velocity componerifi9b) as
Y, 0 c|[x: D, H, Ya= Cakgzkakgk +Dol'c +Haw+m,
Y:COX’+DFC+HW+m' '
: : i ; : = 2 NG+ Dolc+ Haw +m,. (20)
(18b) k=1,2
Our minimal representation is thus given by the upper row inThe quantitiesc,; = C,£; and c,2C,é,, referred to as the
Eq. (189 and the lower row in Eq(18b), i.e., modal observation residu&i$,are therefore related to ob-
d servability of the growing and decaying mode. Whgr 0,
=X =AX,+Bc+Gw, (193 k=1,2, this implies unobservability of the corresponding
dt mode. On the other hand, whepis large, the corresponding
mode leaves a large imprint on the measurements. Conse-
Ya=CaXg+ Dol'c + Haw + my,. (19D quently, in the presence of disturbances it is advantageous to

We remark that the state vector in the minimal representatioﬁnaxImlze C, 1€, the .observatlc.m residual of the unstable
(19) is expressed aX =[x, y.IT=[x+xp/2 yi+y,/2]" mode, by making a suitable choicexf. The dependence of

which means that the new variables are simply averages $?1| On X, for fixed x,=4.32 is shown in Fig. 6. The optimal

-y t - .
the original onegi.e., the perturbations to the stationary so- _pofsmor(; (t)f tge fgfzog (;?]r_] b_e flhetermmed nur_r:_encta;]llyt a’?ﬁ'
lution). Eigenvalue analysis of the matricds, and Ay re- IS found 1o bexy, =5.53. ThiS IS the Sensor position that wi

veals thatA, has two real eigenvaluggositive and nega- be used in all subsequent calculations.
tive) corresponding to the growing and decaying modes
and B, whereas the matrid,, has a conjugate pair of purely 1V. LQG CONTROL DESIGN

imaginary eigenvalues which correspond to the neurally In thi i deri trol alorithm for th
stable modey (Fig. 3). This observation allows us to con- d n dls gec ion \(/jvel grlvedour colr_1 ro agort|. mI or tel
clude that the uncontrollable part of the model SyStemrﬁegf;”_cc))rurerob?ggti\?e isatsc? fingna ;ggggagf Icnc])itrotl:olgvzlo
dynamics is associated with the neutrally stable oscillator ) . : . .

y y c=—-KX’, whereK is a[4 X 1] feedback matrix, which will

mode vy. In other words, the control actuatiofi.e., the @bili teni14) while minimizi ‘ it
cylinder rotation can affect the growing and decaying modes > aP!lIz€ SysS entl4) while minimizing a periormance cite-
rion represented by the following cost functional:

(a and B), but has no authority over the neutrally stable

mode y. Consequently, the original systefh4) is stabiliz- R T oo

able even though it is not controllable. This fact can be Jlc) =E f (Y'QY +T'cRIc)dt |, (21)
leveraged by designing the feedback control algorithm based 0

on the minimal representatiqi9). whereE denotes the expectatio, is a symmetric positive

We conclude this section with a brief discussion of ansemidefinite matrix, an&®> 0. Note that the cost functional
optimal sensor placement, i.e., the best choicg,pin (11). (21) balances the linearized system outjyufi.e., the veloc-
This is an important issue from the implementation point ofity at the sensor locatiorix,,,0)] and the control effort,
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w (system noise) ~ 1
— 1 PLANT Y (measurements) K = _B;—P ( 24)

I; (control) R

in which the matrixP is a symmetric positive-definite solu-

************* COMPENSATOR ey tion of the algebraic Riccati equation

X: \ v 1
TCONTROLLER ESTIMATOR % (mezsgrement AlP+PA,+ClQC,0- EPBaB;P =0, (25)

I (control)

whereCaoz[ga]. We note that the feedback mat,, and
FIG. 7. Schematic of a compensator composed of an estimator and tahe.refqre aISCK.’ will depend on the choice Qf the output
controller. weighting matrixQ and the control penaltr in the cost
functional (21). As is evident from Eq(18b), the system
outputY,, corresponding to measurements of the streamwise
velocity component, does not depend on the minimal state
whereas the feedback control law provides a recipe for devector X/. This, however, does not affect the calculation of
termining the actuatiori.e., the circulation of the control the feedback matrices. Since the original systé#) is com-
vortex I'c representing the cylinder rotatipmased on the pletely observable, the estimation problem is solved based on
state of the reduced-order modee., the perturbatioxX’ of  the full representatiotil4), rather than the minimal represen-
the stationary solution In practice, however, the sta¥e of  tation (19). Thus, the optimal estimator feedback matrix
the model(14) is not known. Instead, noisy measurementsneeded in(22g is given by
Y =[Y, Y,]" of the actual systenii.e., the nonlinear Foppl L=SCM, (26)
model(2) or the wake floyy are available and can be used in
an estimation proceduréo construct an estimat&, of the ~ Where the matrixS is a symmetric positive-definite solution
model stateX’. The evolution of the state estimax, is  Of the algebraic Riccati equation

governed by the estimator system AS+SAT+WGGT-SCTM-1CS=0, 27
d Y i hich the following disturbance structure is assumed
O = AX + BT +L(Y -V, 22 in whic e following distu ucture i u
dt” ¢ € ot L o (229 E[w(t)w(?)T]=W8(t—7) andE[m({t)m(nT]=M &(t—7). Thus,

the optimal estimator feedbatkdepends on the covariances
Y=CXg+DI, (22  of the system and measurement disturban@ésndM, re-

] . . _ spectively, and yields an estimator is known as the Kalman
whereL is a feedback matrix that will be chosen below in ajijier. For the case of the simple reduced-order model studied
manner ensuring that the estimation error vanishes in thgere the algebraic Riccati equatio(®5) and (27) can be
infinite time horizon, i.e., thak,—X" ast—x. Thus, the  gqyed using standard techniques. As a matter of fact, Eq.
estimator assimilates available observations into the syste@S) which represents a system of three coupled quadratic
model, so as to produce an evolving estimate of the systegqations can be reduced to a scalar quartic equation that, in
state. Finally, the controller and the estimator can be COMeheory, can be solved in a closed form. However, the analyti-
bined to form acompensatoin which the feedback control .5 expressions obtained are extremely complicated and in

is determined based on the state estiméfeas practice it is much more convenient to use a numerical solu-
Ic=-KX,. (23  ton. ,
The LQG compensator is an example of &,
The flow of information in a compensator is shown sche-controller/estimator design in which disturbances are as-
matically in Fig. 7. sumed Gaussian and uncorrelated with the state and control.
The design of an LQG compensator can be accomRobustness of the compensator can be enhanced by perform-
plished using standard methods of linear control théseg, ing anH., controller/estimator design where disturbances are
e.g., Ref. 47 and is outlined below only briefly. Assuming allowed to have the worst-case form. In the present study,
that all the stochastic variables are white and Gaussian, theowever, the reduced-order model has a very simple struc-
separation principle can be applied which means that theure and robustness can be achieved by hand tuning the com-
control and estimation problems can be solved independentlyensator. Consequently, we do not pursueihecompensa-
of each other. Based on the above assumptions, solution ¢dr design here and refer the reader to the review 65|fmr
the control problem can be further simplified by invoking the a discussion of the utility of thé{., design in the context of
principle of certainty equivalence stating that the optimalflow control problems.
feedback matrixK for the stochastic systerfi4) with the
cost function(21) is exactly the same as for the correspond-
ing d(_ater_ministic system obtai.ned by set.tir)g to zero the S0y, COMPUTATIONAL RESULTS
chastic disturbances andm. Since the original systeiii4)

is not controILabIe, the optimal feedback matrix is deter-  |n this section we present computational results concern-
mined ask =[ Oa] T., whereK is the feedback matrix ob- ing LQG-based stabilization of the stationary base flow in
tained for the minimal representatigh9) as the Foppl systeng2) and in the unstable cylinder wake flow
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FIG. 8. Trajectories of the vortices in the FOppl syst@nresulting from a random perturbation of the stationary pdituncontrolled casgp) case with
control performed by the LQG compensata@) same agh), but showing magnification of the neighborhood of the lower stationary poirit) lthe dotted
line represents the corresponding estimété) of the vortex trajectory. The stationary points are indicated by solid circles.

governed by the two-dimensional Navier—Stokes systenmeasurements. In the solution of the control prob{&s) we

(with the fluid densityp=1) chose
Ju .
E+(u-V)u+Vp—MAu:O in Q, , 10

R=10° Q= . (31
V.u=0, inqQ, - 01
u=up on 40, 28 We now proceed to discuss the results concerning stabi-
u— [U.,0] for [x| — o lization of the perturbed stationary point of the Foppl system

(2). We focus on the configuration obtained frg=4.32
which is characterized by the same lengthof the recircu-
whereu=[u,v] is the velocity field,p is the pressurey the  lation bubble as the actual unstable base flow at Re=75 to be
coefficient of viscosityQ is the flow domain, andQ its discussed next. In Fig.(8 we show the trajectories of the
boundary[cf. Figs. %a) and %b)]. The Reynolds number is Vvortices as they escape to infinity when the stationary posi-
defined as Re=R,U..p/u. The stationary base floFig.  tion is perturbed with a random perturbation. We remark that
5(a)] is obtained by setting to zero the time-derivative termthe directions along which the initial escape takes place are
auldt in (28). This solution, which is known to be unstable in qualitative agreement with the unstable eigendirections
and undergo a Hopf bifurcation when Re6 (e.g., Ref. 45 ~ shown schematically in Fig. 3. In Figs(8 and &c) we

is also taken as the initial conditian, for system(28). The ~ show how the system evolution ensuing from the same per-
boundary conditions for systeii28) are determined using turbation is stabilized by the LQG compensator described in
the feedback control algorithm outlined in Sec. IV and areSec. IV. We note that the trajectories are now bounded and
given by the vortices eventually land on quasi-elliptic orbits encircling
the stationary points. These orbits are related to the neutrally

u=up att=0,

na .n= ) . -
Up = Up-n =0, (293 stable oscillatory modeg which in Sec. Ill were found to be
r uncontrollable. This explains why the compensator, while
upLup-T= C_(t) (29b) preventing the system from blowing up, is unable the sup-

27Ry’ press completely the instability. In Fig(@ we also show the

, . ; 2 ! !
wheren and r are the versors normal and tangential to theCOr™esponding estimator trajectod(t) =Xo+X,(t) which

cylinder boundary. In the simulations presented below thetarts from the stationary point and. then, after some tra_nsient,
Navier—Stokes systeii28) was solved with a vortex method CONVerges to the actual system trajectiiy). We emphasize

which was described and validated in Ref. 46. In the solutioriN@t: @s is evident from Figs(1 and §c), the LQG com-
of the estimation probleni27) we made the following as- pensator is able to stabilize the system for fairly significant,

sumptions about the covariances of the plant and measur@!beit finite, magnitudes of the initial perturbatiai(0).
ment disturbances In Fig. 9 we present the time history of the measure-

mentsY, and Y, of the nonlinear syster?) and the corre-
100 } (30) sponding jeedbagk contral, [see(29b)]. We note that the

0 01 quantitiesY, and Y, represent the measurements of the ve-
which means that transverse velocity measurements are tol@city components andu at the point(x,,0) in the nonlin-
lesser degree contaminated with noise, and therefore haveear system. We remark that, as is evident fid®b), Y, is a
larger effect on the state estimation than streamwise velocitgignature of the controllable modesand 8 and therefore

W =1.0, M:{
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FIG. 9. Top figure presents the time
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(dotted streamwise velocityY,. Bot-
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decays in time. On the other hanﬁb is a signature of the stabilization of the FOppl system described earlier in this
uncontrollable mode and for large times reveals oscillatory section. First, in Fig. 10 we show the estimated positions
behavior with a nonvanishing amplitude. After the initial Xe(t) of the Foppl vortices obtained in the flow with the
transient, the contralf decays to zero as well. LQG stabilization. As in the previous case, the estimated
We now turn to the discussion of the results obtainedrajectories are stable and have the form of circular orbits
applying the same LQG compensator to stabilization of arcircumscribing the stationary points of the Féppl system. In
actual cylinder wake at Re=75. In the uncontrolled regimefact, now these orbits reveal a slight drift in the upstream
the symmetry of the initial conditiofsee Fig. Ba)] isimme-  direction. This, however, does not destabilize the feedback
diately broken and the usual vortex shedding instability decontrol, as the effect of the upstream drift is subtracted off in
velops. In the results to follow all the parameters of the esthe minimal representatiofcf. Eq. (17)].
timator and the controller are the same as used in Next, in Fig. 11 we present the time histories of the

32+

3.0 ¢

28

26

227

2.0r

(a) (b)

FIG. 10. Estimated trajectories,(t) of the Foppl vortices obtained in the LQG stabilization of the cylinder wake at Re@y&iew of the near wake region,
(b) magnification of the neighborhood of the upper stationary pointb)rithe stationary point is marked with a solid circle.
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U “ FIG. 11. The top figure shows the time
histories of the measurements(eblid

line) the transverse?a and (dotted
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line) the streamwisé?b velocity com-
ponents obtained in the LQG stabiliza-
tion of the cylinder wake at Re=75.
The bottom figure shows the time his-
tory of the corresponding feedback
control ug.
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measurement¥, and Y, of the transverse and streamwise Pecomes more pronounced further downstream. This effect

velocity in the stabilized wake flow at the poitx,,,0) and

can be analyzed in a quantitative fashion by comparing in

the corresponding feedback control. Relation between thEig. 14 the behavior of the transverse velocity comporent

controluj(t) and the transverse velocity measuremgfgts),

on the centerline and different downstream stations in the

which in the formulation of the estimation problem are con-uncontrolled and controlled flowmote thatY, in Fig. 11

sidered more “credible]cf. Eq. (30)], is shown in Fig. 12.

(top) represents the data far=x2"]. We observe that in the

We note in Figs. 11 and 12 that, after an initial transienthear wake the actuation in fact increases the transverse ve-
related to developing instability, both the measurements antpcity oscillations as compared to the uncontrolled flgug.

the control settle in a quasiperiodic cycle.

14(a)]. Further downstream, however, the transverse velocity

The flow patterns corresponding to the natural vortexoscillations are significantly reduced by the feedback stabili-
shedding and the flow stabilized with the LQG compensatozation as compared to the corresponding levels in the uncon-
are shown in Fig. 13. It is evident that the flow pattern istrolled flow [Figs. 14b)-14(d)]. This trend is evident in Fig.
much more symmetric in the controlled case, an effect whicht> which shows the dependence of the amplitude of the

Uy

08 06 -04 02 00 02 04 06 08

FIG. 12. Relation between the feedback contiflt) and the transverse
velocity measurementg,(t) with time t serving as a parameter.

transverse velocity oscillations at the centerline on the down-
stream distance from the obstacle. We note that the feedback
stabilization manages to reduce transverse velocity oscilla-
tions only downstream from the point* =7.6. Somewhat
surprisingly, this point is located downstream froxy,
=5.53 which is where the transverse velocity oscillations are
penalized in the cost functioné1). In Fig. 16 we show that

the feedback control increases the mean value of the drag
coefficientc and the oscillation amplitude of the lift coef-
ficient ¢, as compared to the corresponding levels in the
uncontrolled flows.

VI. CONCLUSIONS

In this paper we investigated the use of the Foppl system
as a reduced-order model for an unstable wake flow under-
going transition to vortex shedding. Utility of the linearized
Foppl system for the purpose of wake stabilization was char-
acterized using methods of Control Theory. For the case of
the cylinder rotation acting as the flow actuation and the
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(b)

FIG. 13. Vorticity contours in@) the uncontrolled cylinder wake flow ar{td) the cylinder wake flow with the LQG feedback stabilization at Re=75. Solid
lines represent positive vorticity values and dashed lines represent negative vorticity values. For the sake of clarity, isolines correspdretimg orticity
values are not shown.

velocity measurements @ét,,,,0) used as the system output, it in the near wakgFig. 14a)], but also increased the mean
was found that this reduced-order model is observable andrag and lift oscillationgFig. 16). On the other hand, further
stabilizable, but not controllable. Alternative forms of actua-downstream, where the flow is dominated by quasi-inviscid
tion (i.e., localized at the boundary blowing and sucfiand  vortex dynamics, the control algorithm did stabilize the flow.
observationgi.e., pressure difference measurements on th&here are in fact many engineering applications, such as for
boundary were also considered briefly and it was shown thatinstance, mitigation of “wake hazar@®where stabilization

the resulting linearized reduced-order models are, respeof the far wake region is of primary importance. Owing to its
tively, controllable and detectable. One should emphasize th&mplicity, the Foppl model appears to provide only qualita-
remarkable simplicity of the reduced-order model which hagive information about the behavior of the actual flow at the
only four discrete degrees of freedofar two degrees of onset of vortex shedding. This is reflected in the fact that the
freedom after reduction to a minimal representatidrhus,  transverse velocity oscillations were not reduced at the sen-
the Foppl system may be regarded as occupying a placsor locationx,, but only downstream from that point.
somewhere close to the “low-complexity” extreme of the hi-  An important question concerns performance of the
erarchy of reduced-order models for wake flogge Noack LQG compensator developed here at higher values of the
et al?®). As a result, the design of a stabilizing LQG com- Reynolds number. The linearized Foppl system models the
pensator for this model is a straightforward task. This com-behavior of the flow at transition to vortex shedding, so the
pensator was found to stabilize the stationary point of thgperformance of a stabilization strategy derived based on this
nonlinear Foppl system and the downstream region of thenodel is likely to deteriorate for Reynolds numbers signifi-
actual cylinder wake at Re=75. The fact that it was not poscantly higher. It is possible, however, that useful reduced-
sible to stabilize also the near wake region points to an imerder models can still be devised in such regimes employing
portant limitation of this reduced-order model. The Fopplmore elaborate constructions such as larger ensembles of
system is constructed based on the potential flow theory angoint vortices, or their three-dimensional analgigs., vortex
therefore cannot properly account for vorticity creation at thefilamentg. These ideas represent interesting avenues for fu-
boundary and other viscous effects known to dominate théure research.

near wake region. This explains why the feedback stabiliza- As regards comparisons with other control methodolo-
tion not only did not manage to reduce velocity oscillationsgies applied to the same problem, precise quantitative assess-
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FIG. 14. Comparison of the time evo-
lution of the transverse velocity com-
ponent in (dotted ling the uncon-
trolled flow and in (solid line) the
controlled flow on the flow centerline
and four different downstream stations
(downstream coordinates are indicated
on the insetg

ments are difficult to make, unless exactly the same forms afitilizing cylinder rotation as the flow actuation appears more
actuation and the same control objectives, apart from thédifficult” than the wake control employing blowing and

same flow conditions, are used in the cases analyzed. Thesaction at the boundary. The reason is that in the latter case

are necessary to ensure a fair comparison of the control olthe resulting reduced-order model is fully controllable,
jectives achieved and the control efforts required in the difwhereas in the former case it is “only” stabilizable. This may
ferent cases. In fact, most of the studies concerning wakalso explain why wake control approaches based on blowing

control available to datée.g., Refs. 14-21were performed

and suction tend to be more successful in stabilizing the near

with either different forms of actuation, or different control wake region(cf. Refs. 14—-21 As regards other flow control

objectives. Thus, only qualitative comparisons can be maddechniques relying on the Foppl system as a reduced-order
In this connection it should be emphasized that, as indicatethodel, such as the studies described in Refs. 38 and 39, we
by the results of Sec. Ill and Appendix B, the wake controlcan conclude that the present solution offers the usual advan-
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12 ¥ ' ' ' ' due to a different form of the actuation used.

: Further research possibilities that may be explored in
connection to this problem include application of the same
reduced-order model, but with a different form of actuation
(e.g., blowing and suction on the cylinder boundary, as de-
scribed in Appendix Band a different system outpge.g.,
measurements of the two-point pressure difference on the
cylinder boundary, as described in Appendix @ can be
anticipated that such modifications might help alleviate some
of the limitations mentioned above. A different family of
control strategies could be obtained applying to the same
reduced-order model methods of nonlinear and adaptive con-
trol theory. Another interesting problem is to consider wakes
of noncircular obstacles, where the corresponding reduced-
order model could be obtained by transforming the Foppl
: system with the use of a suitable conformal mapping. Fi-
00 . - . - . nally, we will also attempt to implement the stabilization
X strategy developed in the present paper in a real laboratory

_ , o . experiment.
FIG. 15. Amplitude of the transverse velocity oscillations as a function of

the downstream distance from the obstaclédotted ling the uncontrolled

flow and (solid line) the controlled flow. The dashed vertical line corre- ACKNOWLEDGMENTS
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case with several different inputs and outputs. Note that NONE A TIONARY SOLUTION OF THE FOPPL MODEL
of these desirable characteristics canabgriori guaranteed

by the heuristic strategy developed in Ref. 39. On the other  The lengthLg of the recirculation bubble is characterized
hand, that method appears to stabilize the near wake regidyy the downstream distance where the streamwise velacity
as well, however quantitative comparisons are not possiblehanges sign from negative to positive. Therefore, a closed-
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form relation betweet and the downstream coordinatg y
of the Foppl vortices in the stationary configuration can be U,
obtained by examining the condition —_—
ReV(LR]=0, (A1) 0Q A\ 4 &
whereV(2) is given by (1) with —-TI';=T,=T", z1=2,, =7, _’1/) o L
andI'c=0. Expanding/Al) we obtain .
=1 T v Yo k> *
2 2 2 5|=0 Y/ C
Lz 7l (Lk=%0)?+Yh (LRXO_l) +LRYo . 2

(A2) Q —Af AN

which can be converted to the following sixth-order polyno-
mial equation for_g

2 _ 4 3 2 _ FIG. 17. Schematic showing the Foppl system with a source-sink pair as a
(Lr= D(fLg+ {Lg+ 7lg+ {Lr+ ) =0, (A3) reduced-order model for localized blowing and suction actuation.

where
&= 7Tf(2)v In the context of a potential flow model such an actuation
can be represented by a source-sink pair located at the cyl-
{=- 277Xo(rg+ 1), inder boundary symmetrically with respect to the flow cen-
terline (Fig. 17). We choose the mass flux=A(t) of a single
7= m(1+4G+1g) + Tyo(1-rf). source(or sink) as the control variable. The complex velocity

Exploiting the symmetry of EqA3), its six roots can be field induced at the poirg by such a source-sink pair is

identified as follows:
A 1 1
Lg 9= 1, (z)——(—— - ) (B1)

2m\z-€7 z-€'7
LEY=2(- 9= 3\(- -4 i iz i
R 2 T2 ' whereo is the angle characterizing the location of the actua-
®) _ —— tors on the cylinder boundary. Note that the total mass flux
Lr 2(¢+ ) —3V(d+ )" -4, due to the source-sink pair is zero. It can also be verified that
(6) L the presence of the source-sink pair does not affect the wall-
=3(d+ ) +3\(d+p)* -4, normal velocity on the cylinder boundary away from the
Where singularities, so the new actuatigBl) can be used to re-
place the forcing term iK2). The resulting linearized control
p="ol0+ Y X(r§+1) matrix is given by
ra p
5 A sinfo) | x
ro +1 [(ro=DAHrg+ 2yoro + X515 = ZYO) By=="—"5 % (B2)
m(x*+ k)| K
ro
X

Note thatyo, ro, andl are related tog through(5). The roots where Xéxg—yS—ZXOCOS(aHl and x 2 —2y[xo—cogo)].

L3 form a complex conjugate pair, while all the remainin o N Y
R P jugate p g Controllability of the linearized Foppl system with this new

roots are purely real. The first four roots correspond to th? rm of actuation can be characterized b lculatin
streamwise velocity vanishing at the cylinder boundary: al orm ot actuation can be characterized by caiculating

the front and rear stagnation poimtéj’z)), and at two points
located symmetrically above and below the flow centerline Ny, £rankB, AB, A?B, A3®B,]=4, (B3)

(3,9 L
(LR™™). The fifth rootL corresponds to a point inside the which means that all of the eigenmodes(6f can be con-

6)
cyllnder whereas the S'Xth robe represents the end of the rolled. For a given base flow, the position of the actuators

recirculation bubble discussed in Sec. Il. We can thus se} L
_ (6 . B i.e., the angler) can be chosen so as to maximize the con-
Lr=Lg". The dependence dfz on X, in shown in Fig. 4.

trol residual of the unstable modef. discussion of the op-
timal sensor placement at the end of Seo. llI
APPENDIX B: ALTERNATIVE ACTUATION—BLOWING

AND SUCTION LOCALIZED ON THE CYLINDER APPENDIX C: ALTERNATIVE MEASUREMENTS—
BOUNDARY PRESSURE DIFFERENCE ON THE CYLINDER

. . . OUNDARY
In this appendix we generalize the framework developeci3
in this paper to account for a different type of flow actuation, In this appendix we construct observation operators for
namely blowing and suction localized at the cylinder surfacethe case when the available observations have the form of
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measurements of the pressure difference between two pointated symmetrically with respect to the horizontal and verti-
on the cylinder boundary. Then we analyze the observabilital axes, respectively. These quantities are important, since
of the reduced-order model equipped with such an observa-f7A, p(¢)sin(¢)de represents the form lift and
tion operator. We will consider two configurations —ffﬁTZ,ZAhp(go)cos(go)dgo represents the form drag. In a poten-
tial flow with known velocity field the pressure at a given

Ap2p,-p (Cla boundary point can be calculated from the Bernoulli equa-
viE e e tion asp,=po+3(|Vol?~|V,|?), wherep, andV, are the pres-
sure and the complex velocity at some arbitrary point in the
A2 Py~ Py, (C1b) P y P

flow domain, and/, is the complex velocity at the boundary
wherep, represents the pressure at the boundary point witpoint. Thus, the vertical pressure difference can be expressed
the azimuthal coordinaté (Fig. 1). Thus,(C1a and(Clb)  as Avp=%(|v_‘p|2—|v¢|2) and the corresponding linearized
are pressure differences between two boundary points lebservation operator igf. (13)]

c. =| 9APle) 9A,p(e) 9A,p(e) 9A,p(e) c2)
Ap~
M gy M Ty P2 Togyy N2 Togyy
[
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