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In this paper we are interested in identifying the physical mechanisms that accompany mean drag
modifications in the cylinder wake flow subject to rotary control. We consider simple control laws
where the obstacle rotates harmonically with frequencies varying from half to more than five natural
frequencies. In our investigation we analyze the results of the numerical simulations 25&eAll

the simulations were performed using the vortex method, which in the paper is outlined and
benchmarked. We confirm the earlier findings concerning mean drag reduction at higher forcing
frequencies and show that for the considered values of Re this control technique is energetically
inefficient. The main result is that changes of the mean drag are achieved by modifying the
Reynolds stresses and the related mean flow correction. The controlled flows are carefully
characterized in terms of these fields. Drag reduction is related to elongation of the recirculation
bubble. It is argued that mean drag reduction is associated with control driving the mean flow
toward the unstable symmetric stafithe basic flo. © 2002 American Institute of Physics.
[DOI: 10.1063/1.1432695

I. INTRODUCTION shear layers to small amplitude oscillations, Lu and %ato
focused on the modifications of the flow patterns due to con-
Bluff body wakes play a very important role in various trol, Shiels and Shiels and Leondtcprimarily studied the
engineering applications. This is mainly due to the presenc®eynolds number effect on vortex dynamics in the controlled
of big concentrated eddies, the so-called n@el—von flows, Beak and Sufid®and Fujisawaet al2investigated
Karman vortices, which are intrinsically related to forces act- the wake behavior in the presence of lock-on, whereas Baek
ing on the obstacle. Furthermore, bluff body wakes possesgt al® studied the secondary and tertiary lock-on. In a recent
seve,ral intriguing features, e.g., strong mean flow effes#e  study Chenget al}* presented a comprehensive analysis of
Zielinska et al%), which also make their study very inter- the flow pattern modifications occurring at and close to
esting from the physical point of view. The effective control |gck-on in the controlled flows. In another recent investiga-
of wake flows constitutes a challenge in fluid dynamics.tion, Heet al!® used the tools of the optimal control theory
From the implementation point of view, one of the simplesty, gptimize the frequency and amplitude of harmonic oscil-
control methods is the rotary motion of the obstacle. Thi§ations. Our objective in the present study is to revisit this
configuration is shown in Fig. 1. One of the first attempts ai.qnro| strategy in the laminar regime and with a fairly broad
the rotary control of the cylinder wake was made by Ta”%da'range of forcing frequencies, in a similar vein as was done by

Then this technique was ;ystematically studieql in the 1aboroymaru and Dimotaki$We will use the theory of slightly
ratory by Tokumaru and Dimotakfswho by applying a very supercritical wakes to unravel the critical physical mecha-

simple sinusoi_d_al c_ontrol law at ReL5 000 _obtair_1ed a8 nisms accompanying the observed drag reduction with a par-
markable modification of the flow pattern, including signifi- yic,ar focus on modifications of the mean velocity and the
cant suppression of vortex shedding, accompanied by S“t?EeynoIds stress fields. An analysis of these mechanisms and

stantial drag reduction. This effect was further investigatednOW they are affected by the rotary control constitutes the
under various flow and control conditions by other research-

Filleret al® studied th ¢ th ‘ q;ﬁ)nrimary objective of this paper. We presume that the crucial
ers, e.g., Filleret al.” studie € response ot the separateQy, -hanisms remain similar in the controlled wake flows at

higher values of the Reynolds number. Another issue we will
Author to whom correspondence should be addressed. Present addreggso address here is the power budget of the controlled flows.
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0411; telephone(858 822 3391; fax:(858 822 3107; electronic mail: Plane infinite wake flow at the Reynolds number=R&0.

bprotas@ucsd.edu The structure of the paper is as follows: in Sec. Il we present
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Y where WV, is the streamfunction corresponding to the basic
flow, and c, are the spatial envelopes associated with the
particular harmonics. All relevant flow quantities can be re-
covered by applying suitable differential operatorsitg ,

Vo Q and this procedure naturally carries over to the spatial enve-
/Fo lopes of the harmonics. The amplitude of oscillations with
V() frequencyny (i.e., thenth harmoni¢ at the point &q,Y,) is
/K\ X given by Z2¢,(Xq,Yo)|. This quantity thus represents the spa-
tial variation of the oscillation amplitude and therefore has
*q-)(t) often been referred to as tlgtobal modeamplitude (e.g.,

Zielinskaet al! and Dugk!). All oscillations vanish at in-
finity, hence we have the property ligy, . o/c,|—0. The

D symboly denotes the fundamental frequency of vortex shed-
ding at saturation. This frequency is often normalized to give
the Strouhal number of the natural vortex shedding, St
=yD/|V.|. As a matter of fact, relatiofil) is the limiting
case(for t—) of a more general relation, allowing for a
slow evolution of the envelopes,, the so-called “slow dy-
namics.” Here we consider the saturated case when all tran-
sients have died out, hence the time dependence of the en-

some both rigorous and phenomenological concepts relateff!0PesCy is suppressed. The basic floi, is the unstable

to slightly supercritical wake flows, with a particular empha-Selution of the steady-state Navier—Stokes system obtained
sis on the relation between the mean fields and the hydrod);gr a_supercrl_ncal yalue of Re._S_tructuraI!y, Itis reIaFed to the
namic forces; then we briefly introduce the vortex methodSOI,”t'O” obtained in thg subcritical conditions an_d is charac-
used in all the simulations and validate it by presenting somé€rized by symmetry with respect to the centerline. When a
standard benchmarks: this is followed by a presentation ofePresentation of the forii) is now plugged into a bilinear
the results of the numerical simulations; a discussion of thesgXPression(like the nonlinear term in the Navier—Stokes
results from the perspective developed in this work con£duation, then ?ﬂ%of the terms we obtain is proportional to
cludes the paper. In Appendix A we present qualitative anaIyZn,m:—anCmel_( . Itis straightforward to observe that
sis of the Poisson equation linking pressure modificationd/h€nm=—n, i.e., when thenth harmonic interacts with its
and the Reynolds stresses. In Appendix B we give som&CMPIex conjugate, this results in a zero freque(stption-

more details concerning the fundamentals and implement&Y) mode. In other words, the presence of a fluctuating field
tion of the vortex method. gives rise to a steady correction to the background field. This

phenomenon is a particular example of the triadic interaction
(for modes with frequencies Gyy, and —nvy). This zero
frequency mode is conventionally named tinlinear mean
The standard phenomenological motsse, e.g., Mathis flow correction Its characteristics in various hydrodynamic
et al’® and Dugk et all’) for the wake dynamics near the instabilities are surveyed by Craik in Ref. 20, whereas the
Hopf bifurcation predicts that, when the Reynolds numbemroperties of this field in the wake flow were recently inves-
reaches its critical value Rethe steady symmetric state be- tigated by Zieliska et al? It was shown that this field ac-
comes unstable and bifurcates to a periodic solution. In theounts for the remarkable alteration of the mean velocity
supercritical regime the steady symmetric state still existsprofile and shortening of the recirculation length observed in
but is unstable and as such cannot be obtained in laboratotnsteady wakes. On the other hand, it is well known that the
conditions. As will be shown later, it can nevertheless belime series of drag consists of even harmonics, whereas lift
easily obtained in numerical simulations. This solution is of-consists of odd harmonics. This motivates looking at the zero
ten referred to as thbasic state(e.g., Zielirskaet al and ~ mode, i.e., the first even harmonic in Ed), as regards
Ref. 2. It was proposed by Dk et al!” and Dugk!® that ~ sources of the mean drag modifications.
every hydrodynamic quantity in the saturated supercritical ~ Taking the time averagédenoted(-)) of Eq. (1), we
wake flow (i.e., for t—x) be represented as a sum of aobtain(W¥.(x,y,t))=W¥(x,y) +Co(X,y). Thus, every mean
certain steady field, i.e., the basic flow, and a superpositioguantity in the supercritical regime consists of two parts: the
of harmonics. This proposition presupposes that the velocitpasic field and the mean flow correctithe zeroth mode
field in the whole flow domain oscillates with the same In agreement with this, the mean drgg also consists of the
single global frequency, a property known as tijebal  two contributions(i) the dragc? of the basic flow that at a
modebehavior(e.g., Goujon-Duranat al. in Ref. 19; Zie-  given Re is fixed and cannot be modified, &iigl the drag
linska and Wesfreid in Ref.)1Here we give this represen- c2 of the mean flow correction that represents the average

FIG. 1. Flow configuration with control.

Il. WAKE FLOWS: PHENOMENOLOGY AND BEYOND

tation in terms of the streamfunctioh., , influence of the oscillatory flow and can be modified by suit-
. able manipulation of the Berd—von Kaman vortices,
_ inyt
VoY, D=Wexy)+ X ca(xy)em, (1) co—cB+cd. ©
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)

V-(VP@VP)=—VpP+ uAVP,

V-vb=0,
\ © S
VP=0, on the boundanf,, ®

VPV, ., for |X|HOO,

and subtract the latter from the former. Using decomposition
(3), we obtain

cb o0 (mean flow V‘(VO®V0):—VPO+ MAVO_V’(VO®Vb+Vb®VO)
---..D N D correction)

1 et —V{V'eV),

1 B V-v0=0, 6
\é/’ Vv°=0, on the boundanyl,,

Ree Re VO—0, for [x|—e.

FIG. 2. Schematic showing the increase of drag due to the appearance ;rfhls is the _equatlo_n that governs the behc"?lwor of the mean
vortex shedding and the related mean flow correction. The insets represeHOW correctionVy (i.e., the zeroth m_odearlsmg due to the
the structure of the basic flowdrag indicated by the dashed linend the  nonlinear self-interaction of the oscillatory part of the flow.

unsteady flow(drag indicated by the solid lineat a given supercritical Re.  The |ast two terms on the rhs have the form of the divergence
of the dyadic tensors: the first of them represents interaction
of the mean flow correctio® with the basic flowV® and
As will be discussed in detail below, the mean flow correc-the second the influence of the fluctuating part of the flow.
tion arises due to nonlinear self-interaction of the oscillatoryThe second term thus involves the Reynolds stress tensor
part of the flow. Its drag:% increases the total drag of the (V'®V’). As a matter of fact, when oscillatory control is
flow, which is schematically shown in Fig. 2. Obviously, the applied, the ternW-(V'®V") indirectly represents its effects
mean drag can be entirely characterized using the meamn the mean flow correction, and therefore also on the asso-
fields (including the Reynolds stresge3hus, our main in- ciated mean drag%. The relation between the mean flow
terest in this paper is to analyze the relation between theorrection and the Reynolds stresses was first studied by
oscillatory flow components, the nonlinear mean flow cor-Maurel et al. in Ref. 21.
rection, and the drag. Below we derive the equation govern- It is well known (see, e.g., Henderson in Ref.)2Bat in
ing the behavior of the nonlinear mean flow correction, andbluff body wakes the main contribution to drag comes from
see how this field contributes to drag. At every point thepressure. At Re150 pressure drag constitutes approxi-
velocity may be split into its meakW™ and fluctuating part mately 81% of the total drag. Thus, drag modifications are
V' asV=V"+V’ where(V)=V™ and(V')=0. In accor- mainly achieved by changing the pressure drag and below
dance with the remarks made above, the mean field can hge focus on how the pressure drag is affected by the oscil-
further split, thus latory part of the flow. In this we follow the ideas developed
VM= \/P4 /0, 3) by Mittal and Balachandar in Ref. 23. Taking the divergence

of the first equation in the syste(f), we obtain
whereVP represents the basic flow, i.e., the unstable, steady,

and symmetric state, andf’ is the mean flow correctiotthe
zeroth modg It should be remarked here that decomposition Ap’=—V.[V- (V'@ V) + V. (Ve V' +VP@ V)]
(3) is fairly general and does not involve any assumptions.

ApOb

The same decomposition can be made for pressure. We re- =V [VA(V'eV)],

strict our attention here to the case when theanvalue of A0S

the boundary velocity, i.e., the control, is zero. This is natu- 7
rally satisfied by any time-periodic forcing. Now we take the (n-V)p'= MAV2|F-

time-averaged Navier—Stokes equation in the conservative —_—

form (a®b denotes the dyadic product of the two vectars (n-¥)p0Pe

andb, i.e.,[a®Db];; =a;b;), _ . _ .
[a®b];=ab;) We see that, due to linearity of the Poisson equation, the

V-(VTQV™) =—VpT+ uAVT-V(V'®V'), solution of (7) can be represented as the sypf=po°
V.yT=0 +p%+ps. In Eq.(7) we schematically indicate the rhs and

’ @) boundary terms associated with each element in this sum.
V™=0, on the boundanf, The first term p°°°) is related to the Neumann-type bound-

ary conditions in(7). The termp® corresponds to the influ-
ence of the mean flow correction fielf and its interaction
the equation for the basic floti.e., the steady state Navier— with the basic flowv® [i.e., the first divergence term on the
Stokes equation rhs in (7)]. The termp®' represents the effect of the Rey-

VM-V, for |x|—ce,
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nolds stresseg.e., the last term on the rhs {i@)]. Owing to 20
the nature of the relatiotv), we will say that the fieldp®® L7
and p°° represent théndirect influence, and the fielgh°'s 15

thedirect influence, of the Reynolds stresses on the pressure®™ 4123
drag. It was shown by Mittal and Balachandar in Ref. 23 that
in the case of the bluff body wake the fighd® is essentially 0.75
insensitive to modifications of the Reynolds stresses. Con- 05
versely, the fieldp®'s was shown to strongly depend on their 0.25

distribution. Based on this observation we will assume that [ oo steady g el obined by Pombert

the effect of the Reynolds stresses on the pressure drag i 100 w0 Q20 400 500
mainly contained in the fielp?'s that satisfies the following
equation:

ApPS=—V{V-(V'®V')],
(n-V)p**=0. (8)

The above assumption is particularly true when the com-
pared flows have similar mean velocity fields. In Appendix A

D

1.0

Cps C

—— Henderson’s fit B
Laboratory experiment by Wieselsberger S TR
cp - present results
cp’ - present results
¢p - results obtained by Shiels

POON *

(a) The mean values of the total drag cp and pressure drag cp,.

we analyze this equation to assess how the magnitude anc o1  ttondoreoms it
the distribution of the Reynolds stress®g8 ®V') affect the o4 A prediction by Fey et al.
quantitygﬁroporsnxdo, i.e., the corresponding pressure drag. . E::sle:sn;:;;:SkandSung
In Sec. IV we will use those results to link the changes of the 100 200 300 400 500
Reynolds stress distribution and magnitude to drag modifi- Re
cations in the controlled flows. (b) Vortex shedding Strouhal number Stnq:.
8
I1l. NUMERICAL SIMULATIONS 7 m | W present resulis
® results of Zielinska et al.
In this section we very briefly introduce and validate our 6 * ¢ _resulls of Coutencoan et al
numerical method. In all the studies reported here we use the ¢
vortex method, which is described in some detail in Appen- _“f“ .
dix B. Here we only present the system of partial differential 3
equations governing the problem and show some standarc 2 ,: ® = .
benchmark tests for our method. In the present study we use It e - "
t_hg vortex method tq solve the two-dimensio2iD) vor- 0, * o o0 50 500 250 300
ticity transport equation, Re

(C) Length of the recirculation bubble Lgp.

Jw
—+(V-V)o=plAo,
ot ( Jo=plo FIG. 3. Acomparison of the dependence of the mean total and pressure drag

(a), the vortex shedding Strouhal numbgy, and the length of the recircu-
Jdv du Jdu  dv lation bubble(c) on the Reynolds number for the present simulations and
= reference results available in the literature.

CTax ay (7_X+W_’
V=V, on the boundarnyl,, (9)

VoV, for [x|—c, et al?®. This constraint has the following fortit must be

written for each “hole” in the computational domain
V|t=0:VOl in Q,

Lidw LoV
whereV=[u,v] is the velocity field,w the (scalaj vorticity “ a_ndazj (E-T‘F(V'n)w
field, and u is the coefficient of viscosity. The system is 0 0
complemented with a suitable initial conditidry, and the  where7 stands for the wall-tangential versor. This constraint
boundary conditiond/, and V., representing, respectively, is obtained by projecting the Navier—Stokes equation on the
the velocity of the boundary and the free-stream velocity atirection tangential to the boundary, integrating it along the
infinity. Note that in the above vorticity equation both the perimeter and then requiring that the pressure jump be equal
initial and boundary conditions are expressed in terms ofo zero. This condition implies that the total diffusive vortic-
velocity, rather than vorticity. In exterior multiconnected do- ity flux across the boundariequal to the amount of circula-
mains(e.g., the 2-D cylinder wakethe above system must tion produced on the boundarynust be compensated by
be complemented by an integral constraint on the vorticityangular acceleration of the body and the wall-normal vortic-
produced on the boundafg.g., Gunzburger and Peteré§n ity advection. Obviously, the latter vanishes for circular ob-
It ensures that wake energy remains finite at all times andtacles.
that the pressure recoveraghosteriorifrom the velocity and Here we present only the most important benchmarks of
vorticity fields will be single-valued(e.g., Nowakowski the method. For further validation and as well as more imple-

do, (10
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TABLE I. Numerical parameters used in the wake simulations with the rotary control atl%® andW
=2.0. The maximum rotation angle is denoted,,, the time step\t, the blob radius, , and the approximate
number of vortice$\, . The cases analyzed in greater detail are marked in boldface.

St ot enaey A o Ny (X10%)
that
No control : 0.05 0.0178 300

A 0.09 0.5 406 0.05 0.0178 400
B 0.16 0.89 228 0.05 0.0178 380
C 0.18 1.0 203 0.05 0.0178 320
D 0.20 1.11 183 0.05 0.0178 340
E 0.36 2.0 101 0.025 0.0178 270
F 0.70 3.89 52 0.0125 0.0178 240
G 0.90 5.0 41 0.0125 0.0178 240
H 1.00 5.56 37 0.0125 0.0178 240

mentation details the reader is referred to Prétds. Fig.  hal number St=f D/|V.,| and the normalized amplitud&/

3(a) we show the dependence of the mean total and pressute D/ (2|V.,|) (which gives the ratio of the peak circum-
drag coefficientsc, and cf on the Reynolds number. For ferential velocity to the free stream at infinityThese two
Re=75, 150, and 500 we show two data points, the lowelparameters entirely characterize the control. In all our simu-
branch representing the unstable, steady symmetric solutiofgtions we putW=2.0. According to the arguments pre-
(the basic flows and the upper the oscillatory flows. The sented by Tokumaru and Dimotakis in Ref. 4, this value is
two branches obviously correspond to the two curves schegready sufficient for effective control. Our simulations are
matically shown in Fig. 2. Our data is compared against thgyerformed at Re 150, which is still before the onset of 3-D
results obtained by Shi_éls(a_lso using a vortex methdd  effects. In Table | we summarize the numerical parameters
Henderson's fff* approximating his results over a broad ang also the parameters characterizing the forcing in all the

range of Re, the experimental dataset of Wieselbéfgend s The forcing frequency Stanges from one-half to more
the steady-state results of Fomnbr(f. the lower curve in than five natural shedding frequencies and for convenience

Fig. 2). Note that, as explained by Mittal and Balachandar iny, corresponding flows are labeled A—H. In the table we

Ref. 23, for Re higher than about 180, the 2-D computation, s, jngicate the maximum rotation anglésdegreesin the

tends to systematically overestimate drag. Next, in Fib) 3 '\ 5riqus cases. For every forcing frequency our simulations
we compare our results_ for the dependence of the S,tro_Uh%lre performed for some time after transients have died out
number .Of vortex shedding '%IOO.RG to th_e Her!dersons fit "and the saturated state has been reached, so that converged
summarizing his datd the empirical relationship proposed statistics can be obtained. Higher forcing frequencies re-

by Feyet al.in Ref. 30 and the results obtained by Baek and _ . that a fi fi teft shoul h
Sung®® Finally, in Fig. 3¢c) we show the dependence of the quired that a finer time stefit should be used. Under suc

. . forcing conditions, however, the statistically steady state was
length of the recirculation bubble on the Reynolds number 9 y y

. . 'r?ached much faster and the total computational time of the
Our results are compared against the experimental data Pin remained comparable to that required at lower forcin
Coutanceau and Bouafdand the numerical data of Ziékn frequencies P q 9
skaet al? For supercritical values of Ré.e., Re=46) two g '

branches are observed in FigcB the lower one represents The results of the simulations will be presented in the

the mean values obtained in the oscillatory flows Wherea&heoretical framework established in Sec. II. They will be
y ' hown for all the cases A—H detailed in Table | and will be

the upper corresponds to the unstable steady symmetric 58 .
PP P y Sy compared against the uncontrolled flow at the same Rey-

all these benchmarks our results are in fair agreement WitﬁOIdS ””.”_‘ber- Apart "0’.“ this, we choose three sets of forc-

the available reference data Ing conditions that we will analyze more closely: the subhar-

' monic forcing (A), the resonant forcingC), and the high-

IV. RESULTS OF THE SIMULATIONS freguency forcmg(G_). Thes_e cases appear most represen-
tative for all the studied forcing conditions and are marked in

A. Control parameters boldface in Table I.

In the present section we proceed to discuss the con- -
trolled flows. In all the cases studied here control has th@' ow patterns

form of the rotary oscillation of the cylinder with the instan- We begin the discussion of the results with a brief analy-
taneous rotation rate¢(t) given by the formula sis of the flow patterns in the controlled flows. In Fig. 4 we
2V, V.| present_the vorticity fields ot_)tain_ed in the numerical simula-

o(t)=pgsin(27ft)=W D sin| 27 St D t), (11)  tions. First, as a reference, in Figatwe show the pattern

obtained in the flow with no forcing. Then, Figs(bd—4(i)
where the frequency and the rotation amplitude, are  correspond to the controlled flows with forcing as indicated
expressed in terms of nondimensional parameters: the Stro(eases A—Hl In all the figures solid lines represent positive,
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Vorticity Field Vorticity Field

X/ . 5.0
(a) noforcing (f) St; = 0.36 (E% =2.0), W =20
Vorticity Field B
! . . | . . Vorticity Field

X /D
(b) Sty =0.09 (gL = 0.5), W = 2.0 5/
(g) Sty = 0.70 (oil = 3.89), W = 2.0

Vorticity Field

Vorticity Field

@ R FIG. 4. The vorticity fields from the
° N 1 i numerical simulations at Rel50 for

o 3 | the flows with no forcing and with the
i uy forcing conditions A through H. For
s e clarity, the contour lines for the ex-

' ' ' ' ' ' ' ' tremal vorticity values are not shown.

X/D ; ; ; ; . .
(c) Sty =0.16 (oL = 0.89), W = 2.0 o
(h) Sty =0.90 (HL =5.0), W =20

Vorticity Field

§
W

X/ D
(d) St; =0.18 (Sjiﬁt =1.0), W =20 R S
X /D
Vorticity Field (i) Sty =1.00 (Sit,iﬁ =5.56), W =2.0

X /D

S
(e) Sty =0.20 (5L = 1.11), W = 2.0

and dashed lines negative, vorticity values. In Fi@) #ne  corresponding to the highest forcing frequencies, we see that
can see the familiar Berd—von Kaman vortex street. In the Baard—von Kaman vortices are noticeably weakened.
Fig. 4b) (case A, it is replaced by big vortices with the The concentrated vorticity in the recirculation zone is dis-
wavelength twice as big as in the uncontrolled case. For theupted and forms undulations with the wavelength corre-
resonant and nearly resonant forcing conditions presented sponding to the forcing frequency. As a result, the vortex
Figs. 4c)—4(e) (cases B, C, Done can see the formation of shedding is less intense comparing to the uncontrolled case.
two arrays of regular vortices that get rearranged downWe note here that these observations are in agreement with
stream. Figure &) (case B represents an intermediate situ- the laboratory experiments reported by Goujon-Durand
ation where regular vortices still exist, but are significantlyet al>? The simulations presented above produced huge vol-
less coherent. Finally, in Figs(@)—4(i) (cases F, G, and H umes of data. Pointwise analysis of the velocity time series
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Streamlines Re=150
3.0
: u cp with control
25 nw ====- ¢p without control
» -—-— ¢p basic flow (cp )
2.0 '. ----- Natural Frequency
&15
1.0 [) |
0.5
0.2 0.4 0.6 0.8 1.0 1.2

X /D Sif
FIG. 6. The mean values of the drag coefficient versus the forcing

Strouhal number $tfor Re=150. The coefficients are also shown for the
flow with no control and the basic flow.

FIG. 5. Streamlines for the basic flow at R&50.

(not shown hereallows us to classify the response of the
system to forcing as follows: in cases B, C, D, where the

forcing f_rltlaquenc_yr:s hC Io];se tp thfe natural freq(;Jency,bthehsys(—quencies_ As regards the behavior of drag for nearly resonant
tem oscillates with the forcing frequency and can be t ereforcing frequencies, our results are qualitatively consistent

fore consiQered “Iopked," in cases A, E,.and G the_forcing with those reported by Tokumaru and Dimotakisy and
frequency is a multiple of §t;and harmonic frequencies are Sato® Fujisawaet al,'* and by Chengt al* As the forcing
Qetected, Wherslas mhcases(lj: ﬁnd H the forc;nrg? frequency fPequency is decreased from the values slightly higher to
Incommensurable wit .% and the response o the system is slightly lower than the natural frequency, the drag coefficient
quasiperiodic. Comparing to the quasiperiodic cases, the al harply increases and reaches values approximately two
plitude of the velocity fluctuations is increased in the IockedtimeS higher than in the uncontrolled case. This closely

states. As the forcing frequency crosses the natural fre'grees with the results obtained by Cheeigall® at Re

guency, the phase of vortex shedding exhibits a jump. All OfilOOO andW=2.0. Results presented by those authors

these obs?rvgttkl]onts cgnf:;m tfhat the presclatnt S|mulat|pnsfare r different rotation amplitudedV, as well as the data re-
agreement with standard reference results concerning forcegh o by Fujisawzt all* (Re=20 000,W=0.1—0.38 and

wagecsﬁ]e.g., Fu=|ls4awaet al,* Lu and Satd,Baek and Sung, by Tokumaru and Dimotakis(Re=15 000, W=2.0) reveal
an Wi enget Ia d )- ati f the f " b the same qualitative trends. Different actual values of drag
€ conclude our présentation Of the TIow paltterns by,ained in those studies show that the effect of control de-

showing the basic flow, i.e., the unstable steady Symmetr'f)ends on the Reynolds number and the amplitadef the

solution (.)f th(_a NaV|er—St9kes _SVSte'_“' als_o at=280. It_ rotary oscillationsthigher Re results in lower drag for forc-
was obtained in the numerical simulation using the technlqugeng close to resonantin the cases G and H drag reduction

described in Appendix B. This state obviously correspondst(?eached about 25%, which is less than in the studies by Lu

no forcing. An infinitesimal perturbation can destabilize it and Satd Shield and Tokumaru and DimotakisHowever

and trigger the onset of vortex shedding. The basic state h%ﬁl these ,investigations were performed at higher Re. ,This
significantly Igwer drag than the corresponding solution WithshoWS that the amount of drag reduction obtained by rotary
vortgx sheddingct. the lower brgnches In Figs. 2 'an(jaﬂ. control of the cylinder wake is Reynolds number dependent.
In Fig. .5 we show the streamline pa‘.‘?m .Of this flow, BSps explained in Sec. [Icf. Fig. 2 and Eq(2)], the mean drag
streamlines apparently better than vorticity field characterlz?h the cylinder wake comes from two contributions: the drag

steady ﬂO.WS' A_remarkable fe"’.‘t“re of th|_s flow is the elon-of the basic flow and the drag associated with the mean flow
gated recwculathn bgbble behind the cylindeee also the correction. Obviously, the variation of the mean drag ob-
unstable branch in Fig.(8)]. served in Fig. 6 was achieved by modifying the mean flow
correction field. Further below we address this issue in
greater detail. We also observe here that, as the forcing fre-
Inspection of Figs. @)—4(i) shows that the rotary con- quency increases, the values of the mean drag approach the
trol significantly affects the shedding pattern and one carvalue of drag in the basic roch), however, they never
thus expect the drag force to vary under the different forcindpecome smaller than that. Nonetheless, this does not imply
conditions. To quantify this effect, in Fig. 6 we present thethat the mean drag coefficient monotonously decreases as the
meanvalues of the drag coefficiefy as a function of the forcing frequency is increased. In fact, the simulations per-
forcing Strouhal number 8t In this figure we also indicate formed by the authors at Ré&00 (not reported hepe those
the values ofcy characterizing the uncontrolled flow with by Chenget all* and by Lu and Safoat Re=1000, He
the natural vortex shedding and the basic flow at the samet al!® at Re=200 and Re=1000, and the laboratory experi-
Re. The vertical dotted line represents the Strouhal numbenents by Tokumaru and DimotaRiat Re=15 000, suggest
of the natural vortex sheddirifpr Re=150, St,=0.18. The the presence of some optimal forcing frequency beyond
first observation to be made here is that the drag coefficienwhich the mean drag increases. The value of this frequency
Cp is increased at lower and decreased at higher forcing freagain seems to depend on the Reynolds number and the ro-

C. Drag
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Re=150 Re=15 000 reaches the level 6f(10). This implies that the
20 ; energetic efficiency of this control technique depends on the
: [ ] Total Power .
5 . Drag Power Reynolds number and for small values of Re the control is
15 . N o energetically rather inefficient. The reason for this is that the
& . ,;. ----- Natural Frequency flows at higher Re are more unstable and therefore less effort
A10 ‘e . . is required to push them toward a desired state, once a proper
2_". i * excitation mode has been determined.
_______ S
05 : ¢ N
-n = " Ao E. Mean velocity fields
. In Sec. Il it was shown that the mean values of the drag
0.2 0.4 0.6 0.8 1.0 1.2

St; and lift are intrinsically linked to the mean velocity fields
and the Reynolds stresses. It was argued that the mean drag
FIG. 7. The mean values of the drag pov®y, the control powePc, and  consists of the two contributions: the basic flow which at a
the total powerP versus the forcing Strouhgl number Bir_the cor)trqlled given Re is fixed and cannot be modified, and the nonlinear
flows at Re=150. The power for the flow without control is also indicated. . . . .
mean flow correction field that results from self-interaction
of the oscillatory part of the flow. Thus, by manipulating the
way the Beard—von Kaman vortices are created and ad-
tation amplitude. When the total drag in the controlled flowyected, one can change the mean flow correction field and
(cp) approaches the drag in the basic flogd), then this  hence the drag. Below we will take a closer look at the mean
implies that the drag of the mean flow correction is driven toye|ocity fields in the controlled flows, as they well represent
close to zero. This observation points to the following theothe mean effect of control on the flow. In Fig. 8 we show the
retical question: is it possible, under periodic forcing condi-transverse profiles of the mean longitudinal veloaity at
tions, to obtain a flow with the mean drag lower than in thegiferent downstream stations. The results are shown for the
basic flow? In other words, is it possible to obtain a meanncontrolled flowstop figure and the flows with the forcing
flow correction field with negative drag? For the case of the;gnditions A, C, and G. The mean fields are symmetric with
rotating cylinder this remains an open question. However, fofegpect to the centerline, so the data are shown for the upper
the case of the pitching airfoil, a partially affirmative answerpart of the flow only. Complementary information is pre-
to this quesgion was provided by the laboratory study by Laisented in Fig. 9, where we show the mean longitudinal ve-
and Platzef: locity u,, on the centerline as a function of the downstream
distance from the obstacle. First of all, we note that the un-
controlled flow and the flow with the forcing conditions G
The modifications of drag discussed above were ob¥eveal a striking similarity as regards both longitudinal and
tained at different costs in the various cases considered. Nowansverse profiles. This implies that in the mean sense the
we proceed to analyze the energy budget of the controllewakes of these flows do not differ much. The only difference
flows. In Fig. 7 we show the dependence of the mean dragp that the controlled flow has a deeper and more elongated
power Py, the control powerP-, and the total poweP recirculation bubble. The subharmonic c#8e¢ is character-
= Pp+ P¢ on the forcing Strouhal number;Stin the figure ized by a very quick recovery of the unperturbed flow veloc-
we also indicate the power in the flow with no forciftipe ity, with the recirculation bubble shrunk almost to zero. The
horizontal ling and the Strouhal number of the natural vor- profiles become bimodal downstream. On the other hand, the
tex shedding $i; (the vertical line. Computation of the con- resonant forcingcase @ results in the profiles that change
trol power is based on the torqié applied to the obstacle very little with the downstream distance. Consequently, such
as Pc=(M¢) and does not account for inertial effects re- flow can be considered parallel in the mean sense and pos-
lated to the moment of inertia of the obstacle. In principle,sessing a high degree of spatial organization. This property
the latter are entirely material dependent and as such can lveas already observed in Fig(d. The above characteristics
arbitrary. The drag power is determined as the mean producan be compared with the results reported by Tokumaru and
of the drag forceFp and the free-stream velocitP, Dimotakis (Fig. 3 in Ref. 4. For this purpose in Fig. 10 we
=(Fp|V..|). In Fig. 7 we see that for higher forcing frequen- combine the transverse profiles from Fig. 8 corresponding to
cies the drag powePy decreases which is due to the dragthe downstream station offD =4.0 (4.5 in Tokumaru and
reduction discussed above. This is, however, accompanied lyimotakis’). The profiles for both the natural shedding with-
a significant increase of the control power, so that the totabut forcing and the high-frequency forcirigase G are char-
power in all the cases far exceeds its value in the unconacterized by Gaussian-like curves with comparable values. In
trolled flow. The power saving ratio defined as the latter case the wake is somewhat deeper and narrower. In
AP the study by Tokumaru and Dimotakis the wake deficit cor-
PSR= (120  responding to the high-frequency forcing was remarkably
Pc smaller than in the unforced case. We relate this discrepancy
is thus everywhere less than unity. On the other hand, th® the Reynolds number effe@hote that the drag reduction
study by Shiels and Leondréhows that for much higher obtained in Ref. 4 at Re15 000 was much bigger than in
values of the Reynolds number the PSR increases and #ie present study at ReLl50. Subharmonic forcing in both

D. Power budget
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ey Re=150, No control u,, along the centerline (Re=150)

Ji 0.0 x| A — S1=0.09
0 T + — T T T T Pt B — $=0.18
1.0 2.5 4.0 5.5 7.0 8.5 10.0  x/D 026 T -

Uy Re=150, St=0.09 (0.5), W=2.0
00'™ 14 1 2 3 4 5 6 7 8 9 10

Bl Sl ® —— No control
* .-+ Basic Flow

FIG. 9. Profiles of the mean longitudinal velocity, as a function of the
y/D downstream distance from the obstacle along the centerline for the cases A,
C, and G, the flow without forcing and the basic flow.

0 ! . ' | . . (high-frequency forcing the recirculation bubble is elon-
10 25 40 55 70 85 100 xD gated. In all the cases except for A the shape of the bubble is
Re=150, St=0.18 (1.0), W=2.0 preservgd angl characteriz.ed by a broadening close to the
: : separation point on the cylinder boundary. In the case G the
minimum of the longitudinal velocity is shifted toward the
furthermost tip of the bubble. Information about the influ-
y/D ence of the control on the lengihgzg of the recirculation
bubble is collected in Fig. 12, where we show the values of
11 Lgg Iin the controlled flows normalized by its value in the
uncontrolled flow as a function of the ratio;$8t,,. In the
: : : : , : figure we also indicate the length of the recirculation bubble
1o 25 40 55 70 85 100 xD in the basic flow at Re150 (cf. Fig. 5. We see that for
Uy Re=150, St=0.90 (5.0), W=2.0 St /St,,< 3.5 the recirculation bubble is shrunken compared
I8 R B ; ‘ ; : ‘ to the uncontrolled flow. On the other hand, for; /St
>3.5 the recirculation zone is elongated. These results can
be summarized by saying that higher forcing frequencies re-
y/D sult in longer recirculation bubbles and in this sense the ob-
tained flows appear more similar to the basic flow.

As explained in Sec. Il, the basic flow is fixed and modi-
fications of the mean velocity profiles are achieved by chang-
ing the nonlinear mean flow correction through the Reynolds
stresses. A distribution of the mean correction for the longi-
FIG. 8. The transverse profiles of the mean longitudinal veloujfyat tudinal velocity componentuy=u,,—u, shows how the
diffgrent downstream stations indicated on the abscissa for the flow withoUufaan flow is changed with respect to the unstable solution
forcing and for the cases A, C, and G. . .

(the basic flow due to the presence of vortex shedding and

u,
00 " 14

T T T T

10 25 40 55 70 85 100 xD

studies resulted in the characteristic bimodal profile with u,, at x/D=4.0 (Re=150)
minima located off the centerline. The profile corresponding 12
to the resonant forcingcase Q@ is characterized by a deep 1.0
and broad dip. 0.8

The feature that well characterizes the mean longitudinal 0,63
velocity in the controlled flows is the length and shape of the g,
recirculation bubble. In Fig. 11 we show the distributions of

Un, in the near wake obtained in the simulations of the un- gi' 4 — S00905)
controlled flow at Re=150 and the controlled flows A, C, | . * —Sms0so
and G. The boundary of the recirculation bublgtorre- T T e
sponding tau,,= 0) is marked with a thick line. In this figure %0 0.5 1.0 15 2.0 2.5 3.0
we see that in the case A representing the subharmonic forc- y/D

ing the recirculation b_Ubk_)le_ IS effe_ctlvely suppressed. In thq:IG. 10. The transverse profiles of the mean longitudinal velagjtat the
case C(resonant fOI’CInQ it is considerably shrunken com- downstream distance offD =4.0 for the flow without forcing, the basic

pared to the uncontrolled case. Conversely, in the case @ow and for the cases A, C, and G.
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Um (Re=150, no control) Um (Re=150, St=0.09 (0.50), W=2.0)

FIG. 11. The mean values of the lon-
gitudinal velocityu,, in the flow with

X /D x/D forcing and the fl ith the forc-
Re=150, St=0.18 (1.00), W=2.0 Um (Re=150, S$t=0.90 (5.00), W=2.0 no torcing and the Tlows with the Torc
um (Re ( ) ) m (Re ( ) ) ing conditions A, C, and G. The thick

. . . : . . lines correspond to,,=0.
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the related Reynolds stresses. This is also a convenient walge region of negativel; behind the obstacle is shrunk and

to quantify the net effect of forcing on the mean flow. In Fig. the area where the mean flow is accelerated gets narrower as
13 we show the distributions of the mean flow correctign  one moves downstream. In the case of the subharmonic forc-
obtained in the simulations of the uncontrolled flow and theing (case A there is no deceleration region behind the ob-
flows with the forcing conditions A, C, and G, at R&50. In  stacle and the mean flow is accelerated everywhere along the
order to emphasize the areas whegehanges sign, the lines centerline and decelerated away from it. In Fig. 13 we see
corresponding tai,=0 are marked with thick lines. In areas that, except for the case G, the fields of the mean flow cor-
whereuy>0 the vortex shedding accelerates the mean flowection have significantly different distributions depending
and decelerates elsewhere. In the case of the uncontrolleg the forcing frequency. In fact, as is evident from E&),

flow we see that the mean flow is slowed down in a smalkhese differences result from different distributions of the

region just behind the obstacle and accelerated in a largReynolds stresses in the controlled flows. We proceed to dis-
rectangular area stretching downstream along the centerling,;ss them below.

Away from the centerline the mean flow is slowed down. A

similar distribution of the mean flow correction is obtained g Reynolds stresses

for the flow with the high-frequency forcingcase G, with ) _ )

the difference, however, that the valuesugfin the region In Sec. Il it was explained that, as regards drag in con-
just behind the obstacle are generally smaller. The consdtolled flows, the importance of the Reynolds stresses is ba-
quence of this is the elongated recirculation bubble alreadgically twofold, as they both directly and indirectly.e.,

observed in Figs. 11 and 12. In the casé&&onant forcing  through modifications of the mean flpwffect pressure drag
[cf. Eq. (7)]. However, in situations when theeanflows

are similar (e.g., the uncontrolled flow and the case, @
Normalized Length of the Recirculation Bubble (Re=150) is evident from Eq.(7) that the major effect comes from
: the field p°'s satisfying Eq.(8). To quantify this effect in
* _ compunion(Re=150) Figs. 14a)—14(c) we show the contour plots of the quan-
------ the basic flow (Re=150) tities guu(xoayo) = fﬁl‘o (’92/(7)(’9)() G(va1xoayo) |F0nxd0'!
9u(x%Y%) =2¢r (5°/9xdy) G(x,y,x°,y°)|r ,ndo  and
9o (X%Y0) =61 (9%13yay) G(x,y,x°.y%)|r ,nxdo (see Ap-
pendix A for definitions and derivatiopswhich show how
the Reynolds stressés’u’), (u'v’), and(v'v’) acting at
ot . the point &°,y° add to the pressure drag. The actual con-
. tribution is obtained by multiplying the value df,,, 9,,, or
3 : . .
St/St g,, at the given point by the corresponding Reynolds stress.
Integrating over the whole domain and adding the three con-
FIG. 12. Dependence of the length of the recirculation bubble in the contripytions yields the total pressure drag due to the Reynolds

trolled flows normalized by its value in the uncontrolled flow as a function - ors
of the ratio St/St,,.. The length of the recirculation bubble in the basic flow stresse@.e.,gﬁrop nxda). The contour plots of,, andg,,

at Re=150 is also indicated. are symmetric, and aj,, antisymmetric, with respect to the

[ S Y I = NN |

(no control)
LRB / LRB
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FIG. 13. Contour plots of the mean flow correctigg= u,,— uy, for the flow FIG. 14. Contour plots of the weights g, (x°Y°)

without forcing and the cases A, C, and G. Numbers given in parenthesesgﬁyo(azlﬁxﬁx) G(x,y,xo.y°)|1~onxd0 (top), guU(xo,y°)=25ﬁl~O(azlﬂxﬁy)

are the relative forcing frequencies; 88t,5.. The thick lines correspond to ><G(x,y,x°,y°)|ronxda (middle), and guv(xo,y°)=5ﬁr0 (9?1 ayay)

Un=0. XG(x,Y,x%Y°)|r n,do (bottom. Owing to symmetry properties, in all the
cases we show only the upper half of the flow domain.

centerline, so in Fig. 14 they are shown in the upper half of

the flow domain only. We note that all of the quantitigs,, modifications of the Reynolds stresses due to control. We
0w, andg,, have different signs in different parts of the remark here that these considerations are true when the mean
flow domain, which means that, depending on the pointvelocity fields in the compared flows do not differ much
where they are acting, the Reynolds stresses may either itease G and the uncontrolled flpwsince otherwise there
crease or decrease the pressure drag. This allows us to estabay be additional modifications due to changes in the fields
lish a link between the observed changes of drag and thp® andp®°C. In Figs. 15, 16, and 17 we show the distribu-
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<u'u'> (Re=150, no control) <u'u'> (Re=150, St=0.09 (0.50), W=2.0)

Y/D

FIG. 15. Contour plots of the stream-
wise normal Reynolds stress@s' u’)
for the flow without forcing and the

X /D X /D . .
cases A, C, and G. Numbers given in
. _ _ o _ _ _ parentheses are the relative forcing
<u'u'> (Re=150, St=0.18 (1.00), W=2.0) <u'u’> (Re=150, St=0.90 (5.00), W=2.0) frequencies SISty Thick lines
) . : . . mark the boundaries of the recircula-
tion bubbles.

570’0

o
[ ™~ i L
> 90.0/—
0079

0.05 0.025—

Y/ D

x
o,
=\
[+:]

o«

N

Q

o

X /D X /D

tions of the streamwise normal, shear, and cross-flow normahe case A, where it is virtually nonexistent, we indicate the
Reynolds stresses obtained in the simulations of the uncoboundary of the recirculation region. The streamwise and
trolled flow and the flows with the forcing conditions A, C, cross-flow normal stresses are symmetric, and the shear
and G. In the figures, except for the ones corresponding tetresses antisymmetric, with respect to the centerline, hence

<u'v'> (Re=150, no control) <u'v'> (Re=150, St=0.09 (0.50), W=2.0)
i YL
[} - 0O
~ ~ L
> >
0T
. FIG. 16. Contour plots the shear Rey-
nolds stressegu’v’) for the flow
X /D X /D without forcing and the cases A, C,
and G. Numbers given in parentheses
<u'v'> (Re=150, St=0.18 (1.00), W=2.0) <u'v'> (Re=150, St=0.90 (5.00), W=2.0) are the relative forcing frequencies
St /St Thick lines mark the bound-
: ' aries of the recirculation bubbles.
o - o
~ N L~
> R >
X /D X /D
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<v'v'> (Re=150, no control) <v'v'> (Re=150, St=0.09 (0.50), W=2.0)
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> 613007 //'33”
R : e O
) .
9%z 0— 985,
f‘ = FIG. 17. Contour plots the cross-flow
' ' normal Reynolds stressés'v’) for
X /0 X /0 the flow without forcing and the cases
. A, C, and G. Numbers given in paren-
. _ theses are the relative forcing frequen-
<v'v'> (Re=150, St=0.18 (1.00), W=2.0) <v'v'> (Re=150, St=0.90 (5.00), W=2.0) cies Sf/Sty. Thick lines mark the
. , . ! boundaries of the recirculation
bubbles.
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~ L >~ | b
> >
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the results are presented for the upper part of the flow doeorresponds to the entrainment of the fluid adjacent to the
main only. We note that as regards the uncontrolled flow ouboundary by the rotating cylinder. Contour plots in Fig(t4
results are consistent with the data presented by Balachandean be used to interpret these results. We note that the nega-
et al.in Ref. 34. The distribution ofu’u’) in the flow with  tive shear stresses acting close to the rear cylinder boundary
no forcing is characterized by a maximum located away fromn case G coincide with strongly positive values @y, in

the flow axis and slightly removed from the recirculation Fig. 14b), and as a result yield a negative contribution to the
bubble. In the case Gigh-frequency forcingthis distribu-  pressure drag. As regards the cross-flow normal Reynolds
tion appears similar, but the maximum is weaker and restressegv’v’), the distributions in the uncontrolled flow
moved farther downstream. There is also a region of nonzerand in the case G are again similar, the main difference being
stresses near the upper boundary of the cylinder. This diffetthat in the latter case the downstream region is noticeably
ence can now be interpreted using the contour plots in Figweaker and there is a region with intense stresses just behind
14(a), where we see that when the Reynolds stresses atbe obstacle. It corresponds to negative valueg,g€x°,y°)
acting farther downstream, their contribution to the pressurén Fig. 14(c) and therefore has the effect of decreasing the
drag is smaller. Furthermore, as shown in Appendix A, thepressure drag. The cross-flow normal stre<sés ') in the

drag due tq°'s is proportional to the magnitude of the Rey- subharmonic case A exist in a large region behind the ob-
nolds stresses and that is smaller in the case G. We also nattacle and are confined to a relatively small area close to the
that the region of nonzero stresses close to the upper boundpper boundary of the obstacle in the resonant case C. We
ary (case G coincides with negative values af,, [Fig.  noted beforgcf. Figs. 8 and 9that the mean flows corre-
14(a)], so it has the effect of decreasing the pressure dragsponding to the two caséthe uncontrolled flow and the case
The cases A and Csubharmonic and resonant forcjngre ~ G) were fairly similar and it can be therefore concluded that
characterized by regions of strong streamwise normait is the modified distribution of the Reynolds stresses that is
stresses extending downstream away from the centerline. Ake major difference between these flows in terms of their
regards the shear stresgegv’), in the cases A and C the mean characteristics. This difference also accounts for the
maxima also extend downstream away from the centerlinedrag decrease observed in the case G.

In the uncontrolled flow and in the flow with the forcing

conditions G there is a region of positive stresses just behin

the obstacle followed by a region with negative stregaete 9 CONCLUSIONS

that below the centerline the senses of the stresses would be In this paper we have addressed various physical mecha-
reversedl In the case G the magnitude of the shear stresses Esms that underlie modifications of drag in wake flows with
lower than in the uncontrolled flow. Apart from this, just rotary control. We examined the data obtained in the numeri-
behind the cylinder there is a region of nonzero stresses. ttal simulations using the vortex method. In agreement with
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the previous studies, we found that at higher forcing frequenChenget al'* Obviously, changes of the Reynolds stress dis-
cies the drag is reduced. Interestingly, the obtained valuesibution reflect the modifications of the vortex shedding pat-
were always slightly higher than the drag of the correspondtern, since the following two descriptions: in terms of the
ing basic flow. The drag decrease observed at high forcingnean fields and the vortex dynamics, are equivalent. In par-
frequencies was lower than in other studies conducted dicular, weakening of the Reynolds stresses acting down-
higher Re(e.g., Tokumaru and DimotakfsL.u and Sat§, stream of the obstacle is related to the lower intensity of the
Shiels and Leonarfi,Chenget al,}* and Heet al!®). The vortex shedding observed in the flows with reduced drag. We
reason for this is that at higher Re the drag of the basic flovalso showed evidence that all the forced flows with reduced
is significantly lower[cf. Fig. 3@)] and therefore the drag of drag are characterized by an elongated recirculation bubble
the mean flow correction, i.e., thmntrollable contribution,  and, conversely, in the flows with increased drag the recircu-
is relatively bigger. This is why one can expect the control atation bubble is shrunk. This shows that the recirculation
higher Re to be more effective in terms of drag reduction. Atength Lgg serves as a “footprint” of the rotary control.
the low Reynolds number studied here the control was foun€comparing our results with other studies, we concluded that
to be energetically inefficient, as the control power alwaysunder different conditiongdifferent Re and oscillation am-
exceeded the gain in the drag power. plitude W) the general trends are preserved, although the
The controlled flows were investigated here from thespecific behavior of the controlled flows may be somewnhat
perspective of their mean velocity profiles and the associatedifferent. The above findings also imply that the Reynolds
fields of the Reynolds stresses. We have identified the folstresses are required to completely characterize the mean
lowing properties of the mean fields in the flows characterroperties of a time-dependent flow.
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stresses are present close to the rear and upper boun,gl'DPENDIX A: INFLUENCE OF THE REYNOLDS

ary of the cylinder and, as is evident from thg Figs. STRESS DISTRIBUTION ON THE PRESSURE DRAG
14@)-14(), they all have the effect of decreasing the We perform here qualitative analysis of the solutions to

drag. the system8). Our goal is to see how changes in the Rey-

Similarly, the following are the distinguishing features of "0lds _distribution and magnitude affect the quantity

0 . .
the mean fields in the flows with the increased dizages A, 9P Mxdo, i-e., the corresponding pressure drag. System
B, C, and D. (8) is a homogeneous Neumann problem for the Poisson

N o equation in an unbounded exterior domain of a unit disk
(@ Very strong, positive mean flow correction in the near gpresenting the obstacle. Its solution thus has the form
wake resulting in a significant shortening, or even sup-

pression, of the recirculation bubble. ors :_f G 00 7 Uy dxOdy®
(b) Large magnitude of the Reynolds stresses acting awa9 (x.y) Q (xy. X%y )ﬁxE ax?<uku1> xays
from the centerline. (A1)

The above changes of the mean velocity and Reynold\éVhereG(X’y’XO'yo) Is the corresponding Green's function,
: : ) . . Which also accounts for the presence of the boundary. Here
stress fields illustrate the mechanisms associated with modj- . L . P
o . vc\ie use the obvious notatior;=Xx, X,=y, u;=u’, u,
fications of drag. In accordance with the arguments presente:v, and a summation is implied when indices are repeated
in Sec. I, we conclude that it is the modified distribution and,, ~. * o P L wAn P
. . . (k,j=1,2). The quantities with the superscript “0” corre-
decreased magnitude of the Reynolds stresses in certain areas . . .
) - spond to the location of the source point. Using the method
that are responsible for the observed drag reduction in somg: . : he G s f : b d
of the controlled flows. Comparing to the flows with in- image points the Green's funcion can be constructed as
e . . éor conciseness we use here complex notation with
creased drag, the modifications of the mean fields in the_ J=1)
flows with reduced drag do not appear very profound, but 1
also the drag decrease was rather modef@@roximately G(x,y,x0,y%) = — —
25% compared to an over 100% drag increase in the “worst” 2m
cas@. It may be therefore concluded that the flows with high-
frequency forcing do not reveal strong mean field effects and +In
the drag reduction is mainly the result of the modifications of
the Reynolds stresses. This finding is also consistent wittNow we integrate the expressidAl) by parts twice and

observations of the flow patterns in controlled flows made byobtain

In|(x=x%)+i(y—y°)|

1
x9—iy©

X+iy— ) (A2)
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ore 92 o o s Consequently, we haveu,/dx =0, j=1,2, which by(A4)
po(X,y)=— LWG(X,V,X YO (uuj)dxdy allows us to conclude that the second integrand in the bound-
. ary integral in(A3) also vanishes, and the pressp®s is
d ., iven b
+ § <—oG(x,y,X°,y°)<unuj> ? g
To\ 9%
d
—G(x,y,xo,yo)m(u{,uf})do. (A3) 52
j p‘”s(x.y)=—fQ 0750 SO XYW W) ddy?
For the case of the rotating cylinder the wall-normal veloc- X“ox
ity fluctuationsu), are uniformly zero, so the integrand ex- 52
pression §/dx7) G(x,y,x°,y°)(unu/) vanishes. As regards —Zf 55 G0y x%y0)(u'v "y dx°dy°
the second term in the boundary integral, we expand the Q 9x"ay
derivative of the Reynolds stress, 5
0,,0 ooy 0,0
P au’ au/ au!, —fﬂ 5o Gy, X0y ) (v v ydx dy".
no_ ' _ ’ ay-d
m(u,’]uj>—<muj+uém>—<muj>, (A4) y-oy
(A7)
and then reexpress the derivatives in the polar coordinate
system as
auy, 3 uy, dar  duy, de We note, first of all, thap®s is directly proportional to the
@_ or (9_)(]_0+ de ‘9_)(10. (AS) magnitude of the Reynolds stresses. Furthermore, knowing

the analytical expressions forgq/9x°9x°) G(x,y,x°,y°),
(%19x%3y%) G(x,y,x%y°), and % ay°ay°) G(x,y,x%y°)
we can assess how the Reynolds stresses in the different

Wall-normal velocity fluctuations do not vary with the azi-
muthal angle, s@u,/d¢ =0. By the continuity equation we

obtain parts of the flow domain contribute 'S on the boundary,
auy, B u, 14u, 0 AS and consequently to the pressure dgﬁ@gporsnxda. We thus
o r r de (A6) have

&2
jg p°sn,do=— é f WG(x,y,xo,yo) (u’u")dx%dy® |n,do
r ro| Jo dX"oX ry

(?2
_ 7 0,0
2 ﬁo( fg axoayOG(X’y’X Yo)

(92
- —G X! 1X01 0
ﬁgro( fﬂ ay%ay0 (X,Y,X%,y7)

(u'v"ydx°dy° | n,do
To

(v’v’)dxodyo)nxda, (A8)
1_‘0

which upon changing the order of integration and denoting In Figs. 14 we show the contour plots gf,, 9., , andg,,

in the flow domain. The value at a given point’(y°) has

the meaning of the geometric weight characterizing the rela-

Guu(X0,y0) = — 261 (219x°3y®) G(x,y,x°,y%)| - .n,do tive contribution tq pressure drgg of the unit strength Rey-
0 0 nolds stresses acting at this point.

guu(xoayo) == fﬁl"o (aZ/aXOaXO) G(lelxoiy0)|ronxda-!

and
APPENDIX B: VORTEX METHOD

0, 0 — 0')2/(9 OO') 0 G VY, 0, 0 d
9uo(XY7) Sﬁro( yoyD) Glxy. XLy )|F0nx 7 The vortex method is a Lagrangian approach to solving
[the subscript|FO meaning evaluation withx(y) on the the system(9)—(10). The motivation for choosing this par-

boundary gives ticular solution method is that it is essentially grid-free,
which allows one to easily handle various boundary condi-
ors _ . n J ' tions (including moving bpundanes, e)c;?l’he state of the art
3£r0p ndo jﬂ%u(u u’)dQ quU<u v’)dQ of the vortex methods is presented in the recent book by

Cottet and Koumoutsakdsand references quoted therein.
+J Guu(v'0")dQ. (A9) nge we make a few remarks on.the design and implemen-
o] tation of the vortex method used in the present study.
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Fundamental to all vortex methods is the approximatiorthis system is available in analytical form. In the present
of the vorticity field using a superposition of vorticity par- study hydrodynamic forces are computed using the varia-

ticles, tional approach developed by Protaisal. in Ref. 40. This
N method allows for the efficient calculation of forces using
w(X)=@(X)= E Teé(|x—xd), (B1) only velocity and vorticity fields. As mentioned in Sec. Il, in
k=1 our investigation some attention will be given to the basic

flow, i.e., the unstable steady symmetric solution of the
circulation ando is the core radius. The functiaf),(r) rep- Navier—Stokes system at a su_perc_rmcal yalue of Re. psmg
the vortex method such a solution is obtained by ensuring at

resents the axially symmetric distribution of vorticity within i tep that th " Fvorti b d bel
the support of the particle and in the present study is chosefy €Y IMe sStep that the Systems ot vorlices above and below

L. . the centerline are mirror reflections of each other. This inhib-
as &,(|x) = 1/(2ma?) e~ M@ which is motivated by

mplic dth d-ord ¢ hi its the growth of any symmetry-breaking perturbations and
simplicity and the second-order rate of convergence achieveg . o< that the flow remains symmetric.

by formula(B1). It is ensured that at all times the cores of
the particles overlap. Every vorticity particle is displaced in
the velocity field induced by all the remaining particles 'B. J. A. Zielinska and J.-E. Wesfreid, “On the spatial structure of global
through the Biot—Savart law complemented with some addi-,modes in wake flow,” Phys. Fluidg, 1418(1995.
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