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Abstract. In this investigation we focus on optimization of complegitimo—fluid phenomena occurring in welding processes
in which fluid convection is present. We consider a matherahtnodel of a typical welding problem which includes con-
servation of mass, momentum and energy, and assumes thabttess is steady in the frame of reference moving with the
heat source. We formulate and solve an optimal control prabh which the heat input from the heat source is determioed t
ensure a prescribed geometry of the weld. The problem igdolith a gradient—based optimization approach in which the
gradient (sensitivity) of the cost functional with respexthe control variables is determined using a suitably-peefiadjoint
system. An important aspect of the problem is that it is offtee—boundary type, so that it is necessary to use methods of
the shape calculus to derive the adjoint equations. We preseumber of computational results which validate our epph

and feature qualitatively different flow patterns in the evgbols obtained in problems characterized by differentemait
properties.
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1. Introduction

Welding remains one of the most common joining processesanufiacturing. Joining of two work-
pieces occurs as a result of solidification of the metal mailtethe neighborhood of the contact area
following application of a heat source, such as a plasmaedectric current, laser beam, liquid filler
droplets, etc. [1]. Thus, the mechanical properties of &@seilting joint, such as its strength, uniformity,
resistance to fatigue, etc., are determined by the comppiesrio—fluid phenomena occurring in the
weld pool. It appears therefore plausible that modifyingstia phenomena by adjusting parameters of
the heat source may lead to welds with more desirable piepe®ptimization approaches are now
routinely used is various areas of science and engineenimgever, despite the ubiquity of welding
in modern industry, few attempts have been made at rigorndssgstematic optimization of welding
processes (e.g., [2]). This seems due to the great complekihe mathematical models describing
the thermo—fluid phenomena occurring in such processesxéepéon are approaches, such as [3],
based on genetic algorithms and neural networks which tihegbhysical system as a “black box” and
hence do not really exploit the structure of the mathemhbitreadel. However, practitioners generally
resort to ad—hoc trial and error methods in order to “optehizarious aspects of the welding process.
Interestingly, optimization methods have found some a&pfibn in determining unknown parameters
of a welding process, thereby improving reliability of thedelling [4]. Methods of optimal control
have also been applied to the related problem of solidiboatf alloys by Zabaras (see [5] for a
review) and Hinze & Ziegenbalg [6]. In recent years impottdevelopments have been made as
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regards modeling and prediction of the behavior of weld pamider different conditions based on first
principles [7]. This also includes three—dimensional (EBe—dependent problems involving transient
phenomena (e.g., [8, 9]). At the same time, significant acksrwere also made in application of
rigorous methods of the Optimization Theory to solve cdrgroblem in fluid mechanics, such as drag
reduction in open and closed flows [10], data assimilationumerical weather prediction [11] and

jet—noise reduction [12] to mention just a few. The readeefsrred to the monograph [13] for a broad
and up—to—date overview. Integration of advances in th@seateas offers the promise of a rigorous
optimization of welding processes. Since models of the ingldhenomena contain ingredients making
their optimization significantly more complicated than @ther flow problems, the goal of this paper
is to address some of these issues.

An optimal control problem consists in determining inputs & system, e.g., boundary or initial
conditions, forcing, etc., such that the system evolut®moptimal is some suitably defined sense.
Hence, these problems belong to the categomnadrse problemsvhich in practice are often solved
computationally using optimization methods. These apgres determine the optimal control input
¢ and the corresponding optimal stdieas minimizers of a suitable cost functionglkp,u) which
measures the misfit between the actual and desired systeuit out

(€p7 0) = argminpell. uex J((p7 U), (1a)
subject toG(¢@,u) = 0, (1b)

where U and X are, respectively, the space of admissible controls andttite space, both of which
will be assumed to be equipped with a Hilbert structure, wheg (¢,u) = 0 represents the equation
of state [usually a system of coupled partial differentiql&tions (PDES)]. Relations (1) represent a
constrainedoptimization problem, however, in the presence of equaligstraints only, such as (1b),
and subject to suitable differentiability assumptions,cae writeu = u(@). This allows us to transform
(1) into the correspondingnconstrainedormulation by introducing a reduced cost functiorfalp) =
j(o,u(@) (“2” means equality by definition). This approach thus yields

Q= argmin,.;, 7(). )

Since this unconstrained formulation involves optimiaativith respect tap only, it is usually more
efficient from the computational point of view and hereafterwill focus on this approach exclusively
(for brevity we will omit the term “reduced”). As regards cputational solution of PDE—constrained
optimization problems such as (1) and (2), there are two rpamdigms referred to as “discretize—
then—optimize” and “optimize—then—discretize”. The teka merits of the two approaches are still a
matter of a debate [13]. In our investigation we will focustba “optimize—then—discretize” approach
which, while being perhaps less direct from the computati@oint of view, is more general in that it
does not depend on the specific discretization used and ieaver more closely related to the actual
physical problem.

The minimizerfp is characterized by the first—order optimality conditioquiing that the Gateaux
differential 7' (@, @) = lime_o 2 [7(@+ &) — J(¢)] of the cost functional computed @ishould vanish
for all admissible perturbationg € 74, i.e.,

J(@¢) =0, Yyeq. 3)
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As regards differentials, we will follow the convention thiae quantity given after the semicolon
represents the direction in which the differential is cdted. In fact, relation (3) is only a necessary
condition. In fact, sufficient conditions would require thee of second—order differentials which for
problems governed by models as complicated as the one wemploy can be difficult to derive
and compute numerically. Therefore, second—order camditwill not be considered here. An iterative
solution of an optimal control problem (2)—(3) can be expeskas the following discrete initial-value
problem in the control spacel

) (4)

{(p<n+1> — " — g (@),
¢ =,

whereg™, n=1,..., are the consecutive approximations of the minimizer withguperscripts denot-
ing the iterations andgy, is the initial guess. Equation (4) is solved until a critipalnt is reached, i.e., (3)
attains. Formulation (4) corresponds to the steepest deatgorithm witht™, n=1,... , representing
the step size chosen for evanast(™ = argmin 7(¢™ — 107 (¢™)). Replacingt™07(¢™) with an
expression of the formd,07 () + B,, we can obtain any of the gradient algorithms used in practic
such as the conjugate gradients or the quasi—Newton metdddifhus, calculation of the gradienty
emerges as a crucial element of all gradient—based optimizalgorithms and the present investigation
explains how this can be accomplished for our model of thelinglproblem. We emphasize that the
gradient[]7 represents theensitivityof the cost functional/(¢) to infinitesimal perturbations of the
control @ in the presence of a constraig{¢,u) = 0. Hence, for a problem in which the contrpis a
function of space and/or time, the gradiéit is also a function of space and/or time, and the problem
is therefore infinite—dimensional.

In a general welding process, the state of the syst@phis the result of an interplay of the following
physical phenomena:

(a) heat conduction with change of phase (melting and $iclidion of the metal in the weld pool),
(b) liquid metal convection with a free surface,

(c) buoyancy effects related to the difference in densitiesveen the different phases (Boussinesq
effect),

(d) surface tension driven convection (Marangoni effect),

(e) electromagnetic (Lorentz) forces due to the presenedectromagnetic induction,
(f) interaction of the free surface with the heat sourcedigie arc, plasma, etc.),

(g) mass transfer into the weld pool (e.g., via impingingpliets).

In the literature there is still some debate concerning wintthe effects (a)—(g) are most important
for reliable modeling of different welding processes. le firesent investigation we will focus solely
on processes involving fluid convection in the weld pool isas Metal Gas Inert (MIG) welding [1].

From the mathematical optimization point of view, a cruééature of this problem is that the geometry
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of the fluid domain depends on the control input and as such beusgarded as@pendent variable
As will become apparent in the sequel, this will have impatrtamifications for the calculation of the
gradient17. Our goal in this investigation is to establish a generiafeavork that accounts for the most
important, from the mathematical point of view, ingredeaf the problem. Such a template can then be
adopted to a specific welding problem by incorporating appate effects from amongst (a)—(g), and
choosing a correct model of the heat source. In order to atich a general and versatile framework,
we choose to include in our mathematical model effects @) (@) and (f) with a rather simple model
of the heat source. For the sake of simplicity of this genericlel and in view the problem—dependent
nature of the phenomenon, the control will not involve maagadfer from the electrode to the weld
pool. In general, one can consider two distinct regimes gards the modelling of welding processes:

— thetransient regimeccurring during the initial and terminal phases when that Iseurce accel-
erates / decelerates and is close to one of the edges of theiewe; in such conditions transient
phenomena play a non-negligible role,

— theintermediatsteady regimeccurring when the heat source is travelling with a constafucity
along the joint and is at a large distance from the edges ofwvtidpiece; assuming that the
characteristic time of displacement of the heat source ismhenger than the characteristic time
of melting and solidification, in such conditions the pracesy be considered statistically steady
in the frame of reference attached to the travelling heatcgou

In the present investigation we focus solely on the steadime in which the mathematical model
may be assumed time—independent resulting in a significaplification of the solution of the inverse
problem. The more general and challenging problem of ogaiion of a welding process in the tran-
sient regime will be studied next (in fact, some preliminaggults concerning this problem obtained
with a simple one—dimensional model were already reporigd5]). Therefore, our goal in this work
is to determine an optimal spatial distribution of the heatit that will result in a steady (in the moving
frame of reference) weld pool with a prescribed shape.

We emphasize that a main theme in this investigation is dpweént of a gradient—based optimiza-
tion algorithm in the form (4), so a large amount of our atiemtwill be devoted to identifying the
structure of the gradierifl 7 in terms of the variables of the problem. As a result, all oanipulations
will be formal, i.e., they will implicitly assume that all derlying functions are regular enough to
ensure well-posedness of all transformations. The impbitsue of proving existence, uniqueness
and sufficient regularity of the relevant fields is outside $icope of this paper and has been addressed
elsewhere for similar, yet much simpler, problems [16].

The structure of the paper is as follows: in the next Sectienimroduce the system of partial
differential equations that will serve as our model for thgical thermo—fluid phenomena occurring in
the weld pool; there we will also state the specific contralgbem that we want to solve; in Section
3 we identify the cost functional gradients using solutiafisa suitably—defined adjoint system; in
the following Section we present and discuss computaticesllts; final conclusions are deferred to
Section 5.
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@ (b)
Figure 1. Schematic of the problem geometry: (a) panoramic sketch@rdngitudinal cross—section of the workpiece with
the weld pool. In Figure (a) the vertical cylinder represaiie heat source (electrode).

2. Mathematical Model of a Generic Welding Process

In this Section we define a mathematical model of a typicadstestate welding process in a form
amenable to treatment as an optimization problem. In anfdit stating the governing equations with
appropriate boundary conditions, this also requires $ipation of the subdomains on which different
parts of the model are formulated. The coordinate systertastzed to the electrode (Figure 1a) which
travels with a constant velocityy = Ue, whereU is a parameter ang| is the unit vector aligned with
the OY axis.

2.1. DOMAINS

As shown in Figure 1, the domain of intere@t c R3 can be subdivided into the following two
subdomains

Q=0Q,UQs, %)

whereQ, refers to the part of the domain containing the liquid phageereasQs refers to the part
of the domain containing the solid phase. The boundariefefdbmains will be denotedQ, and
0Qs. We also define the solid-liquid interface lag. £ 0QsN 0Q, as the boundary betwedds and
Q, . The free surface of the liquid domain (i.e., the liquid—gasrface) will be denotedl| g, so that
0Q, = I's Ul g. The boundary of the solid subdomaks will consist of three parts: the solid—
liquid interfacel g\, the top surfac€ sgand the surfaceBs representing the farfield boundary, so that
0Qs =T UlNsgUTls. Without loss of generality, we will assume that the unitmal vectorn points
into Q, on the interface§ s andll g, and out 0fQs on the interfacéd sc. Hereafter we will employ the
convention that, when stating generally valid relations, will drop the subscripts from the symbols
denoting domains and interfaces. On the other hand, we etdin the subscripts in expressions valid
in a specific domain or on a specific interface only.
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2.2. CONSERVATION EQUATIONS

Given the assumptions made in Section 1 regarding the mlysftects to be accounted for in the
model and the assumption of steadiness in the moving frameferfence, we consider the following
dependent variables:

— velocityv = [u,v,w] : Q — R3,
— pressurep : Q. — R,
— temperaturd : Q — R,

— position of the free surfack g € S?,

whereS? is a set of smooth two—dimensional surfaces containd&fiwe emphasize that the position
of the solid-liquid interfacd s, is not a dependent variable, but is instead imposed as arawrst
chosen to represent the engineering objective of an optieaétration depth of the weld pool. The
intersection of the two interfacdss, andl ¢ forms thecontact lined £ T's N . Now we proceed
to derive the governing equations in the moving frame ofrexfee. Letx andX denote the position
vectors in the moving and fixed coordinate systems, resfagtiThen, the velocities and temperatures
in the two coordinate systems are related as follows

T(X) =T(X—tvo)2T(t,%), (6a)
v(X) =v(X —tvg) =U(t,X), (6b)

where the quantities with the tildes (7) are defined in thedfizeordinate system. The assumed steadi-
ness in the moving frame of reference implies that the timévalive terms transform as follows

oT

— = —Vo- 4T 7
Ot Ix=const Vo ’ (78)
ov

—_ = —Vq-[J 7b
Ot [x=const VoLV, (7b)

where the operatarl involves differentiation with respect to. Thus, the process in the steady-state
regime is modelled by the following system of equations

p(v—vg)-Ov—0-0—pg=0 inQ, (8a)
O-v=0 inQ (8b)
(V—Vo)-OT -0 (k. OT)=0  inQy, (8c)
V- OT —O-(ksOT)=0  inQs, (8d)

wherep is the density of the liquid metal (assumed constamt; —pl + p[Ov+ (Ov')] is the stress
tensor in whichl is the identity matrix andu the dynamic viscosity, whereas= (0,0,g,)" is the
gravitational acceleration. The coefficielfsandks represent the thermal conductivities of the liquid
and solid phases. We note that equations (8a)—(8b) repiresarervation of mass and momentum,
whereas equations (8c) and (8d) represent conservatiaergeady in the respective domains.
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2.3. BOUNDARY CONDITIONS

System (8) involves PDEs and therefore must be supplemesitiddboundary conditions for the
velocity v and for the temperature.

2.3.1. Boundary Conditions on the Solid—Liquid Interface_
The velocity satisfies the no—slip (Dirichlet) boundary dibion implying thatv is equal to the velocity
of the boundary, i.e.,

V=V onl gL (9)

As regards the boundary conditions for energy equationsai8d (8d), they require the temperature to
be continuous across the interface and satisfy the Stefacdiodition [7], i.e.,

Ts=T, onlg, (10a)
L

— |:ka—T:| = L(Vo . n) onl gy, (10b)
on g

whereL is the latent heat of solidification and melting, where thprexsion[o]g denotes the jump of
the given quantity across an interface (hEgg).

2.3.2. Boundary Conditions on the Liquid—Gas Interfdces
The liquid—gas interface is of the free—surface type andbthendary conditions for the momentum
equation express the balance between the stress in the fiditha surface tension. We note that the
surface tensiorf is an empirical property of the material which is usually ralbeld as a linear function
of the temperaturd, i.e.,

f(T) = o+ AT — Tn), (11)

wheref? is the surface tension at the melting temperafig@andA is a constant. As regards the energy
equation, we prescribe the Neumann data for the temperatteems of the space—dependent heat flux
¢ due to the heat source. Thus, we obtain

[olg-n=f(M)kn—0O-f(T)  onlg, (12a)
oT
ko) =9 onlg, (12b)

wherek £ 0 n is the mean curvature arig+ £ 0 —n 2 is the surface gradient [21]. On the gas side
there are no viscous stresses, and the stress tensor isigitemms of the ambient pressupg only,
i.e.,0g = —pal . We reiterate that the position of the interfdcg_is also unknown and must be found
as a part of the solution to the problem.

2.3.3. Boundary Conditions on the Solid—Gas Interfdggs;
On the boundary sg we only need to prescribe the boundary condition for enegyagon (8d), and
choose an analogous expression a$ qi[cf. (12b)], i.e.,

T
kS% - ¢ onlse (13)
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We emphasize that the functign: ' .c Ulsg — R represents in fact the control input we seek to
optimize.

2.3.4. Far-Field Boundary Conditions ohgs
On the far—field boundary s we need to prescribe the boundary condition for energy eému48d)
only, and suppose that the temperature is equal to the atribraperaturel, there, i.e.,

T=Ta onls (14)

We conclude that a complete description of our typical steathte welding problem is thus pro-
vided by system of equations (8) together with boundary itmms (9)—(14).

2.4. CosTFUNCTIONAL

In this subsection we introduce the specific cost functidimai we want to minimize. As mentioned in
Introduction, engineering objectives in welding probleans usually related to an optimal shape of a
weld joint after solidification, which is to be obtained ugithe least possible amount of the thermal
input. Therefore, our cost functional is chosen so that itsinmizers will be the optimal heat input
distribution ¢ and the position of the free surfagg which result in a steady—state weld pool with a
prescribed geometry of the solid—liquid interfdcg

I0.Me) =5 [(T—Twlds+ 2 [vids
IsL MNoa
2 (15)
+§ d°ds+ > dx—Vol. | =vyi1+VY2To+Y3Iz+ YaJa,
QL

MNeUl'se

whereV 2 (v —vp) -n. The termJ; ensures that the interfadgs is in fact a phase—change (Stefan)
boundary, whereas the tersh guarantees the steadiness of the free suiffage The thermodynamic
and mathematical justification for these two terms was amalyin detail in [17], see also [18] for
a more general discussion. The tefmensures the energetic efficiency of the process by penglizin
the Lo(I g Ul'sg) norm of the heat input, and can also be interpreted as theofdthregularization
necessary for the mathematical well-posedness of thegofl9]. The termJ, guarantees that the
volume of the weld pool is close to the prescribed valug Mahd therefore could be used to account
for the mass transfer into the weld pool. The parametgrg, ys, andy, are used to adjust the relative
significance of the different terms. We note that the contesiabled represents the actual solution of
the inverse problem we are interested in. On the other h&wedse¢cond control variable (the position
of the interfacd | g) serves as an auxiliary variable allowing us to determireeltication of the free
boundary via an optimization process. We found this to berwemient alternative to other ways of
computing free boundaries. Thus, our optimization probiegiven by (2) withg= {$, g} and cost
functional (15).
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3. Characterization of the Cost Functional Gradients

In this Section we derive expressions for the gradienfy and Or .7 of cost functional (15) with
respect to the heat flug and the position of the liquid—gas interfaes. We will derive those ex-
pressions using suitably—definadjoint variables. A distinguishing feature of the problem desamtib
by equations (8)—(14) is that it is of the free—boundary fygiece the shape of the domdy , more
specifically its boundary | g, needs to be determined as a part of the solution of the prolais fact
has important consequences for how the differentials oktage variables are calculated with respect
to the control variable$ andl’ .. The general framework for differentiation of solutionsRIDEs with
respect to the shape of the domain is provided by the “shdpelega” whose main results are reviewed
in the monographs [20, 21, 22], whereas some applicatiopsotdems in fluid mechanics are surveyed
in [23]. Below we review the main elements of the shape—gifidal calculus relevant for the present
problem, and refer the reader to the aforementioned mopbgror further mathematical details.

3.1. BEEMENTS OF THESHAPE CALCULUS

When defining differentiation with respect to the shape & ttomain the key challenge is a suit-
able parametrization of the geometry. In the shape calquéuturbations of the boundary (interface)
geometry can be represented as

X(T,X)=x+1x  forx e (0), (16)

wheret is a real parametef,(0) is the original unperturbed boundary axid: Q — R? is a “velocity”
field characterizing the perturbation. The poirts, x’) thus define the perturbed boundarfr,x’) (an
expression analogous to (16) could also be writterf¥or,x'), but is omitted here for brevity). We will
use the notatio2(0) = Q(0,x’) andl"(0) = I'(0,x’) (with suitable subscripts) for domains and their
boundaries, respectively. The Gateaux shape diffelesfteafunctional such as (15) with respect to the
shape of the interfadé_c and computed in the direction of the perturbation fi€lis thus defined as

9/ (TsL(0);x) £ !RJ(FSL(T,X/))T—](FSL(O))'

(17)

Given cost functional (15), its shape differential (17) tencomputed using a classical result concern-
ing shape differentiation [24] which says that for a smoatimdin Q(t,x’) and smooth functionf
andG defined, respectively, on this domain and its boundary we hav

!
/ FdQ+ / Gds :/F’dQ+ / G'dst
) ) Q(0) 29(0)

Q(tx 0Q(t.x
G\
+ / <F+KG+%>x-nds

0Q(0)

(18)

where the prime denotes the shape derivative defined as)ia(tin is the unit normal vector pointing
out of the domair.
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3.2. DIFFERENTIAL OF THECOST FUNCTIONAL

In order to identify the gradients (sensitivitiels), 7 and[r 7 of cost functional (15) with respect to
the control variable$¢, " g}, one must first obtain an expression for the Gateaux daeatiderivative
of 7 with respect to these variables. We do this by combiningdgtethdifferentiation with the shape
differentiation described in Section 3.1 which yields

7(0,T 60, X) :yl/(T CTo) T/ ds -y /V(v’-n)ds
Mo

st
K., oV ,
+r/ [VZ(EV +V %) +y4(/Qde—VoI|_>] (x'-n)ds (19)
LG

—Vz/V(V—Vo)-Dr(X’-n)dS+V3 / b¢'ds

Mo MeUlse

where¢’ andx’ denote perturbations of the control variables. Withous laksgenerality, we will assume
that the perturbations of the boundary have a normal compangy, i.e.x’ £ 'n, where’ : ' g — R

[21]. This assumption, which will simplify the form of thetirhate result, follows from the fact that the
tangential components of the perturbatidmlo not change the shape of the boundary when the contact
line o is fixed. Considering Gateaux differential (19) as a bounlileear functional with respect to
{¢’,{’}, and invoking Riesz theorem [25] will allow us to extract twst functional gradientsly 7 :
MNeUlseg— RandUr .7 : I'.gc — R using the following identity

Jl(¢,rLG;¢/l/n) = < [Dqu)jj] ’ [(g/] > :/I' r (D¢j)¢/ds+/l_ (DFLGJ)Z/dS (20)
LG Ly LeUl s LG

where, for simplicity, the_, inner product was used [27]. We emphasize that the gradigimtespect to
the heat flux is defined on the entire top surface, not only eifrtfe boundary | . We note that relation
(19) contains terms which are already in the Riesz form withperturbations’ and¢’ appearing as
factors, but it also includes terms involving perturbasiarf the other state variables, namefy,p’ and
T’. Because of the presence of these latter terms, at this\wkgannot use relation (19) to identify the
gradientslly 7 andr 7. Therefore, our goal in the following section will be to usgtably—defined
adjoint variables to transform the remaining part of expi@s (19) into a form consistent with Riesz
representation (20).
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3.3. ADJOINT SYSTEM

We begin by writing a weak form of system (8)—(14) for the ahtesv € {HY(Q|)|v =voonTls.},
peLy(QL),andT € {HY(QLUQs)|T =TsonTs}

/[(v—vo)-DT—D-(kLDT)] T*dx

QL

+ [1(~v0)- 0T = 0 (ksIT)] T (21)
Qs

+/[p(v—vo)-Dv— 0-0—pg]-v'—(0-v) p*dx=0,
QL

whereH! andH? denote the Sobolev spaces of, respectively, scalar—valggector-valued functions
with square—integrable gradients [26], and we used thefuestionsv* € {HY(Q,)|v* =0onTlg},

p* € L2(QL), andT* € {HY(QLUQs)| T* = 0 onls} (these test functions will be in fact identified
later on as the adjoint variables, hence we denote them withiisks). After integrating by parts the
second—order terms relation (21) becomes

/T* (V—Vo)-OT 4+ k (OT - OT*)dx
QL

+/T* (—vo)- OT + ks(OT - OT*) dx

Qs
oT . aT| ., oTqL_,
_/kL%‘LT ds_/kS%‘ST ds—/[k%LT ds (22)
rLG rSG FSL
+/[p(v—vo)-Dv—pg] V' —(0-v") p+ 0" :Ovdx
Q
—/n-0~v*:0,
MNe

wherec* £ —p*| 4+ u[Dv* + (Dv*)T] and the colon (:) denotes the scalar product (contractibtym
tensors defined a& : B = zﬁjzlAuB“. Using now boundary conditions (9)—(14), weak formulation
(22) simplifies to

IsL

/T*(v—vo)'DT+kL(DT-DT*)dx—/ L(vo-n)T*ds
QL

+/T* (—Vo) - OT + ks(OT - OT*) dx— / T*¢ds
Qs MNcUl'se

+/[p(v—vo).Dv—pg] V' —(0-v") p+0*:Ovdx
Q.

+/(Dr-v*)fds:0,
Glo}

(23)
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where we also employed the following identity of the shadeuas [21]

/v*-(fKn—Dr f)ds= /(Dr-v*)fds

0QL oQL
We now compute the variation of relation (23) with respecthte control variabled ¢, g} in the
direction given by the perturbationg’,x'}. We remark that perturbing with respect to the shape of
the free boundary | g requires us to use shape—differentiation, more specifidalimula (18), and the
result is

/T*(v—vo)-DT’+T*V’-DT+kL(DT’-DT*)dx
df

+/T* (—vo) - OT + ke(OT'- OT*) dx-+ /(Dr V) G Tds .
Qg 0Q,

+/[pv’.Dv+p(v—vo)-Dv’] V= (O0-v)p'+0*:0Vdx+1=0
QL

in which we denoted

Ié/[D-( : *)+K(Dr-v*)f+%((ﬂr-v*)f>—(D-v)p*}(x’-n)ds

+/ (V— Vo) - DT+k|_DrT-DrT*—Kq)T*}(x’-n)ds (25)
n)ds— / T*¢'ds
MeUlse

We note that expressmh collects only those terms in which the perturbatiafisand x’ appear as
factors. In (25) we denoted - v* = zj 10i,jVj, and used also the following identity of the shape
calculus [21]

Or -
(Or-v) = (Or V) +n- [Ov+(OV)T] - Or (X -n) + (a arn V) (X'-n)

_ / n-o / o0r -v /

= (Or-V)+ m Or (x n)+( an )(x n).
As regards (26), we note that we could repIace[Dv+(Dv)T]] with ﬁn -0, because the pressure
term is orthogonal to the tangential gradiéft(x' - n), and therefore has no effect. We remark that the
variation fieldT’ might in general be discontinuous across the interfage However, after applying
variations to boundary condition (10a) one obtains

(26)

[T ’] ; —0 onfg. 27)

Applying variations to the Dirichlet boundary conditions the other fixed boundaries, i.e., relations
(9) and (14), yields

vV =0 onlg, (28a)
T'=0 onfls. (28Db)
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As a next step we integrate expression (24) by parts whiaksgiv
/[—(v—vo) OT* — 0 (k OT*)] T dx
QL

+/ Vo- OT* =0 (ksOT*)] T' dx

+/k5—‘ T ds+/ (Vo n)T*}T ds
+/[kLaT* +T*(V—VO)'n+(DF'V*)%(-IT)}T/ds (29)

+/{[k"’T*} vo-n)T*+(Dr-v*)%(TT)}T'ds

+/[ p(V—Vp)- Dv*+pv*-(Dv)T—D-0*+T*DT}-v’dx

+/ va*+n'0*)~v’ds—/(D-v*)p’dx+I:0.

MeUlsL Q

We now observe that", p* andT* are the adjoint variables with respectwpp andT provided they
satisfy the followingadjoint equations

(Vo—vVv)-O7T" =0 (k. OT") inQ, (30a)

Vo OT* = 0- (ks [IT) in Qs, (30b)

p(Vv—vo)-Ov +0.-0" =pv*- (OV)T+T*OT  inQ, (30c)
0-v =0 in QL (30d)

supplied with the boundary conditions

n-o*=-V(pv'+yn) onl g, (31a)
vi=0 onlgy, (31b)
oT* df(T

ke an +VT = (Dr-V*)% onl g, (31¢)

oT* .
ks 5 = (Vo-m)T" =0 onlse, (31d)

oT* .
{k } +(Vo-n)T" =—y1(T —Tm) onlgy, (31e)

on |g

T°=0 onls. (31f)

Using relations (27) and (28), together with the definitiéthe adjoint system in (30) and (31), allows
us to simplify expression (29), so that we obtain

I:yl/(T—Tm)T’deryg/V(v’-n)ds (32)

st Mo
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On the right—hand side of (32) one recognizes two terms fogonesssion (19) for the variatiof (¢, c;¢’,X'),
whereas expression (25) appearing on the left—hand sidee&ds in the desired form with the pertur-
bationsd’ andx’ entering as factors. Indeed, after substituting (32) inqaression (19) we get

70 Le 0. X) = / (ys6—T*)¢'ds

MeUlse

+/ *) 4K (O - v)f+%((Dr-v*)f)

+ T (v—Vo)-OT +k OrT-Or T* —k$T* (33)
K2 KV oV

+w—§—+wv(2 +Eﬁ)+w<LSM—wmQ]uﬂmds

)} Or (X' -n)ds

/v

which is now consistent with Riesz representation (20)alynafter applying the tangential Green’s
formula [21] to the term involvindJr - (X' - n), we are able to identify the cost functional gradients as

follows

OoJ =y3¢ —T" onlMgUlsg (34a)
DrLGj:H—I-KD'n—Dr- D onl g, (34b)

where

H:Dmcwﬂ+K¢kNWf+£ﬂ¢kﬁﬂq

+T (v—vo) - OT +k OrT-Or T  —KT"
K2 KV oV
+w——~+wv(?;+55)+WQLSM—WNQ,

2
V*
p“ +V2(v— Vo)} .

D:—vp

We remark that using thie; inner product in Riesz identity (20) is not the only possifiland in fact
one may also use other inner products, for example, the 8obdiinner product which would lead to

(6. Fieid",In) = < [D% Jj] | m >
Mo i

_ (08 )0’ +12 [Dr(m$lj) : quy] ds (35)

MNaeUlse

+ (ORI [Or () - 0rT | ds
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wherel € R" is an adjustable length—scale parameter. Identifying (@#) (35), and using some
identities of the tangential calculus we arrive at

[ —128)(OF 9) = (049)  onTiUlsg (36a)
oy =0 ond(M' g UTsg), (36b)
=120 (OF 7) = (Or9) onlie, (36¢)
O 7=0 ons, (36d)

whereAr is the Laplace—Beltrami operator [21]. We thus see that dhed., gradientsly 7 and
Or.J are determined from (34), the Soboléit gradientsDE'lj and D?Llej can be obtained by
solving elliptic boundary—value problems (36) defined oa ihterfaced | g andlM'sg. As shown in
[27, 17], the Sobolev gradients are smoother and are usafalccelerating convergence of gradient—
based optimization. These gradients will be employed iri@ed to determine the optimal heat input
¢ and the corresponding location of the liquid—gas interfage

4, Resaultsand Discussions

In this Section we present sample computations illustyattie approach developed in Sections 2 and
3. First, we will examine the gradient fields computed baseddjoint system (30)—(31), and then we
will show how these gradients can be used to determine thimaltheat inputh and the corresponding
shape of the free surfades,. In our approach we only need to solve “direct” system (83)3@nd
adjoint system (30)—(31) which is done using the finite elethmeethod implemented in the COMSOL
script environment [28]. The domaitss andQ, are discretized using approximately 7000 unstructured
tetrahedral elements with the mesh size varying from 0.@4#oln this investigation we employed only
the Helmholtz, Navier—Stokes, and Arbitrary Lagrangianleian Mesh Deformation solvers, while
all the other software tools, including the optimizatiogaithm, were implemented from scratch in
the form of COMSOL scripts. In our computations we presdatilee solid-liquid interfacd s, so
that its shape and penetration depth correspond to engigestandards for good welds. The material
properties used in our calculations correspond to alumiandhare collected in Table I. As regards the
dependence of the surface tensioban the temperatur€ [cf. relation (11)], it is known that it may be
significantly affected by the presence of impurities in tHeya As was shown in [31], in some cases
their effect may be such that insteadf%ﬁl) < 0 (Table 1), one may in fact hav%tfj(Tl) > 0, and these
modified material properties may have a far—reaching efbecthe recirculating flow pattern in the
weld pool. In the absence of quantitative data characteyithis effect for the material considered in
this investigation (aluminum), later in this section we rabid qualitatively only by reversing the sign
of the parameteA in (11). We also remark that the values of the weightsy, y3, andy, are chosen
to ensure that the four terms in cost functional (15) havepamable magnitudes. The initial guesses
{6, rfg} for the optimization variables are

0O (xy) =4-10Fe 200y (x.y) € MLeUTsg (37a)
boundaryl ¢ indicated in Figure 1 (37b)
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Table I. Values of the physical and computational pararsaised in our calculations [29, 30]

physical parameter

value

thermal diffusivity of the solid ks

8.418x 107 [n?-s7Y)

thermal diffusivity of the liquidk_ ks/2 [mP-s~1]
melting temperaturely, 933[K]
ambient temperaturdy 300[K]
ambient pressurea 0[Pd
density,p 2400[kg- m~3]
dynamic viscosityp 0.1[Pa-g
velocity of the heat sourcél 0.01[m-s™ 1
standard gravityy 9.81[m-s7?]

surface tensionf (T)

1073 (1024— 0.274(T —Tm)) [N-m Y

computational parameter value

length—scale in Sobolev gradienits 0.001

weight coefficienty; 10°°

weight coefficienty, 1

weight coefficientys 1079

weight coefficienty, 10t

Vol 1.04 x [volume of initial weld pool shown in Figure 1b]

4.1. GRADIENTS OF THECOST FUNCTIONAL

Sample gradient fieldsly 7 and Or .7 together with their smoothed counterpaﬂlglj and D?EGJ
obtained at the first iteration are shown in Figure 2. We eragalahat, while the domain of definition
of these gradients includes the free surflicg which is not flat, for the sake of clarity in Figure 2 we
show these gradients as functiongxfy) only. We observe that, as expected, the Sobblégradients
appear much smoother than theycounterparts.

Next we proceed to demonstrate the consistency of the giadig 7 andr, ;7 obtained using
expressions (34). A standard test [32] consists in comgutie Gateaux differentials (i.e., the direc-
tional derivatives) of cost functiongl(¢,l".g) in some arbitrary direction¢’ and{’, and comparing
them to the same differentials obtained with a forward firdi€erence formula. Thus, deviation of the
guantities

J(@+ed' . Tig)—I(9,Mc)
€<D¢j>¢/>|-2 ’

-7(¢ax‘|—|_c; +€Z/n) _](q)? rLG)
£<DFLG]7ZI>L2

from unity is a measure of the error. We note that an equivarpression would be obtained using the
SobolevH?! gradients and the associated inner products. Figures 3 dlustdate the behavior of the
quantitiesky (€) andkr, ,(€) as a function of the parametefor different combinations of the weights

Ko (€) 2 (38a)

[

Kri s (€) (38b)
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Figure 2. Gradient fields (a)dy 7, (b) Dglj, (©)Or .7, and (d)I]PLlG] obtained at the first iteration.
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Figure 3. The diagnostic quantityy (¢) for the perturbation)’ centered at (aj0,0) and (b)(0.15,0.15) corresponding to
(circles)y1 =1,y =y3=Yy4=0and (squaresph = 1,y1 =y3 =Yy = 0.
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Figure 4. The diagnostic quantitgr, () for the perturbatior{’ centered at (aj0,0) and (b)(0.15,0.15) corresponding to
(circles)y1 =1, yo =y3 =VY4 =0, (squaresy, = 1,y; = y3 =Yy =0, (triangleslys = 1, y; = y» = y4 = 0, and (asterisks)
Ya=Lvyi=Yy2=Yy3=0.

Vi, 1 =1,2,3 4. These specific combinations are chosen to focus this ginap the different terms in
the cost functional. As regards the perturbatio$ and{’, we choose the same form for both of them
given by

_ _ 2 _ 2 _ 2 _ 2
¢’=Z’={0'1 VX=X)2+(Y—Ye)?  (X—%)?+(y—Y¥c)? < 0.01 (39)

0 (X—Xc)?+ (Y—Ve)? > 0.01

which is centered dix, yc) = (0,0) for the data shown in Figures 3a, 4a, an@aty.) = (0.15,0.15)

for the data shown in Figures 3b, 4b. We emphasize that irmaéisthe quantities (€) andkr () are
very close to the unity fog spanning over 10 orders of magnitude. As expected, Figuaesl 3l reveal

an increase of the error for large valuesgpivhich is due to the truncations errors, and also for very
small values ok, which is due to the subtractive cancellation (round-offpes. We emphasize that,
since we are using the “optimize—then—discretize” rathant“discretize—then—optimize” approach,
the gradients should not be expected to be accurate up toablime precision [13].

4.2. SOLUTION OF THE OPTIMIZATION PROBLEM

Minimization procedure (4) is implemented using the stsegescent method [14]. At every iteration
the length of the step in the descent direction is determirsedg Brent’s line minimization method
[14]. The following algorithm summarizes the consecutiteps in this approach:
k—0
$© — initial guess (37a)
I'(ch «— initial guess (37b)
repeat
solve direct (8)—(14) and adjoint (30)—(31) systems
compute gradienttly 7(¢®),x®)
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Figure 5. Cost functionals as a function of the number of iterationstfee case (a)d—;@ < 0 and (b)d%(%) > 0 with
(asterisks) total functional, (circles)y1.91 + Y393, and (boxesys %> + Y494 [cf. (15)].

perform line minimization to determine the step—si#8
. K\ (K
ming (6% € 0,7(0%.18).12)

updatep(+2) = ¢4 — 090, 79, %)
solve direct (8)—(14) and adjoint (30)—(31) systems
compute gradienlr, 7(o*+D, k)

perform line minimization to determine the step—sig¥
- k k K
I’T|1’]In_7 <¢( +1)>X||—(L‘g —n DFLG]((I)( +1)> rl(_(%))

updater g by deforming it along the directioflr . 7(6®+2, T X)) with the step size-n®
k—k+1
until max(|E®], n®|) < &,
whereg; is a prescribed tolerance. We note that the descent steffsefoontrol variable$ andl" ¢ are
performed independently. The reason for this is that thegfahe problem related to the optimization
of the shape of the free surfa€eg is “stiffer” than the part related to the optimization of theat
inputd, hence the two parts are characterized by quite differeasraf convergence. Furthermore, we
also observed that iterations can be significantly acceldré we sety, = y4 = 0 during the substep
involving minimization with respect t¢, andy; = yz = 0 during the substep involving minimization
with respect td"| g. This strategy was used to obtain the results reported below
Figure 5 shows decrease of cost functional (15) and its itoest terms as a function of the number
of iterations. We observe that the proposed algorithm tesula steady convergence despite the com-
plicated nature of the problem, although the rate of coreseg is relatively slow (essentially linear).
We also note that in both cases the teyn% + Y494 reach a very low level which confirms that the
problem of determining a steady free surfégg is solved with a sufficient accuracy. Different numbers
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of iterations required by; %1 + Y393 andy, % + Y494 to reach a plateau illustrate the different rates of
convergence characterizing optimization of the heat ifpand the location of the free surfa€ec.
Next, in the following figures we examine certain featurethefsolutions obtained when the iterations
are converged. In Figures 6 and 8 we show the distributiorhefttmperaturd in three different
cross—sections of the weld pool and the workpiece in addiiiothe optimal distribution of the heat
flux ¢ on the top surfac& g Ul sgfor the problems With‘% <0 and% > 0. In Figures 7 and 9
we show the velocity vector fields in two cross—sections efwleld pool for the same two cases with
%(TT) <0 and%(TT) > 0. In Figures 7 and 9 we also include the velocity vector fielisesponding to
the initial gues{¢©, F(ch}. By comparing these initial guesses with the convergedtisols, one can
see a significant decrease in the magnitude of the normatielmomponents on the free surfaeg
which indicates that our algorithm indeed converges to adstéooundary. The relatively slow rate of
convergence observed in Figure 5 can be explained by a nathéest resolution of the finite element
mesh in the narrow wedge regions in the vicinity of the contime. This affects the accuracy with
which the gradient terms involving partial derivatives tdte variables can be evaluated in expressions
(34). Remarkably, by comparing the flow patterns obtainetthéncases witlﬁj% <0 and%(TT) >0
(Figures 7c,d and 9c,d), we note that the recirculating omati the weld pool has opposite direction in
the two cases. This interesting feature of this problem vissudsed in detail in [31] (see their Figure

18), and it is encouraging to see it captured by our approach.

5. Conclusions

In this work we solved an optimization problem for a weldinggess involving convection of liquid
metal and characterized by a complex interplay of a numberhgbical effects. This was achieved
by developing an unified approach to solving free—boundaryiaverse problems in the steady-state
regime. We did this by formulating this problem as PDE—c@ised optimization. Advantages of
such an inverse formulation of a free—boundary problemagmals to the present one were discussed
in [17], see also [16] for a more general perspective. In tresgnt investigation we generalized
this methodology by also performing optimization of actoahtrol inputs, here the heat flyx Our
work demonstrates that these techniques can be succgssfplemented numerically providing quite
encouraging computational results despite the complexitthe geometry and nonlinearity of the
governing equations. We envision a number of ways in whiehapproach developed in this paper
can be further extended. In the first place, one can incotpaamore accurate model for the inter-
action of the weld pool surface with the heat source. Suchghem-fidelity model accounting for
electromagnetic effects due to the presence of an electriaral plasma above the weld pool is already
being implemented [31], and results will be reported saparaWe also note that the value of the
dynamic viscosityu used in our calculations (Table 1) is somewhat higher thanatttual value. The
reason is that using the actual value would result in a higt@®molds number which would require
a significantly finer mesh than what we can currently afforthvaur computational resources. On
the other hand, we remark that this increased viscosity nbghinterpreted as an “eddy viscosity”,
which is consistent with our formulation of the problem asi@denlized model fostatistically steady
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0.6 T ‘ ‘ 0.5

© (d)

Figure 6. Case withd—;q—) < 0: (a) optimal heat flup on "' g UT sg and the corresponding temperatdrelistributions in

the cross—sectional planes with b3 0, (c)y = 0, and (d)z= 0; in Figure (a) the heat flux increment between neighboring
isolines is 500deg- m-s~1]; in Figures (b-d) the temperature increment between neighg isolines is 150ded; the solid
and dashed lines correspond to, respectivgly, 0 and¢ < 0 in Figure (a), and t@ > Ty andT < Ty in Figures (b-d); for
clarity, isolines are not drawn in areas with steep tempegagradients.

solutions in the moving frame of reference. In our future kwae are planning to elaborate this aspect
of our approach by incorporating a “proper” turbulence mogensistent with the use of an eddy
viscosity. A related question concerns the stability of ¢tbenputed solutions, in particular, for higher
Reynolds numbers. Another important challenge concerngrgéization of our present approach to
time—dependent problems. We note that cost functionaligmégifor free—boundary problems defined
in such settings can be derived using the “noncylindricdudas” [33] which provides a generalization
of the shape calculus to time—dependent problems. We arentlyrinvestigating these issues and some
preliminary results concerning adjoint—based optimaaf unsteady free—boundary problems using
some simple model systems were already reported in [15].
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() (d)

Figure 8. Case withd%@ > 0: (a) optimal heat flup on " g Ul sg and the corresponding temperatdrelistributions in

the cross—sectional planes with b3 0, (c)y = 0, and (d)z= 0; in Figure (a) the heat flux increment between neighboring
isolines is 500deg- m-s~1]; in Figures (b-d) the temperature increment between neighd isolines is 15Qded; the solid
and dashed lines correspond to, respectivly, 0 and¢ < 0 in Figure (a), and t@ > Ty andT < Ty in Figures (b-d); for
clarity, isolines are not drawn in areas with steep tempeeagradients.
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