
Documentation for the simulation and analysis package
SAINT-VENANT (ver. 1.0)

A. Azzalini1, M. Caldoro1, M. Farge1, G. Perret1 & B. Protas2

July 9, 2004
1) LMD–CNRS, École Normale Supŕieure

24, rue Lhomond, 75231 Paris, Cedex 05, FRANCE

2) Department of Mathematics & Statistics, McMaster University
1280 Main Street West, Hamilton, Ontario, CANADA L8S 4K1

Official website: http://www.math.mcmaster.ca/˜bprotas/Software/sv

Contents

0 Preamble 2

1 Outline of the Problem 2

2 Numerical Method 4
2.1 Spatial Discretization . 4
2.2 Temporal Discretization . 5
2.3 Pressure Correction . 5
2.4 Enforcement of Boundary Conditions via Volume Penalization 5
2.5 Wavelet Transform and Adaptive Filtering . 6

3 Organization of the Codes 6
3.1 Code SV simul . 6
3.2 Code SV filter . 7
3.3 Code SV analysis . 7

4 Installation 7
4.1 Code SV simul . 7
4.2 Code SV filter . 8
4.3 Code SV analysis . 8

5 Preprocessing, Execution and Postprocessing 8
5.1 Code SV simul . 8
5.2 Code SV filter . 10
5.3 Code SV analysis . 10

6 Acknowledgments 10

A Makefile options 11

1

Saint–Venant — Documentation 2

0 Preamble

This scientific software package is the result of the work of several people over many years and is still
under development (see [1] for an early description of the code). Recently we decided to put together
a revised version that is now publicly available under the terms of the GNU General Public License1.
This is the first release of the package and we are aware that there may still be many imperfections, as
certain elements of the package are incomplete, whereas other may have not been thoroughly tested.
As time permits, we will work to expand the package and make it more reliable. We encourage people
to use this code for research and / or study and look forward to receiving any comments, remarks,
suggestions for improvement, etc.

The list of people involved at various stages in the development of this code includes (in chrono-
logical order): Marie Farge, Alexandre Azzalini, Michele Caldoro, Gaele Perret and Bartosz Protas.

Disclaimer: All parts of the SAINT–VENANT package are free software; you can redistribute it
and/or modify it under the terms of the GNU Lesser General Public License as published by the Free
Software Foundation; either version 2.1 of the License, or (at your option) any later version.

The SAINT–VENANT package is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

1 Outline of the Problem

The code package SAINT–VENANT consists of three basic units:

• SV simul — which solves numerically the Shallow Water and Navier–Stokes systems,

• SV filter — which performs linear and nonlinear Fourier– and wavelet–based filtering of fields
obtained using SV simul,

• SV analysis — which performs the statistical analysis of the fields obtained using SV simul and
SV filter (in fact, this unit is still under development and has not been released yet).

Depending on the value of the input parameter INCOMP, the code SV simul solves one of the fol-
lowing is two systems of equations:

• when INCOMP=0 the 2D Shallow Water System is solved (the compressible case)














∂u
∂t

+(ξ+ f)k×u+∇
(

Φ+
u2

2

)

−ν∆u = 0,

∂Φ
∂t

+∇ · (Φu) = 0,

(1)

where u = [u,v] is the velocity field, Φ = gh is the geopotential (with g representing the gravi-
tational acceleration and h the height of the water surface), ξ = ∂v

∂x −
∂u
∂y is the vorticity, f is the

background rotation and ν the kinematic viscosity.

1For details see http://www.gnu.org/copyleft/gpl.html.

Saint–Venant — Documentation 3

• when INCOMP=1,2 the 2D Navier–Stokes System2 is solved (the incompressible case); as ex-
plained in §2.2, the two cases INCOMP=1 and INCOMP=2 correspond to different time–stepping
schemes employed











∂u
∂t

+ξk×u+∇
(

Φ+
u2

2

)

−ν∆u = 0,

∇ ·u = 0,

(2)

where Φ now has the meaning of the hydrostatic pressure.

The flow domain is a rectangular box Ω = [0,Lx]× [0,Ly] with periodic boundary conditions in both
directions. It is assumed that Lx = L0 = 2π and α = Lx

Ly
. As described below, using the volume pe-

nalization method, it is possible to incorporate solid boundaries in the flow domain. A version of the
code that allows for the presence of solid boundaries (using the volume penalization method [2]) is
also available.

The specific flow configuration is determined based on the values of the input parameters INCOMP
(see above) and FLOW_CASE. The latter can assume the following values:

• FLOW_CASE=0 — homogeneous and isotropic case without solid boundaries,

• FLOW_CASE=1 — the coordinate system coincides with the center of a translating obstacle,

• FLOW_CASE=2 — the coordinate system coincides with the obstacle which remains motionless;
upstream current in geostrophic balance is added,

• FLOW_CASE=3 — the coordinate system is attached to the container, rather than to the translating
obstacle.

The presence and the shape of the solid body is determined by the parameter PENALIZATION which
can assume the following values:

• PENALIZATION=0 — there is no solid body,

• PENALIZATION=1 — the solid body is a cylinder with the diameter D=COEF DIAM LO*L0/α,
where COEF_DIAM_LO has to be specified in the parameter file (see §5),

• PENALIZATION=2 — the solid body is a smeared cylinder, i.e., the mask of the body is equal to
one for r ≤ (R−δ) and then decreases exponentially for (R−δ) < r ≤ R,

• PENALIZATION=3— the solid body is a square with the dimension a =COEF DIAM LO*L0/(2*α),

• PENALIZATION=4 — the mask for the solid body is read from a file called Mask Xi,

• PENALIZATION=5— the solid body is an ellipse with the minor axis a =COEF DIAM LO*L0/(2*α)
and the major axis b =1.8*COEF DIAM LO*L0,

2When working with spatially–periodic domains it is customary to solve the 2D Navier–Stokes system in the vortic-
ity formulation. Here, however, we choose to use the primitive (i.e., velocity–pressure) formulation so as to make this
case consistent with the Shallow Water version developed initially and also to facilitate subsequent extension to three
dimensions.

Saint–Venant — Documentation 4

• PENALIZATION=6 — used for flows in a cylindrical tank; the equations are then penalized at the
perimeter of the tank; the diameter of the tank is D=COEF DIAM LO*L0/α.

For all those case, the center of the obstacle is located at [Lx/(4α),Ly/2] when FLOW_CASE < 2.
When FLOW_CASE=3, the initial position of the obstacle is [Lx −Lx/(4α),Ly/2]. It is also possible to
include a sponge region at the end of the domain (when SPONGE=1) and / or lateral boundaries in the
streamwise direction (when WALLS=1).

All the input parameters are specified in the parameter file (see §5).

The code SV filter first calculates the wavelet (or Fourier) transform of a given field (for instance,
vorticity) and then splits this field into the coherent (or large scale) and incoherent (or small scale) part.
The threshold for splitting is either fixed, or adaptively determined using various criteria (see §2.5 for
details). The code can also calculate an approximation of the Besov norm of a given field based on its
discrete wavelet representation as in the following 1D example

∥

∥ f
∥

∥

r
Bp,q

= |α0|+







N

∑
j=0



2 j(s+ 1
2−

1
p)

(

∑
k

|β jk|
p

)1/p




q




1/q

, (3)

where αk = (f ,Φk) and β jk = (f ,Ψ jk) are scaling function and wavelet coefficients.

The code SV analysis performs statistical analyses of a given field calculating quantities such as
energy spectra, probability distribution functions (PDFs) of the field, its derivatives and its increments.

2 Numerical Method

2.1 Spatial Discretization

Systems (1) and (2) are solved using a standard pseudo–spectral method [3] in a periodic domain with
SIZE I×SIZE J grid points. The numerical resolution in the two directions X and Y does not have to
be the same. When it is different, all the variables are nondimensionalized with respect to Lx (Ly = αLx,
where α = SIZE I

SIZE J). Regardless of the actual resolution in X and Y , the grid in physical space remains
isotropic (i.e., ∆x = ∆y). As a result, the grid in Fourier space becomes anisotropic (i.e., ∆ky = α∆kx).
The fields û, v̂ and Φ̂ (hats denote 2D Fourier transforms) are represented using 1

2SIZE I Fourier
modes in the X direction and 1

2SIZE J Fourier modes in the Y direction. The parameters SIZE I
and SIZE J are specified in the Makefile where they are used by the preprocessor. Fourier transforms
are performed using FFTW routines (www.fftw.org). For reasons of consistency with the CRAY
SCILIB routines, the FFTW routines are called through wrappers provided in the library libjmfftw.a.
When IDALIAS=1, dealiasing is performed by setting to zero the Fourier coefficients corresponding
to the wavenumbers kx and ky such that kx ≥ kmax or ky ≥ kmax, where kmax = min(SIZE I

3 , SIZE J
3) (we

use here the “3/2” rule: SIZE I
3 = 2

3
SIZE I

2). When IDALIAS=2, dealiasing is performed by setting to

zero the Fourier coefficients corresponding to the wavenumbers kx and ky such that
√

k2
x + k2

y ≥ kmax.

Note that in the latter case dealiasing is performed isotropically in Fourier space and is therefore more
aggressive than required. When IDALIAS=0, dealiasing is not performed.

Saint–Venant — Documentation 5

2.2 Temporal Discretization

In the compressible case (INCOMP=0) and in the incompressible case with INCOMP=1, time integration
is performed by combining exact integration of the viscous and penalization terms with the leapfrog
scheme on all the remaining terms (represented by A(y) in the expressions below)

ŷn+1
k = ŷn−1

k e−2νk2∆t +2∆t Ân
k (ŷ)e−νk2∆t . (4)

In the incompressible case with INCOMP=2 the leapfrog scheme is replaced with the second–order
accurate Adams–Bashforth scheme

ŷn+1
k = ŷn

k e−νk2∆t +
1
2

∆t
[

3Ân
k (ŷ)− Ân−1

k (ŷ)
]

e−νk2 ∆t
2 . (5)

Here ŷn
k represents the k − th Fourier component at time n∆t of the advanced variable (û, v̂ and Φ̂

in the compressible case, and û and v̂ in the incompressible case) and ∆t is the time step selected to
satisfy the CFL condition. When the leapfrog scheme is used, even and odd time steps are resynchro-
nized whenever the relative difference of the kinetic energy or enstrophy (potential enstrophy when
INCOMP=0) between two consecutive steps exceeds ECARLF percent. This is followed by an explicit
Euler time step. When initializing the simulation from scratch, time integration is also begun with
a single explicit Euler step. For simplicity, an explicit Euler time step is performed by calling the
Adams–Bashforth subroutine with Ân−1

k (ŷ) = Ân
k (ŷ). A single time step in both compressible and

incompressible cases necessitates 12 Fourier transforms.

2.3 Pressure Correction

In the Navier–Stokes case incompressibility is enforced using the fractional step algorithm with pres-
sure correction [4]. We treat the velocity fields obtained from (4) or (5) as intermediate fields (marked
with a tilde) and correct them as follows

un+1 = ũn+1 −∇ϕ, (6)

where the correction field ϕ is obtained as

∆ϕ = ∇ · ũn+1. (7)

The pressure is obtained by solving the 2D Poisson equation3

−∆Φ = 2

(

∂u
∂x

)2

+2

(

∂u
∂y

)(

∂v
∂x

)

. (8)

2.4 Enforcement of Boundary Conditions via Volume Penalization

The volume penalization consists in enforcing the boundary conditions on solid boundaries by adding
a penalty term to the governing equation (1) or (2) (cf. [2]). In the compressible (INCOMP=0) and
incompressible case (INCOMP=1) the penalty term is integrated exactly in physical space, i.e., in ex-

pressions (4) and (5) the terms ŷn−1
k and Ân

k actually become
̂

yn−1
k e−2 χ

ε ∆t and
̂An
k e−

χ
ε ∆t where χ is the

mask of the obstacle and ε is a small parameter. For reasons of stability, ε cannot be smaller than ∆t
and in the code has been selected as 2∆t.

3In fact, in the pressure correction algorithm an approximation to pressure can be obtained based on the function ϕ.
This is however not implemented yet.

Saint–Venant — Documentation 6

2.5 Wavelet Transform and Adaptive Filtering

The Discrete Wavelet Transform is calculated using the function wxfrm_dand from the library WVLT

— The UBC Imager Wavelet Package (Release 3.0). The wavelet filter must be chosen from the fol-
lowing list: AdelsonSimoncelliHingorani, AntoniniBarlaudMathieuDaubechies 4 4, BattleLemarie,
BurtAdelson, Coifman 12, Daubechies 4, Daubechies 6, Daubechies 8, Daubechies 10, Daubechies 12,
Daubechies 20, Haar, Pseudocoiflet 4 4, Spline 2 2, Spline 2 4, Spline 3 3, Spline 3 5, Spline 3 7.
In the case of Fourier transform the splitting threshold is fixed, whereas in the case of wavelet trans-
form the splitting threshold is selected adaptively using either the MAD algorithm4 [5], or an iterative
recursive algorithm [6].

3 Organization of the Codes

3.1 Code SV simul

The code SV simul is made up of three source files: modules.F90, source.F90 and MovieOut.c. All the
important data structures are contained in the three modules: database, parameters and diagnostics
(file modules.F90). The discretized fields are stored in the following core arrays:

• PU, PV and PP (data at time level n+1),

• PUA, PVA and PPA (data at time level n),

• PUAA, PVAA and PPAA (data at time level n−1),

• PO (vorticity),

• PF (streamfunction),

• WORK (double size auxiliary array),

• MASK (mask for dealiasing),

• DISSIP (discretized dissipation operator).

Owing to a legacy part of the code5, fields in Fourier space are stored as (real only) coefficients of
the sine and cosine transforms interwoven with one another. The source file source.F90 contains the
main body of the program and definitions of all the functions and subroutines. For ease of navigation,
all of the most important blocks of the main code as well as function and subroutine definitions are
numbered and marked with lines beginning with the sign “$$” (one can take advantage of that, e.g.,
using the command List Matching Lines in the editor XEmacs 21.4+). Calls to FFTW subroutines
are made through wrapper available in the library libjmfftw.a. The file MovieOut.c contains routines
necessary for graphical output.

4As of today, this option, although implemented in the code, has not been activated yet.
5This is related to the fact the implementation of the complex arithmetic in early FORTRAN compilers, notably on

CRAY machines, was very inefficient as compared to the real arithmetic

Saint–Venant — Documentation 7

3.2 Code SV filter

The structure of the code SV filter is very simple — the source file SV filter.c contains the body of
the program, whereas the algorithms for threshold determination are implemented in separate files
RecurFilter.c and MedianWltFilter.c.

3.3 Code SV analysis

Still under development.

4 Installation

The tarball should be placed in a chosen directory, e.g., $(HOME)/Turb2D/. Upon untarring the
archive, the following subdirectories will be created:

• Source — containing the Makefile as well as all the source files (i.e., .F90 and.c),

• lib — containing the libraries libfftw.a, librfftw.a, libmpege.a, libjmfftw.a and libwvlt.a,

• bin — where the executables will be placed after compilation,

• wvlt — containing the source files for the library WVLT — The UBC Imager Wavelet Package
(Release 3.0),

• dweezil — containing the source files necessary to build the code which handles the graphical
output,

• Documentation — containing LATEX and plain text files documenting the code, including the
present file.

• Text case — containing all the data and parameter files required to run the test case (see §5.1)

All of these settings can be modified by editing Makefile. All the files containing the source code for
SV simul, SV filter and SV analysis can be archived by executing the command make gohome. Execu-
tion of the command make tarball creates an archive containing the complete distribution, including
all libraries (source code and binary files), sample parameter files, documentation and the test case. It
is required for compilation and linking that a FORTRAN 90/95 and a C compiler be available on the
system. As the C compiler, gcc is used by default. All the settings regarding compilers and linkers
should be adjusted in Makefile. Below we describe the steps required for compilation of the different
executables.

4.1 Code SV simul

The executable can be build simply by executing the command make in the directory
$(HOME)/Turb2D/Source. The spatial resolution is hardwired in the code by specifying the values of
the variables SIZE_I and SIZE_J in Makefile (these settings can be overridden by assigning new val-
ues to these variables on the command line following the invocation of make). Compiler optimization
options as well should be adjusted in Makefile to correspond to the specific compilers used. OpenMP–
based parallelization is activated by issuing the following command make PARALLEL=openmp. The

Saint–Venant — Documentation 8

following libraries ought to be available in $(HOME)/Turb2D/lib (the libraries provided in the tarball
are for LINUX with glibc 2.2+ and will likely have to be rebuilt for different architectures):

• libfftw.a, librfftw.a and libjmfftw.a — the first two of which belong to the package FFTW and
can also reside in some standard directory (e.g., /usr/lib); the library libjmfftw.a can be built by
executing make jmfftw (the option PARALLEL=openmp should be added to enable paralleliza-
tion),

• libmpege.a required for generation of the graphical (MPG) output; generation of the graphical
output is activated by specifying the preprocessor flag MPG in Makefile.

The executable dweezil can be built by changing the the directory $(HOME)/Turb2D/dweezil and then
executing the following series commands: make clean; make distclean; make; make install, which cre-
ates the executable and puts it in the directory $(HOME)/bin where it can be accessed by the simulation
code.

4.2 Code SV filter

The code SV filter is built by executing the command make SV filter. It is necessary that the library
libwvlt.a be available in the directory $(HOME)/Turb2D/lib. This library can be built by executing
the command make OSREL MAJOR=1 ARCH=LINUX in the directory $(HOME)/Turb2D/wvlt. Note
that the parameters of the make command will likely have to be adjusted when building the library on
a system different than LINUX.

4.3 Code SV analysis

Still under development.

5 Preprocessing, Execution and Postprocessing

5.1 Code SV simul

When the code is launched, the parameter file needs to be piped through the standard input stream
(UNIT=5), i.e. the following command has to be issued in the execution directory ./a.out 512x512 ¡
params simul.dat. The meaning of all the parameters in the parameter file is explained in the sample
file provided in $(HOME)/Turb2D/Source. As regards the initial condition, two options are available:

• when IINIT=1 the initial condition is created from scratch in accordance with the settings spec-
ified in the parameter file; in the currently available cases the initial fields have Fourier coeffi-
cients with a prescribed spectral slope and random phases,

• when IINIT=0,2 initialization is made with a restart file obtained using a different run with
similar parameters (e.g., files field final, field 0000XYZ); the restart file must be renamed fort.1;
when IINIT=2 the inertio–gravity modes are removed from the restart field (compressible case
only).

Possible forms of output from the code depend on the value of the various parameters specified in
the parameter file params simul.dat and include:

Saint–Venant — Documentation 9

• unformatted binary files with the fields û, v̂ and Φ̂ at the time steps n and n + 1 saved every
NSAVE steps (when ISAVE=1); these fields are saved in spectral representation and can be used
to reinitialize a new run (see above),

• unformatted binary files containing any of the fields {vorticity, potential vorticity, pressure, di-
vergence, streamfunction, horizontal velocity, vertical velocity, velocity modulus, Bernoulli po-
tential} in the physical space representation saved every NSXXXXX time steps when ISXXXXX=1,
where “XXXXX” is to be selected from the set {VORT, VPOT, PRESS, DIV, COUR, U, V, MODV and
BERN},

• ASCII text files with various run–time diagnostics computed every NINV time steps; if VERBOSE>0
this information is also output to the screen; histories of the following quantities are saved:

– incompressible case INCOMP=1:

∗ time t,

∗ energy E = ‖u‖L2 ,

∗ enstrophy Z = ‖ω‖L2 ,

∗ palinstrophy P = ‖∇∇∇ω‖L2 ,

∗ total divergence D = ‖∇∇∇ ·u‖L1 ,

∗ peak velocities maxΩ |u|, minΩ u, maxΩ u, minΩ v and maxΩ v,

∗ peak pressures minΩ Φ and maxΩ Φ,

∗ stability parameter κCFL = π ·∆t · kmax ·maxΩ |u|,
∗ kinematic viscosity ν,

– compressible case INCOMP=0:

∗ time t,

∗ total energy E = Ek +Ep,

∗ kinetic energy Ek =
R

Ω u2ΦdΩ,

∗ potential energy Ep = ‖Φ‖L2 ,

∗ linear energy El = Φ0
R

Ω u2 dΩ+Ep, where Φ0 =
R

Ω ΦdΩ,

∗ total enstrophy Z = ‖ω−Co‖L2 , where Co is the Coriolis parameter,

∗ potential enstrophy Zp =
R

Ω
ω2

Φ dΩ,

∗ linear enstrophy Zl = ‖ω−Co−ΦCo
Φ0

‖L2

∗ palinstrophy P = ‖∇∇∇ω‖L2 ,

∗ total divergence D = ‖∇∇∇ ·u‖L1 ,

∗ peak velocities maxΩ |u|, minΩ u, maxΩ u, minΩ v and maxΩ v,

∗ peak pressures minΩ Φ and maxΩ Φ,

∗ stability parameter κCFL = π ·∆t · kmax ·maxΩ |u|
∗ kinematic viscosity ν,

∗ Mach number M

∗ Rossby number Ro

As regards the peak values, the maxima and minima are taken over the whole flow domain Ω.

Saint–Venant — Documentation 10

• video MPG files with animations of any of the fields {vorticity, potential vorticity, pressure, di-
vergence, streamfunction, horizontal velocity, vertical velocity, velocity modulus, Bernoulli po-
tential} in the physical space representation saved every NMPGXXXXX time steps when IMPGXXXXX=1
and VERBOSE>0, where “XXXXX” is to be selected from the set {VORT, VPOT, PRESS, DIV, COUR,
U, V, MODV and BERN}; this operation is in fact performed by the code dweezil which is called
from within the simulation code and must therefore reside in a directory listed in the PATH envi-
ronmental variable (e.g., $(HOME)/bin).

The code is also provided with a test case which consists of the following files (all available in the
directory $(HOME)/Turb2D/Test case):

• parameter file params.dat,

• binary (small endian) restart file fort.1,

• diagnostics output file IRVOR0.dat,

which can be used for consistency checks. The test case consists in the solution of an incompressible
flow problem, thus the results concerning the total divergence D (fifth column in the file IRVOR0.dat)
should be on the order of the machine epsilon and may have different numerical values on different
machines.

5.2 Code SV filter

The filtering code can be executed as ./SV filter field ¡ params filter.dat, where field is the field to be
analyzed (either ASCII or binary), whereas the file params filter.dat specifies all the parameters re-
garding the input file field (i.e., format, dimension, size) and the operations to be performed. See the
sample parameter file provided in $(HOME)/Turb2D/Source) for a detailed description. The file field
can contain any field represented in physical space and obtained, for instance, using6 ./a.out 512x512.
The code SV filter can return files with coefficients of the discrete wavelet transform (DWT), or with
fields corresponding to the coherent and incoherent part of the original field. When the filtering thresh-
old is determined using the recursive algorithm, the results for the consecutive iterations are returned
in iters.dat and also on the screen when the verbosity level is higher than 1. When the Discrete
Wavelet Transform is computed only (no filtering), the Besov norms (cf. (3)) are also calculated for
a range of parameters specified in the parameter file. Sample parameter files params filter1.dat and
params filter2.dat (for the 1D and 2D cases, respectively) containing explanations for all input param-
eters are provided in the directory $(HOME)/Turb2D/Source.

5.3 Code SV analysis

Still under development.

6 Acknowledgments

Financial support from SPI–CNRS is gratefully acknowledged.

6For example, assume that the file vorticity consists of 10 instantaneous fields at resolution 5122 in double precision.
It will then have the size of 20971520 bytes (5122×8×10 = 20971520). Instantaneous fields needed for SV filter can be
extracted from this file using the UNIX/LINUX command split -b 2097152 vorticity.

Saint–Venant — Documentation 11

A Makefile options

The following is a summary of options available for the various Makefiles provided with the package:

• in $(HOME)/Turb2D/Source)

– make — builds the simulation executable in accordance with the parameters specified in
Makefile; note that these settings can be overridden by specifying them explicitly on the
command line, e.g., make SIZE I=1024 SIZE J=1024,

– make SV filter — builds the filtering executable,

– make jmfftw — builds the wrapper for the FFTW calls,

– make gohome — creates an archive with the source files,

– make tarball — creates an archive with a complete distribution of the package, including
libraries, etc.,

• in $(HOME)/Turb2D/wvlt)

– make OSREL MAJOR=1 ARCH=LINUX — builds the discrete wavelet transform library
libwvlt.a

• in $(HOME)/Turb2D/dweezil)

– make — builds the executable dweezil necessary to process the video (MPG) output.

Apart from the above, standard options such as make clean and make distclean are also available.

References

[1] Marie Farge, “Dynamique non lineaire des ondes et des tourbillons dans les équations de Saint–
Venant”, Doctorat des Mathématiques, Universite Paris VI, (1987).

[2] N. K.-R. Kevlahan and J. -M. Ghidaglia, “Computation of turbulent flow past an array of cylin-
ders using a spectral method with Brinkman penalization”, Eur. J. Mech. B 20, 333-350, (2001).

[3] C. Canuto, M. Hussaini, A. Quarteroni and T. Zang, “Spectral Methods in Fluid Dynamics”,
Springer Verlag, (1990).

[4] J. Kim and P. Moin, “Application of a fractional step method to incompressible Navier–Stokes
equation”, Journal of Computational Physics 59, 308-323, (1985).

[5] S. Mallat, “A wavelet tour of signal processing”, Academic Press, (1998).

[6] A. Azzalini, M. Farge and K. Schneider, “Nonlinear wavelet thresholding: a recursive method
to determine the optimal denoising threshold” (submitted), (2003).

