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I Suppose f : RN → R, N ≥ 1, is a twice continuously differentiable
objective function

I Unconstrained Optimization Problems:

min
x∈RN

f (x)

(for maximization problems, we can consider min[−f (x)])

I A point x̃ is a global minimizer if f (x̃) ≤ f (x) for all x

I A point x̃ is a local minimizer if there exists a neighborhood N of x̃
such that f (x̃) ≤ f (x) for all x ∈ N

I A local minimizer is strict (or strong), if it is unique in N
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I Gradient of the objective function

∇f (x) :=

[
∂f

∂x1
, . . . ,

∂f

∂xN

]T

I Hessian of the objective function

[
∇2f (x)

]
i ,j

:=
∂2f

∂xj ∂xi
, i , j = 1, . . . ,N
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Theorem (First-Order Necessary Condition)

If x̃ is a local minimizer, then ∇f (x̃) = 0.

Theorem (Second-Order Sufficient Conditions)

Suppose that ∇f (x̃) = 0 and ∇2f (x̃) is positive-definite. Then x̃
is a strict local minimizers of f .

Unfortunately, analogous characterization of global minimizers
is not possible
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I How to find a local minimizer x̃?

I Consider the following initial-value problem in RN , known as the
gradient flow

(GF)


dx(τ)

dτ
= −∇f (x(τ)), τ > 0,

x(0) = x0,

where
I τ is a “pseudo-time” (a parametrization)

I x0 is a suitable initial guess

I Then, limτ→∞ x(τ) = x̃

In principle, the gradient flow may converge to a saddle point xs , where
∇f (xs) = 0 and the Hessian ∇2f (xs) is not positive-definite, but in actual
computations this is very unlikely.
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I Discretize the gradient flow (GF) with Euler’s explicit method

(SD)

{
x(n+1) = x(n) −∆τ∇f (x(n)), n = 1, 2, . . . ,

x(0) = x0,

where
I x(n) := x(n∆τ), such that limn→∞ x(n) = x̃

I ∆τ is a fixed step size (since Euler’s explicit scheme is only
conditionally stable, ∆τ must be sufficiently small)

I In principle, the gradient flow (GF) can be discretized with
higher-order schemes, including implicit approaches, but they are not
easy to apply to PDE optimization problems, hence will not be
considered here.

B. Protas Numerical Optimization of PDEs



Formulation
Gradients Methods

Constraints

Steepest Descent
Step Size Selection & Line Search
Conjugate Gradients

Algorithm 1 Steepest Descent (SD)

1: x(0) ← x0 (initial guess)
2: n← 0
3: repeat
4: compute the gradient ∇f (x(n))
5: update x(n+1) = x(n) −∆τ∇f (x(n))
6: n← n + 1

7: until |f (x
(n))−f (x(n−1))|
|f (x(n−1))| < εf

Input:
x0 — initial guess
∆τ — fixed step size
εf — tolerance in the termination condition

Output:
an approximation of the minimizer x̃
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Computational Tests

I Rosenbrock’s “banana” function

f (x1, x2) = 100(x2 − x21 )2 + (1− x1)2

I Global minimizer

x1 = x2 = 1, f (1, 1) = 0

I The function is known for its poor conditioning

I eigenvalues of the Hessian ∇2f at the minimum:

λ1 ≈ 0.4, λ2 ≈ 1001.6
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I Choice of the step size ∆τ : steepest descent is not meant to
approximate the gradient flow (GF) accurately, but to minimize f (x)
rapidly

I Sufficient decrease — Armijo’s condition

f (x(n) + τ p(n)) ≤ f (x(n))− C τ∇f (x(n))Tp(n)

where p(n) is a search direction and C ∈ (0, 1)

Figure credit: Nocedal & Wright (1999)

I Wolfe’s condition: sufficient decrease and curvature
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I Optimize the step size at every iteration by solving the line
minimization (line-search) problem

τn := argminτ>0 f (x(n) − τ∇f (x(n)))

I Brent’s method for line minimization: a combination of the
golden-section search with parabolic interpolation (derivative-free)

Figure credit: Numerical Recipes in C (1992)

I A robust implementation of Brent’s method available in Numerical
Recipes in C (1992), see also the function fminbnd in MATLAB
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Algorithm 2 Steepest Descent with Line Search (SDLS)

1: x(0) ← x0 (initial guess)
2: n← 0
3: repeat
4: compute the gradient ∇f (x(n))
5: determine optimal step size τn = argminτ>0 f (x(n) − τ∇f (x(n)))
6: update x(n+1) = x(n) − τn ∇f (x(n))
7: n← n + 1

8: until |f (x
(n))−f (x(n−1))|
|f (x(n−1))| < εf

Input:
x0 — initial guess
ετ — tolerance in line search
εf — tolerance in the termination condition

Output:
an approximation of the minimizer x̃
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I Consider, for now, minimization of a quadratic form

f (x) =
1

2
xTAx− bTx,

where A ∈ RN×N is a symmetric, positive-definite matrix and b ∈ RN

I Then,
∇f (x) = Ax− b =: r

such that minimizing f (x) is equivalent to solving Ax = b

I A set of nonzero vectors [p0,p1, . . . ,pk ] is said to be conjugate with
respect to matrix A if

pTi Apj = 0, ∀i , j = 0, . . . , k , i 6= j

(conjugacy implies linear independence)
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I Conjugate Gradient (CG) method

x(n+1) = x(n) + τn p
(n), n = 1, 2, . . . ,

p(n) = −r(n) + β(n) pn−1, (r(n) = ∇f (x(n)) = Ax(n) − b),

β(n) =
(r(n))TAp(n−1)

(p(n−1))TAp(n−1)
, (“momentum”),

τn = − (r(n))Tp(n)

(p(n))TAp(n)
, (exact formula for optimal step size),

x0 = x0, p(0) = −r(0)

I The directions p(0),p(1), . . . ,p(n) generated by the CG method are
conjugate with respect to matrix A

I this gives rise to a number of interesting and useful properties
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Theorem (properties of CG iterations)

The iterates generated by the CG method have the following properties

I

span
{
p(0),p(1), . . . ,p(n)

}
= span

{
r(0), r(1), . . . , r(n)

}
= span

{
r(0),Ar(0), . . . ,Anr(0)

}
I (the expanding subspace property)

(r(n))T r(k) = (r(n))Tp(k) = 0, ∀i = 0, . . . , n − 1

I x(n) is the minimizer of f (x) = 1
2x

TAx− bTx over the set{
x0 + span

{
p(0),p(1), . . . ,p(n)

}}
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I Thus, in the Conjugate Gradients method minimization of
f (x) = 1

2x
TAx− bTx is performed by solving (exactly) N = dim(x)

line-minimization problems along the conjugate directions{
p(0),p(1), . . . ,p(n)

}
I As a result, convergence to x̃ is achieved in at most N iterations

I What happens when f (x) is a general convex function?
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I The (linear) Conjugate Gradients method admits a generalization to
the nonlinear setting by:

I replacing the residual r(n) with the gradient ∇f (x(n))

I computing the step size via line search
τn = argminτ>0 f (x(n) − τ∇f (x(n)))

I using a more general expressions for the ”momentum” term β(n) (such
that the descent directions p(0),p(1), . . . ,p(n) will only be
approximately conjugate)
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I Nonlinear Conjugate Gradient (NCG) method

x(n+1) = x(n) + τn p
(n), n = 1, 2, . . . ,

p(n) = −∇f (x(n)) + β(n) pn−1,

β(n) =



(
∇f (x(n))

)T

∇f (x(n))

(∇f (x(n−1)))
T ∇f (x(n−1))

(Fletcher-Reeves),(
∇f (x(n))

)T (
∇f (x(n)) −∇f (x(n−1))

)
(∇f (x(n−1)))

T ∇f (x(n−1))
(Polak-Ribière),

τn = argminτ>0 f (x(n) − τ∇f (x(n))),

x0 = x0, p(0) = −∇f (x(0))

I For quadratic functions f (x), both the Fletcher-Reeves (FR) and the
Polak-Ribière (PR) variant coincide with the the linear CG

I In general, the descent directions p(0),p(1), . . . ,p(n) are now only
approximately conjugate
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Algorithm 3 Polak-Ribière version of Conjugate Gradient (CG-PR)

1: x(0) ← x0 (initial guess)
2: n← 0
3: repeat
4: compute the gradient ∇f (x(n))

5: calculate βn =
(∇f (x(n)))T(∇f (x(n))−∇f (x(n−1)))

(∇f (x(n−1)))T∇f (x(n−1))

6: determine the descent direction p(n) = −∇f (x(n)) + β(n) pn−1
7: determine optimal step size τn = argminτ>0 f (x(n) + τ p(n))
8: update x(n+1) = x(n) + τn p(n)

9: n← n + 1

10: until |f (x
(n))−f (x(n−1))|
|f (x(n−1))| < εf

Input:
x0 — initial guess, ετ — tolerance in line search
εf — tolerance in the termination condition

Output:
an approximation of the minimizer x̃
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Convergence theory — quadratic case (I)

I Let f (x) = 1
2x

TAx− bTx, where the matrix A has eigenvalues
0 < λ1 ≤ · · · ≤ λN and ‖x‖A = xTAx

Theorem (Linear Convergence of Steepest Descent)

For the Steepest-Descent approach we have the following estimate

‖x(n+1) − x̃‖2A ≤
(
λN − λ1
λN + λ1

)2

‖x(n) − x̃‖2A

I The rate of convergence is controlled by the “spread” of the
eigenvalues of A
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Convergence theory — quadratic case (II)

Theorem (Convergence of Linear Conjugate Gradients)

For the linear Conjugate Gradients approach we have the following
estimate

‖x(n+1) − x̃‖2A ≤
(
λN−n − λ1
λN−n + λ1

)2

‖x0 − x̃‖2A

I The iterates take out one eigenvalue at a time

I clustering of eigenvalues matters

I In the nonlinear setting, it is advantageous to periodically reset βn to
zero (helpful in practice and simplifies some convergence proofs)
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I What about problems with equality constraints?
I suppose c : RN → RM , where 1 ≤ M < N

I then, we have an equality-constrained optimization problem

min
x∈RN

f (x)

subject to: c(x) = 0

I If the constraint equation can be “solved” and we can write
x = y + z, where y ∈ RN−M and z = g(y) ∈ RM , then the problem is
reduced to an unconstrained one with a reduced objective function

min
y∈RN−M

f (y + g(y))
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I Consider augmented objective function L : RN → R

L(x,λ) := f (x)− λTc(x),

where λ ∈ RM is the Lagrange multiplier

I Differentiating the augmented objective function with respect to x

∇xL(x,λ) := ∇f (x)− λT∇c(x)

Theorem (First-Order Necessary Condition)

If x̃ is a local minimizer of an equality-constrained optimization problem,
then there exists λ ∈ RM such that the following equations are satisfied

∇f (x̃)− λT∇c(x̃) = 0, c(x̃) = 0

For inequality-constrained problems, the first-order necessary conditions
become more complicated — the Karush-Kuhn-Tucker (KKT) conditions
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I How to compute equality-constrained minimizers with a gradient
method?

I At each x ∈ RN the linearized constraint function ∇c(x) ∈ RM×N

defines a (kernel) subspace with dimension rank[∇c(x)]

Sx := {x′ ∈ RN , ∇c(x)x′ = 0}

I this is the subspace tangent to the constraint manifold at x

I we need to project the gradient ∇f (x) onto Sx
I Assuming that rank[∇c(x)] = M, the projection operator

PSx : RN → Sx is given by

PSx := I−∇c(x)
[
(∇c(x))T∇c(x)

]−1
(∇c(x))T

I Replace ∇f (x) with PSx∇f (x) in the gradient method (SD or SDLS)

I nonlinear constraints satisfied with an error O((∆τ)2) or O(τ 2n )
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Algorithm 4 Projected Steepest Descent (PSD)

1: x(0) ← x0 (initial guess)
2: n← 0
3: repeat
4: compute the gradient ∇f (x(n))
5: compute linearization of the constraint ∇c(x(n))
6: determine the projector PS

x(n)

7: determine the projected gradient PS
x(n)

∇f (x(n))

8: update x(n+1) = x(n) −∆τ PS
x(n)

∇f (x(n))
9: n← n + 1

10: until |f (x
(n))−f (x(n−1))|
|f (x(n−1))| < εf

Input:
x0 — initial guess, ∆τ — fixed step size
εf — tolerance in the termination condition

Output: an approximation of the minimizer x̃
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Computational Tests
I Rosenbrock’s “banana” function

f (x1, x2) = 100(x2 − x21 )2 + (1− x1)2

I Global minimizer

x1 = x2 = 1, f (1, 1) = 0

I The function is known for its poor conditioning

I eigenvalues of the Hessian ∇2f at the minimum:

λ1 ≈ 0.4, λ2 ≈ 1001.6

I Constraint

c(x1, x2) = −0.05 x41 − x2 + 2.651605 = 0
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