Scattered sentences have few separable randomizations

Isaac Goldbring

University of California, Irvine

ASL North American Annual Meeting Special Session in Continuous Model Theory Boise, Idaho, March 2017

Isaac Goldbring (UCI)

Scattered sentences and randomizations

Boise March 2017 1 / 22

2 Randomizations

3 The main results

< 17 ▶

Vaught's conjecture

In this talk:

- *L* is a countable (classical) first-order language,
- / denotes the set of isomorphism types of countable *L*-structures,
- for $i \in I$, θ_i denotes a Scott sentence for i,
- φ denotes a sentence of $L_{\omega_1,\omega}$, and
- *I*(φ) denotes the set of isomorphism types of countable models of φ.

Vaught's conjecture

 $I(\varphi)$ is either countable or has cardinality 2^{\aleph_0} .

Theorem (Morley, 1970)

 $|I(\varphi)| \leq \aleph_1 \text{ or } |I(\varphi)| = 2^{\aleph_0}.$

3

イロト イポト イヨト イヨト

Vaught's conjecture

In this talk:

- *L* is a countable (classical) first-order language,
- / denotes the set of isomorphism types of countable *L*-structures,
- for $i \in I$, θ_i denotes a Scott sentence for i,
- φ denotes a sentence of $L_{\omega_1,\omega}$, and
- *I*(φ) denotes the set of isomorphism types of countable models of φ.

Vaught's conjecture

 $I(\varphi)$ is either countable or has cardinality 2^{\aleph_0} .

Theorem (Morley, 1970)

 $|I(\varphi)| \leq \aleph_1 \text{ or } |I(\varphi)| = 2^{\aleph_0}.$

イロト 不得 トイヨト イヨト 二日

Vaught's conjecture

In this talk:

- *L* is a countable (classical) first-order language,
- / denotes the set of isomorphism types of countable *L*-structures,
- for $i \in I$, θ_i denotes a Scott sentence for i,
- φ denotes a sentence of $L_{\omega_1,\omega}$, and
- *I*(φ) denotes the set of isomorphism types of countable models of φ.

Vaught's conjecture

 $I(\varphi)$ is either countable or has cardinality 2^{\aleph_0} .

Theorem (Morley, 1970)

 $|I(\varphi)| \leq \aleph_1 \text{ or } |I(\varphi)| = 2^{\aleph_0}.$

くロト 不得 トイヨト イヨト

Theorem

The following are equivalent:

- For each α < ω₁, there are only countably many ≡_α-classes of models of φ;
- There is no perfect set of models of φ .

Definition

 φ is *scattered* if either of the above equivalent conditions hold.

Theorem (Morley)

$$\varphi$$
 scattered $\Rightarrow |I(\varphi)| \leq \aleph_1$.

• φ not scattered $\Rightarrow |I(\varphi)| = 2^{\aleph_0}$.

(日) (日) (日) (日) (日)

Theorem

The following are equivalent:

- For each α < ω₁, there are only countably many ≡_α-classes of models of φ;
- There is no perfect set of models of φ .

Definition

 φ is *scattered* if either of the above equivalent conditions hold.

Theorem (Morley)

- φ scattered $\Rightarrow |I(\varphi)| \leq \aleph_1$.
- φ not scattered $\Rightarrow |I(\varphi)| = 2^{\aleph_0}$.

ヘロト ヘロト ヘビト ヘビト

Theorem

The following are equivalent:

- For each α < ω₁, there are only countably many ≡_α-classes of models of φ;
- There is no perfect set of models of φ .

Definition

 φ is *scattered* if either of the above equivalent conditions hold.

Theorem (Morley)

$$\varphi \text{ scattered} \Rightarrow |I(\varphi)| \leq \aleph_1.$$

•
$$arphi$$
 not scattered \Rightarrow $|I(arphi)|=2^{leph_0}$.

The absolute Vaught conjecture

The absolute Vaught conjecture

If φ is scattered, then $I(\varphi)$ is countable.

- Clearly, the absolute Vaught conjecture implies Vaught's conjecture.
- Conversely, if ZFC⊢VC, then ZFC⊢AVC by Schoenfield absoluteness (as being scattered is Π¹₂).

The absolute Vaught conjecture

The absolute Vaught conjecture

If φ is scattered, then $I(\varphi)$ is countable.

- Clearly, the absolute Vaught conjecture implies Vaught's conjecture.
- Conversely, if ZFC⊢VC, then ZFC⊢AVC by Schoenfield absoluteness (as being scattered is Π¹₂).

2 Randomizations

3 The main results

< 17 ▶

- The *continuous language L*^{*R*} has two sorts: a sort K for random variables and a sort E for events.
- For each *n*-ary *L*-formula θ , there is a function symbol $\llbracket \theta(\cdot) \rrbracket : \mathbb{K}^n \to \mathbb{E}$.

The *pure randomization theory P*^{*R*} has the following axioms:

- atomless probability algebra axioms;
- sup_{\vec{X}} $d(\llbracket (\theta \land \psi)(\vec{X}) \rrbracket, \llbracket \theta(\vec{X}) \rrbracket \sqcap \llbracket \psi(\vec{X}) \rrbracket) = 0$, etc...;
- $\sup_{\vec{X}} \inf_{Y} d(\llbracket \exists y(\theta(\vec{X}, y)) \rrbracket, \llbracket \theta(\vec{X}, Y) \rrbracket) = 0;$
- $d(\llbracket \sigma \rrbracket, \top) = 0$ for all tautologies σ ;
- $\sup_{B} \inf_{X,Y} d(B, [X = Y]) = 0;$
- $\sup_{B,C} |d(B,C) \mu(B \triangle C)| = 0$ and $\sup_{X,Y} |d(X,Y) - \mu[X \neq Y]| = 0.$

Pre-models of P^R are called randomizations and models are called complete randomizations.

■ The *continuous language* L^R has two sorts: a sort K for random variables and a sort E for events.

For each *n*-ary *L*-formula θ , there is a function symbol $\llbracket \theta(\cdot) \rrbracket : \mathbb{K}^n \to \mathbb{E}$.

The *pure randomization theory P*^{*R*} has the following axioms:

atomless probability algebra axioms;

- sup_{\vec{X}} $d(\llbracket (\theta \land \psi)(\vec{X}) \rrbracket, \llbracket \theta(\vec{X}) \rrbracket \sqcap \llbracket \psi(\vec{X}) \rrbracket) = 0$, etc...;
- $\sup_{\vec{X}} \inf_{Y} d(\llbracket \exists y(\theta(\vec{X}, y)) \rrbracket, \llbracket \theta(\vec{X}, Y) \rrbracket) = 0;$
- $d(\llbracket \sigma \rrbracket, \top) = 0$ for all tautologies σ ;
- $\sup_{B} \inf_{X,Y} d(B, [X = Y]) = 0;$
- $\sup_{B,C} |d(B,C) \mu(B \triangle C)| = 0$ and $\sup_{X,Y} |d(X,Y) - \mu[X \neq Y]| = 0.$

Pre-models of P^R are called randomizations and models are called complete randomizations.

■ The *continuous language* L^R has two sorts: a sort K for random variables and a sort E for events.

For each *n*-ary *L*-formula θ , there is a function symbol $\llbracket \theta(\cdot) \rrbracket : \mathbb{K}^n \to \mathbb{E}$.

• The *pure randomization theory P*^{*R*} has the following axioms:

- atomless probability algebra axioms;
- sup_{\vec{X}} $d(\llbracket (\theta \land \psi)(\vec{X}) \rrbracket, \llbracket \theta(\vec{X}) \rrbracket \sqcap \llbracket \psi(\vec{X}) \rrbracket) = 0$, etc...;
- $\sup_{\vec{X}} \inf_{Y} d(\llbracket \exists y(\theta(\vec{X}, y)) \rrbracket, \llbracket \theta(\vec{X}, Y) \rrbracket) = 0;$
- $d(\llbracket \hat{\sigma} \rrbracket, \top) = 0$ for all tautologies σ ;
- $\sup_B \inf_{X,Y} d(B, [X = Y]) = 0;$
- sup_{*B*,*C*} $|d(B, C) \mu(B \triangle C)| = 0$ and sup_{*X*,*Y*} $|d(X, Y) - \mu[X \neq Y]| = 0.$

Pre-models of P^R are called randomizations and models are called complete randomizations.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

■ The *continuous language* L^R has two sorts: a sort K for random variables and a sort E for events.

For each *n*-ary *L*-formula θ , there is a function symbol $\llbracket \theta(\cdot) \rrbracket : \mathbb{K}^n \to \mathbb{E}$.

• The *pure randomization theory P*^{*R*} has the following axioms:

- atomless probability algebra axioms;
- sup_{\vec{X}} $d(\llbracket (\theta \land \psi)(\vec{X}) \rrbracket, \llbracket \theta(\vec{X}) \rrbracket \sqcap \llbracket \psi(\vec{X}) \rrbracket) = 0$, etc...;
- $\sup_{\vec{X}} \inf_{Y} d(\llbracket \exists y(\theta(\vec{X}, y) \rrbracket, \llbracket \theta(\vec{X}, Y) \rrbracket) = 0;$
- $d(\llbracket \hat{\sigma} \rrbracket, \top) = 0$ for all tautologies σ ;
- $\sup_B \inf_{X,Y} d(B, [X = Y]) = 0;$
- $\sup_{B,C} |d(B,C) \mu(B \triangle C)| = 0$ and $\sup_{X,Y} |d(X,Y) - \mu[X \neq Y]| = 0.$
- Pre-models of P^R are called *randomizations* and models are called *complete randomizations*.

A (10) A (10)

Borel randomizations

Example

Let \mathcal{M} be a structure with at least two elements. The *Borel* randomization of \mathcal{M} is the structure $(\mathcal{M}^{[0,1)}, \mathcal{L})$, where:

■ $\mathcal{M}^{[0,1)}$ is the set of functions $\mathbf{f} : [0,1) \to \mathcal{M}$ with countable range such that $\mathbf{f}^{-1}(t) \in \mathcal{L}$ for all $t \in [0,1)$;

 L is the family of Borel subsets of [0, 1) equipped with Lebesgue measure;

$$\blacksquare \ \llbracket \theta(\vec{\mathbf{f}}) \rrbracket := \{ t \in [0, 1) : \mathcal{M} \models \theta(\vec{\mathbf{f}}(t)) \}.$$

The Borel randomization is a *pre-complete* separable randomization.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Borel randomizations

Example

Let \mathcal{M} be a structure with at least two elements. The *Borel* randomization of \mathcal{M} is the structure $(\mathcal{M}^{[0,1)}, \mathcal{L})$, where:

- $\mathcal{M}^{[0,1)}$ is the set of functions $\mathbf{f} : [0,1) \to \mathcal{M}$ with countable range such that $\mathbf{f}^{-1}(t) \in \mathcal{L}$ for all $t \in [0,1)$;
- *L* is the family of Borel subsets of [0, 1) equipped with Lebesgue measure;

$$\blacksquare \ \llbracket \theta(\vec{\mathbf{f}}) \rrbracket := \{ t \in [0, 1) : \mathcal{M} \models \theta(\vec{\mathbf{f}}(t)) \}.$$

The Borel randomization is a *pre-complete* separable randomization.

Borel randomizations

Example

Let \mathcal{M} be a structure with at least two elements. The *Borel* randomization of \mathcal{M} is the structure $(\mathcal{M}^{[0,1)}, \mathcal{L})$, where:

- $\mathcal{M}^{[0,1)}$ is the set of functions $\mathbf{f} : [0,1) \to \mathcal{M}$ with countable range such that $\mathbf{f}^{-1}(t) \in \mathcal{L}$ for all $t \in [0,1)$;
- *L* is the family of Borel subsets of [0, 1) equipped with Lebesgue measure;

$$\blacksquare \ \llbracket \theta(\vec{\mathbf{f}}) \rrbracket := \{ t \in [0, 1) : \mathcal{M} \models \theta(\vec{\mathbf{f}}(t)) \}.$$

The Borel randomization is a *pre-complete* separable randomization.

Basic randomizations

Example

Suppose that:

- $[0,1) = \bigcup_n B_n$ is a partition of [0,1) into positive measure Borel sets;
- for each *n*, M_n is a countable *L*-structure;
- $\prod_n \mathcal{M}_n^{\mathcal{B}_n}$ is the set of all functions $\mathbf{f} : [0, 1) \to \bigcup_n \mathcal{M}_n$ such that

 $(\forall t \in B_n)\mathbf{f}(t) \in \mathcal{M}_n \text{ and } (\forall a \in \mathcal{M}_n) \{t \in B_n : \mathbf{f}(t) = a\} \in \mathcal{L};$

$$\blacksquare \ \llbracket \theta(\vec{\mathbf{f}}) \rrbracket := \bigcup_n \{ t \in B_n : \mathcal{M}_n \models \theta(\vec{\mathbf{f}}(t)) \}.$$

Then $(\prod_n \mathcal{M}_n^{\mathcal{B}_n}, \mathcal{L})$ is called a *basic randomization*.

Basic randomizations are also pre-complete separable randomizations. Their isomorphism type is captured by their *density function*.

Isaac Goldbring (UCI)

Basic randomizations

Example

Suppose that:

- $[0,1) = \bigcup_n B_n$ is a partition of [0,1) into positive measure Borel sets;
- for each *n*, M_n is a countable *L*-structure;
- $\prod_n \mathcal{M}_n^{\mathcal{B}_n}$ is the set of all functions $\mathbf{f} : [0, 1) \to \bigcup_n \mathcal{M}_n$ such that

 $(\forall t \in B_n)\mathbf{f}(t) \in \mathcal{M}_n \text{ and } (\forall a \in \mathcal{M}_n) \{t \in B_n : \mathbf{f}(t) = a\} \in \mathcal{L};$

$$\blacksquare \ \llbracket \theta(\vec{\mathbf{f}}) \rrbracket := \bigcup_n \{ t \in B_n : \mathcal{M}_n \models \theta(\vec{\mathbf{f}}(t)) \}.$$

Then $(\prod_n \mathcal{M}_n^{\mathcal{B}_n}, \mathcal{L})$ is called a *basic randomization*.

Basic randomizations are also pre-complete separable randomizations. Their isomorphism type is captured by their *density function*.

Basic randomizations

Example

Suppose that:

- $[0,1) = \bigcup_n B_n$ is a partition of [0,1) into positive measure Borel sets;
- for each *n*, M_n is a countable *L*-structure;
- $\prod_n \mathcal{M}_n^{\mathcal{B}_n}$ is the set of all functions $\mathbf{f} : [0, 1) \to \bigcup_n \mathcal{M}_n$ such that

 $(\forall t \in B_n)\mathbf{f}(t) \in \mathcal{M}_n \text{ and } (\forall a \in \mathcal{M}_n) \{t \in B_n : \mathbf{f}(t) = a\} \in \mathcal{L};$

$$\blacksquare \ \llbracket \theta(\vec{\mathbf{f}}) \rrbracket := \bigcup_n \{ t \in B_n : \mathcal{M}_n \models \theta(\vec{\mathbf{f}}(t)) \}.$$

Then $(\prod_n \mathcal{M}_n^{\mathcal{B}_n}, \mathcal{L})$ is called a *basic randomization*.

Basic randomizations are also pre-complete separable randomizations. Their isomorphism type is captured by their *density function*.

Isaac Goldbring (UCI)

Randomizations of $L_{\omega_1,\omega}$ -sentences

Theorem (Keisler)

If \mathcal{P} is a complete separable randomization, then there is a unique mapping $\llbracket \cdot \rrbracket^{\mathcal{P}}$ from $L_{\omega_1,\omega}$ -sentences to events that agrees with the interpretation of $\llbracket \cdot \rrbracket$ on first-order sentences that also respects validity, countable connectives, and quantification. Moreover, the maps are all Lipshitz with bound 1.

Definition

If \mathcal{N} is a separable randomization with completion \mathcal{P} , we say that \mathcal{N} is a *randomization of* φ if $\mu^{\mathcal{N}}[\![\varphi]\!] := \mu([\![\varphi]\!]^{\mathcal{P}}) = 1$.

(日)

Randomizations of $L_{\omega_1,\omega}$ -sentences

Theorem (Keisler)

If \mathcal{P} is a complete separable randomization, then there is a unique mapping $\llbracket \cdot \rrbracket^{\mathcal{P}}$ from $L_{\omega_1,\omega}$ -sentences to events that agrees with the interpretation of $\llbracket \cdot \rrbracket$ on first-order sentences that also respects validity, countable connectives, and quantification. Moreover, the maps are all Lipshitz with bound 1.

Definition

If \mathcal{N} is a separable randomization with completion \mathcal{P} , we say that \mathcal{N} is a *randomization of* φ if $\mu^{\mathcal{N}}[\![\varphi]\!] := \mu([\![\varphi]\!]^{\mathcal{P}}) = 1$.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Basic randomizations of $L_{\omega_1,\omega}$ -sentences

Proposition

Suppose that \mathcal{N} is the reduction of the basic randomization $(\prod_n \mathcal{M}_n^{\mathcal{B}_n}, \mathcal{L})$. Then \mathcal{N} is a randomization of φ if and only if each $\mathcal{M}_n \models \varphi$, in which case we say that \mathcal{N} is a *basic randomization of* φ .

Definition

We say that φ has *few separable randomizations* if every complete randomization of φ is isomorphic to a basic randomization.

Natural Question

Which sentences have few separable randomizations?

< 日 > < 同 > < 回 > < 回 > < 回 > <

Basic randomizations of $L_{\omega_1,\omega}$ -sentences

Proposition

Suppose that \mathcal{N} is the reduction of the basic randomization $(\prod_n \mathcal{M}_n^{\mathcal{B}_n}, \mathcal{L})$. Then \mathcal{N} is a randomization of φ if and only if each $\mathcal{M}_n \models \varphi$, in which case we say that \mathcal{N} is a *basic randomization* of φ .

Definition

We say that φ has *few separable randomizations* if every complete randomization of φ is isomorphic to a basic randomization.

Natural Question

Which sentences have few separable randomizations?

Basic randomizations of $L_{\omega_1,\omega}$ -sentences

Proposition

Suppose that \mathcal{N} is the reduction of the basic randomization $(\prod_n \mathcal{M}_n^{\mathcal{B}_n}, \mathcal{L})$. Then \mathcal{N} is a randomization of φ if and only if each $\mathcal{M}_n \models \varphi$, in which case we say that \mathcal{N} is a *basic randomization* of φ .

Definition

We say that φ has *few separable randomizations* if every complete randomization of φ is isomorphic to a basic randomization.

Natural Question

Which sentences have few separable randomizations?

イロト 不得 トイヨト イヨト

The main results 3

∃ >

< 4 →

The main results

Scattered sentences and few separable randomizations

Theorem (Keisler)

If φ has few separable randomizations, then φ is scattered.

Theorem (Keisler)

Assume that Lebesgue measure is \aleph_1 -additive (e.g. assume MA(\aleph_1)). If φ is scattered, then φ has few separable randomizations.

Theorem (Andrews, G., Hachtman, Keisler, Marker)

If φ is scattered, then φ has few separable randomizations.

Summing up: φ is scattered if and only if φ has few separable randomizations.

イロト イヨト イヨト イヨト

Scattered sentences and few separable randomizations

Theorem (Keisler)

If φ has few separable randomizations, then φ is scattered.

Theorem (Keisler)

Assume that Lebesgue measure is \aleph_1 -additive (e.g. assume MA(\aleph_1)). If φ is scattered, then φ has few separable randomizations.

Theorem (Andrews, G., Hachtman, Keisler, Marker)

If φ is scattered, then φ has few separable randomizations.

Summing up: φ is scattered if and only if φ has few separable randomizations.

イロト イヨト イヨト イヨト

The main results

Scattered sentences and few separable randomizations

Theorem (Keisler)

If φ has few separable randomizations, then φ is scattered.

Theorem (Keisler)

Assume that Lebesgue measure is \aleph_1 -additive (e.g. assume MA(\aleph_1)). If φ is scattered, then φ has few separable randomizations.

Theorem (Andrews, G., Hachtman, Keisler, Marker)

If φ is scattered, then φ has few separable randomizations.

Summing up: φ is scattered if and only if φ has few separable randomizations.

Isaac Goldbring (UCI)

Scattered sentences and randomizations

Boise March 2017 13 / 22

イロト イヨト イヨト イヨト

Scattered sentences and few separable randomizations

Theorem (Keisler)

If φ has few separable randomizations, then φ is scattered.

Theorem (Keisler)

Assume that Lebesgue measure is \aleph_1 -additive (e.g. assume MA(\aleph_1)). If φ is scattered, then φ has few separable randomizations.

Theorem (Andrews, G., Hachtman, Keisler, Marker)

If φ is scattered, then φ has few separable randomizations.

Summing up: φ is scattered if and only if φ has few separable randomizations.

A representation theorem

Theorem (Keisler)

Every complete separable randomization of φ is isomorphic to the completion of a countable randomization $\mathcal{N} = (\mathcal{K}, \mathcal{B})$ such that for some atomless probability space $(\Omega, \mathcal{E}, \nu)$ and family of countable models $\langle \mathcal{M}_t \rangle_{t \in \Omega}$ of φ we have:

(a)
$$\mathcal{K} \subseteq \prod_{t \in \Omega} M_t$$
 and $\mathcal{B} \subseteq \mathcal{E}$.

(b)
$$M_t = \{ \mathbf{f}(t) \mid \mathbf{f} \in \mathcal{K} \}$$
 for each $t \in \Omega$.

- (C) (Ω, E, ν) is the (σ-additive) probability space generated by (Ω, B, μ).
- (d) For each $L_{\omega_1\omega}$ -formula $\psi(\cdot)$ and tuple \vec{f} in \mathcal{K} ,

$$\mu^{\mathcal{N}}(\llbracket \psi(\vec{\mathbf{f}}) \rrbracket) = \nu(\{t \in \Omega \mid \mathcal{M}_t \models \psi(\vec{\mathbf{f}}(t))\}).$$

If, in addition, φ is scattered, then we may take $(\Omega, \mathcal{E}, \nu) = ([0, 1), \mathcal{L}, \lambda)$.

Suppose that φ is not scattered, so there is a perfect set (M_t) of nonisomorphic models of φ.

- By the Borel isomorphism theorem, we might as well assume $t \in [0, 1)$.
- From this data, we can then build a countable randomization *N* as in the representation theorem.
- For any $i \in I$, $|\{t \in [0, 1) : \mathcal{M}_t \models \theta_i\}| \leq 1$, whence $\mu^{\mathcal{N}}(\llbracket \theta_i \rrbracket) = 0$.

But in a basic randomization \mathcal{P} , there is $i \in I$ such that $\mu^{\mathcal{P}}(\llbracket \theta_i \rrbracket) > 0$.

It follows that the completion of \mathcal{N} is not isomorphic to \mathcal{P} and thus φ does not have few separable randomizations.

- Suppose that φ is not scattered, so there is a perfect set (M_t) of nonisomorphic models of φ.
- By the Borel isomorphism theorem, we might as well assume $t \in [0, 1)$.
- From this data, we can then build a countable randomization ${\cal N}$ as in the representation theorem.
- For any $i \in I$, $|\{t \in [0, 1) : \mathcal{M}_t \models \theta_i\}| \le 1$, whence $\mu^{\mathcal{N}}(\llbracket \theta_i \rrbracket) = 0$.
- But in a basic randomization \mathcal{P} , there is $i \in I$ such that $\mu^{\mathcal{P}}(\llbracket \theta_i \rrbracket) > 0$.
- It follows that the completion of \mathcal{N} is not isomorphic to \mathcal{P} and thus φ does not have few separable randomizations.

- Suppose that φ is not scattered, so there is a perfect set (M_t) of nonisomorphic models of φ.
- By the Borel isomorphism theorem, we might as well assume $t \in [0, 1)$.
- From this data, we can then build a countable randomization *N* as in the representation theorem.
- For any $i \in I$, $|\{t \in [0, 1) : \mathcal{M}_t \models \theta_i\}| \le 1$, whence $\mu^{\mathcal{N}}(\llbracket \theta_i \rrbracket) = 0$.

But in a basic randomization \mathcal{P} , there is $i \in I$ such that $\mu^{\mathcal{P}}(\llbracket \theta_i \rrbracket) > 0$.

It follows that the completion of \mathcal{N} is not isomorphic to \mathcal{P} and thus φ does not have few separable randomizations.

- Suppose that φ is not scattered, so there is a perfect set (M_t) of nonisomorphic models of φ.
- By the Borel isomorphism theorem, we might as well assume $t \in [0, 1)$.
- From this data, we can then build a countable randomization N as in the representation theorem.
- For any $i \in I$, $|\{t \in [0, 1) : \mathcal{M}_t \models \theta_i\}| \le 1$, whence $\mu^{\mathcal{N}}(\llbracket \theta_i \rrbracket) = 0$.

But in a basic randomization \mathcal{P} , there is $i \in I$ such that $\mu^{\mathcal{P}}(\llbracket \theta_i \rrbracket) > 0$.

It follows that the completion of \mathcal{N} is not isomorphic to \mathcal{P} and thus φ does not have few separable randomizations.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Few separable randomizations implies scattered

- Suppose that φ is not scattered, so there is a perfect set (M_t) of nonisomorphic models of φ.
- By the Borel isomorphism theorem, we might as well assume $t \in [0, 1)$.
- From this data, we can then build a countable randomization *N* as in the representation theorem.
- For any $i \in I$, $|\{t \in [0, 1) : \mathcal{M}_t \models \theta_i\}| \le 1$, whence $\mu^{\mathcal{N}}(\llbracket \theta_i \rrbracket) = 0$.

But in a basic randomization \mathcal{P} , there is $i \in I$ such that $\mu^{\mathcal{P}}(\llbracket \theta_i \rrbracket) > 0$.

It follows that the completion of *N* is not isomorphic to *P* and thus φ does not have few separable randomizations.

Few separable randomizations implies scattered

- Suppose that φ is not scattered, so there is a perfect set (M_t) of nonisomorphic models of φ.
- By the Borel isomorphism theorem, we might as well assume $t \in [0, 1)$.
- From this data, we can then build a countable randomization *N* as in the representation theorem.
- For any $i \in I$, $|\{t \in [0, 1) : \mathcal{M}_t \models \theta_i\}| \le 1$, whence $\mu^{\mathcal{N}}(\llbracket \theta_i \rrbracket) = 0$.
- But in a basic randomization \mathcal{P} , there is $i \in I$ such that $\mu^{\mathcal{P}}(\llbracket \theta_i \rrbracket) > 0$.
- It follows that the completion of *N* is not isomorphic to *P* and thus φ does not have few separable randomizations.

A test for being isomorphic to a basic randomization

Lemma (Keisler)

Suppose we have:

- a countable subset $J \subseteq I$;
- for each $j \in J$, a structure M_j with isomorphism type j;
- a basic randomization $\mathcal{P} = (\prod_{i \in J} \mathcal{M}_i^{A_i}, \mathcal{L})$, and
- **a** separable randomization \mathcal{N} .

Then $\mathcal{N}\cong\mathcal{P}$ if and only if: for each $j\in J,$ we have $\mu^\mathcal{N}([\![heta_j]\!])=\lambda(\mathsf{A}_j).$

Corollary (Keisler)

 φ has few separable randomizations if and only if every separable randomization \mathcal{N} of φ satisfies property (S): there is $i \in I$ such that $\mu^{\mathcal{N}}[\![\theta_i]\!] > 0$.

э

A test for being isomorphic to a basic randomization

Lemma (Keisler)

Suppose we have:

- a countable subset $J \subseteq I$;
- for each $j \in J$, a structure M_j with isomorphism type j;
- a basic randomization $\mathcal{P} = (\prod_{i \in J} \mathcal{M}_i^{A_i}, \mathcal{L})$, and
- **a** separable randomization \mathcal{N} .

Then $\mathcal{N} \cong \mathcal{P}$ if and only if: for each $j \in J$, we have $\mu^{\mathcal{N}}(\llbracket \theta_j \rrbracket) = \lambda(A_j)$.

Corollary (Keisler)

 φ has few separable randomizations if and only if every separable randomization \mathcal{N} of φ satisfies property (S): there is $i \in I$ such that $\mu^{\mathcal{N}}[\![\theta_i]\!] > 0$.

э

A test for being isomorphic to a basic randomization

Lemma (Keisler)

Suppose we have:

- a countable subset $J \subseteq I$;
- for each $j \in J$, a structure M_j with isomorphism type j;
- a basic randomization $\mathcal{P} = (\prod_{i \in J} \mathcal{M}_i^{A_i}, \mathcal{L})$, and
- **a** separable randomization \mathcal{N} .

Then $\mathcal{N} \cong \mathcal{P}$ if and only if: for each $j \in J$, we have $\mu^{\mathcal{N}}(\llbracket \theta_j \rrbracket) = \lambda(A_j)$.

Corollary (Keisler)

 φ has few separable randomizations if and only if every separable randomization \mathcal{N} of φ satisfies property (S): there is $i \in I$ such that $\mu^{\mathcal{N}}[\![\theta_i]\!] > 0$.

3

(日)

- Suppose that φ is scattered and let N be a separable randomization of φ with representation as in the theorem.
- For each $i \in I(\varphi)$, let $B_i := \{t : \mathcal{M}_t \models \theta_i\} \in \mathcal{L}$.
- Note that $|I(\varphi)| \leq \aleph_1$ and $[0, 1) = \bigsqcup_{i \in I(\varphi)} B_i$.
- Let $J := \{i \in I(\varphi) : \lambda(B_i) > 0\}$. Then $|I(\varphi) \setminus J| \le \aleph_1$ so $\lambda(\bigcap_{i \notin J} B_j) = 0$ and hence $\lambda(\bigsqcup_{i \in J} B_j) = 1$ by MA(\aleph_1).
- Fix $j_0 \in J$. For $j \in J \setminus \{j_0\}$, set $A_j := B_j$. Set $A_{j_0} = [0, 1) \setminus \bigsqcup_{j \neq j_0} B_j$.
- So $\langle A_j \rangle_{j \in J}$ is a partition of [0, 1) and $\lambda(A_j) = \lambda(B_j)$ for all $j \in J$.
- Let \mathcal{M}_j have isomorphism type j and set $\mathcal{P} := (\prod_{j \in J} \mathcal{M}_j^{A_j}, \mathcal{L}).$
- Since $\lambda(\llbracket \theta_j \rrbracket^{\mathcal{N}}) = \lambda(A_j)$ for all $j \in J$, we have that \mathcal{N} is isomorphic to the basic randomization \mathcal{P} by the above test.

3

- Suppose that φ is scattered and let N be a separable randomization of φ with representation as in the theorem.
- For each $i \in I(\varphi)$, let $B_i := \{t : \mathcal{M}_t \models \theta_i\} \in \mathcal{L}$.
- Note that $|I(\varphi)| \leq \aleph_1$ and $[0,1) = \bigsqcup_{i \in I(\varphi)} B_i$.
- Let $J := \{i \in I(\varphi) : \lambda(B_i) > 0\}$. Then $|I(\varphi) \setminus J| \le \aleph_1$ so $\lambda(\bigcap_{i \notin J} B_j) = 0$ and hence $\lambda(\bigsqcup_{i \in J} B_j) = 1$ by MA(\aleph_1).
- Fix $j_0 \in J$. For $j \in J \setminus \{j_0\}$, set $A_j := B_j$. Set $A_{j_0} = [0, 1) \setminus \bigsqcup_{j \neq j_0} B_j$.
- So $\langle A_j \rangle_{j \in J}$ is a partition of [0, 1) and $\lambda(A_j) = \lambda(B_j)$ for all $j \in J$.
- Let \mathcal{M}_j have isomorphism type j and set $\mathcal{P} := (\prod_{j \in J} \mathcal{M}_j^{A_j}, \mathcal{L}).$
- Since $\lambda(\llbracket \theta_j \rrbracket^{\mathcal{N}}) = \lambda(A_j)$ for all $j \in J$, we have that \mathcal{N} is isomorphic to the basic randomization \mathcal{P} by the above test.

3

- Suppose that φ is scattered and let N be a separable randomization of φ with representation as in the theorem.
- For each $i \in I(\varphi)$, let $B_i := \{t : \mathcal{M}_t \models \theta_i\} \in \mathcal{L}$.
- Note that $|I(\varphi)| \leq \aleph_1$ and $[0, 1) = \bigsqcup_{i \in I(\varphi)} B_i$.
- Let $J := \{i \in I(\varphi) : \lambda(B_i) > 0\}$. Then $|I(\varphi) \setminus J| \le \aleph_1$ so $\lambda(\bigcap_{j \notin J} B_j) = 0$ and hence $\lambda(\bigsqcup_{j \in J} B_j) = 1$ by MA(\aleph_1).
- Fix $j_0 \in J$. For $j \in J \setminus \{j_0\}$, set $A_j := B_j$. Set $A_{j_0} = [0, 1) \setminus \bigsqcup_{j \neq j_0} B_j$.
- So $\langle A_j \rangle_{j \in J}$ is a partition of [0, 1) and $\lambda(A_j) = \lambda(B_j)$ for all $j \in J$.
- Let \mathcal{M}_j have isomorphism type j and set $\mathcal{P} := (\prod_{j \in J} \mathcal{M}_j^{A_j}, \mathcal{L}).$
- Since $\lambda(\llbracket \theta_j \rrbracket^{\mathcal{N}}) = \lambda(A_j)$ for all $j \in J$, we have that \mathcal{N} is isomorphic to the basic randomization \mathcal{P} by the above test.

3

- Suppose that φ is scattered and let N be a separable randomization of φ with representation as in the theorem.
- For each $i \in I(\varphi)$, let $B_i := \{t : \mathcal{M}_t \models \theta_i\} \in \mathcal{L}$.
- Note that $|I(\varphi)| \leq \aleph_1$ and $[0, 1) = \bigsqcup_{i \in I(\varphi)} B_i$.
- Let $J := \{i \in I(\varphi) : \lambda(B_i) > 0\}$. Then $|I(\varphi) \setminus J| \le \aleph_1$ so $\lambda(\bigcap_{j \notin J} B_j) = 0$ and hence $\lambda(\bigsqcup_{j \in J} B_j) = 1$ by MA(\aleph_1).
- Fix $j_0 \in J$. For $j \in J \setminus \{j_0\}$, set $A_j := B_j$. Set $A_{j_0} = [0, 1) \setminus \bigsqcup_{j \neq j_0} B_j$.
- So $\langle A_j \rangle_{j \in J}$ is a partition of [0, 1) and $\lambda(A_j) = \lambda(B_j)$ for all $j \in J$.
- Let \mathcal{M}_j have isomorphism type j and set $\mathcal{P} := (\prod_{j \in J} \mathcal{M}_j^{A_j}, \mathcal{L}).$
- Since $\lambda(\llbracket \theta_j \rrbracket^{\mathcal{N}}) = \lambda(A_j)$ for all $j \in J$, we have that \mathcal{N} is isomorphic to the basic randomization \mathcal{P} by the above test.

3

- Suppose that φ is scattered and let N be a separable randomization of φ with representation as in the theorem.
- For each $i \in I(\varphi)$, let $B_i := \{t : \mathcal{M}_t \models \theta_i\} \in \mathcal{L}$.
- Note that $|I(\varphi)| \leq \aleph_1$ and $[0, 1) = \bigsqcup_{i \in I(\varphi)} B_i$.
- Let $J := \{i \in I(\varphi) : \lambda(B_i) > 0\}$. Then $|I(\varphi) \setminus J| \le \aleph_1$ so $\lambda(\bigcap_{j \notin J} B_j) = 0$ and hence $\lambda(\bigsqcup_{j \in J} B_j) = 1$ by MA(\aleph_1).
- Fix $j_0 \in J$. For $j \in J \setminus \{j_0\}$, set $A_j := B_j$. Set $A_{j_0} = [0, 1) \setminus \bigsqcup_{j \neq j_0} B_j$.
- So $\langle A_j \rangle_{j \in J}$ is a partition of [0, 1) and $\lambda(A_j) = \lambda(B_j)$ for all $j \in J$.
- Let \mathcal{M}_j have isomorphism type j and set $\mathcal{P} := (\prod_{j \in J} \mathcal{M}_j^{A_j}, \mathcal{L}).$
- Since $\lambda(\llbracket \theta_j \rrbracket^{\mathcal{N}}) = \lambda(A_j)$ for all $j \in J$, we have that \mathcal{N} is isomorphic to the basic randomization \mathcal{P} by the above test.

3

- Suppose that φ is scattered and let N be a separable randomization of φ with representation as in the theorem.
- For each $i \in I(\varphi)$, let $B_i := \{t : \mathcal{M}_t \models \theta_i\} \in \mathcal{L}$.
- Note that $|I(\varphi)| \leq \aleph_1$ and $[0, 1) = \bigsqcup_{i \in I(\varphi)} B_i$.
- Let $J := \{i \in I(\varphi) : \lambda(B_i) > 0\}$. Then $|I(\varphi) \setminus J| \le \aleph_1$ so $\lambda(\bigcap_{i \notin J} B_i) = 0$ and hence $\lambda(\bigsqcup_{i \in J} B_i) = 1$ by MA(\aleph_1).
- Fix $j_0 \in J$. For $j \in J \setminus \{j_0\}$, set $A_j := B_j$. Set $A_{j_0} = [0, 1) \setminus \bigsqcup_{j \neq j_0} B_j$.
- So $\langle A_j \rangle_{j \in J}$ is a partition of [0, 1) and $\lambda(A_j) = \lambda(B_j)$ for all $j \in J$.
- Let \mathcal{M}_j have isomorphism type j and set $\mathcal{P} := (\prod_{j \in J} \mathcal{M}_j^{A_j}, \mathcal{L}).$
- Since $\lambda(\llbracket \theta_j \rrbracket^{\mathcal{N}}) = \lambda(A_j)$ for all $j \in J$, we have that \mathcal{N} is isomorphic to the basic randomization \mathcal{P} by the above test.

3

- Suppose that φ is scattered and let N be a separable randomization of φ with representation as in the theorem.
- For each $i \in I(\varphi)$, let $B_i := \{t : \mathcal{M}_t \models \theta_i\} \in \mathcal{L}$.
- Note that $|I(\varphi)| \leq \aleph_1$ and $[0, 1) = \bigsqcup_{i \in I(\varphi)} B_i$.
- Let $J := \{i \in I(\varphi) : \lambda(B_i) > 0\}$. Then $|I(\varphi) \setminus J| \le \aleph_1$ so $\lambda(\bigcap_{i \notin J} B_i) = 0$ and hence $\lambda(\bigsqcup_{i \in J} B_i) = 1$ by MA(\aleph_1).
- Fix $j_0 \in J$. For $j \in J \setminus \{j_0\}$, set $A_j := B_j$. Set $A_{j_0} = [0, 1) \setminus \bigsqcup_{j \neq j_0} B_j$.
- So $\langle A_j \rangle_{j \in J}$ is a partition of [0, 1) and $\lambda(A_j) = \lambda(B_j)$ for all $j \in J$.
- Let \mathcal{M}_j have isomorphism type j and set $\mathcal{P} := (\prod_{j \in J} \mathcal{M}_j^{A_j}, \mathcal{L})$.
- Since $\lambda(\llbracket \theta_j \rrbracket^{\mathcal{N}}) = \lambda(A_j)$ for all $j \in J$, we have that \mathcal{N} is isomorphic to the basic randomization \mathcal{P} by the above test.

- Suppose that φ is scattered and let N be a separable randomization of φ with representation as in the theorem.
- For each $i \in I(\varphi)$, let $B_i := \{t : \mathcal{M}_t \models \theta_i\} \in \mathcal{L}$.
- Note that $|I(\varphi)| \leq \aleph_1$ and $[0, 1) = \bigsqcup_{i \in I(\varphi)} B_i$.
- Let $J := \{i \in I(\varphi) : \lambda(B_i) > 0\}$. Then $|I(\varphi) \setminus J| \le \aleph_1$ so $\lambda(\bigcap_{i \notin J} B_i) = 0$ and hence $\lambda(\bigsqcup_{i \in J} B_i) = 1$ by MA(\aleph_1).
- Fix $j_0 \in J$. For $j \in J \setminus \{j_0\}$, set $A_j := B_j$. Set $A_{j_0} = [0, 1) \setminus \bigsqcup_{j \neq j_0} B_j$.
- So $\langle A_j \rangle_{j \in J}$ is a partition of [0, 1) and $\lambda(A_j) = \lambda(B_j)$ for all $j \in J$.
- Let \mathcal{M}_j have isomorphism type j and set $\mathcal{P} := (\prod_{j \in J} \mathcal{M}_j^{A_j}, \mathcal{L}).$
- Since $\lambda(\llbracket \theta_j \rrbracket^{\mathcal{N}}) = \lambda(A_j)$ for all $j \in J$, we have that \mathcal{N} is isomorphic to the basic randomization \mathcal{P} by the above test.

Suppose, in *V*, that φ is scattered and that \mathcal{N} is a countable randomization of φ .

- We show that \mathcal{N} has property (S) in V.
- Go to a forcing extension V[G] with the same ordinals such that $MA(\aleph_1)$ holds.
- By Shoenfield absoluteness, φ is still scattered in V[G], whence has few separable randomizations in V[G] by Keisler's theorem.
- One must show that \mathcal{N} is still a countable randomization of φ in V[G], whence, in V[G], \mathcal{N} satisfies property (S).
- One then shows that property (S) is Σ_1^1 , whence absolute, so also true in *V*.

< ロ > < 同 > < 回 > < 回 >

- Suppose, in *V*, that φ is scattered and that \mathcal{N} is a countable randomization of φ .
- We show that \mathcal{N} has property (S) in V.
- Go to a forcing extension V[G] with the same ordinals such that $MA(\aleph_1)$ holds.
- By Shoenfield absoluteness, φ is still scattered in V[G], whence has few separable randomizations in V[G] by Keisler's theorem.
- One must show that \mathcal{N} is still a countable randomization of φ in V[G], whence, in V[G], \mathcal{N} satisfies property (S).
- One then shows that property (S) is Σ_1^1 , whence absolute, so also true in *V*.

< ロ > < 同 > < 回 > < 回 >

- Suppose, in *V*, that φ is scattered and that \mathcal{N} is a countable randomization of φ .
- We show that \mathcal{N} has property (S) in V.
- Go to a forcing extension *V*[*G*] with the same ordinals such that MA(ℵ₁) holds.
- By Shoenfield absoluteness, φ is still scattered in V[G], whence has few separable randomizations in V[G] by Keisler's theorem.
- One must show that \mathcal{N} is still a countable randomization of φ in V[G], whence, in V[G], \mathcal{N} satisfies property (S).
- One then shows that property (S) is Σ_1^1 , whence absolute, so also true in *V*.

< ロ > < 同 > < 回 > < 回 >

- Suppose, in *V*, that φ is scattered and that \mathcal{N} is a countable randomization of φ .
- We show that \mathcal{N} has property (S) in V.
- Go to a forcing extension *V*[*G*] with the same ordinals such that MA(ℵ₁) holds.
- By Shoenfield absoluteness, φ is still scattered in V[G], whence has few separable randomizations in V[G] by Keisler's theorem.
- One must show that N is still a countable randomization of φ in V[G], whence, in V[G], N satisfies property (S).
- One then shows that property (S) is Σ_1^1 , whence absolute, so also true in *V*.

- Suppose, in *V*, that φ is scattered and that \mathcal{N} is a countable randomization of φ .
- We show that \mathcal{N} has property (S) in V.
- Go to a forcing extension *V*[*G*] with the same ordinals such that MA(ℵ₁) holds.
- By Shoenfield absoluteness, φ is still scattered in V[G], whence has few separable randomizations in V[G] by Keisler's theorem.
- One must show that *N* is still a countable randomization of *φ* in *V*[*G*], whence, in *V*[*G*], *N* satisfies property (S).
- One then shows that property (S) is Σ_1^1 , whence absolute, so also true in *V*.

- Suppose, in *V*, that φ is scattered and that \mathcal{N} is a countable randomization of φ .
- We show that \mathcal{N} has property (S) in V.
- Go to a forcing extension *V*[*G*] with the same ordinals such that MA(ℵ₁) holds.
- By Shoenfield absoluteness, φ is still scattered in V[G], whence has few separable randomizations in V[G] by Keisler's theorem.
- One must show that *N* is still a countable randomization of *φ* in *V*[*G*], whence, in *V*[*G*], *N* satisfies property (S).
- One then shows that property (S) is Σ¹₁, whence absolute, so also true in V.

Suppose that *N* = (*K*, *E*) is a countable randomization of *φ* in *V*.
 We want this to remain true in *V*[*G*].

Let \mathcal{P} and \mathcal{Q} be the completions of \mathcal{N} in V and V[G] respectively.

The desired result follows from the more general fact that $\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{P}} = \llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{Q}}$ for all $L_{\omega_1,\omega}$ -formulae ψ and all tuples $\mathbf{f} \in \mathcal{K}$.

- One proves this fact by induction on complexity of formulae.
- Quantifier case: Suppose $\psi(y) = (\exists x)\theta(x, y)$. Then:

 $\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{Q}} = \sup_{\mathbf{g} \in \mathcal{Q}} \llbracket \theta(\mathbf{g}, \mathbf{f}) \rrbracket^{\mathcal{Q}} = \sup_{\mathbf{g} \in \mathcal{P}} \llbracket \theta(\mathbf{g}, \mathbf{f}) \rrbracket^{\mathcal{Q}} = \sup_{\mathbf{g} \in \mathcal{P}} \llbracket \theta(\mathbf{g}, \mathbf{f}) \rrbracket^{\mathcal{P}} = \llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{P}}.$

A (10) A (10)

- Suppose that *N* = (*K*, *E*) is a countable randomization of *φ* in *V*.
 We want this to remain true in *V*[*G*].
- Let \mathcal{P} and \mathcal{Q} be the completions of \mathcal{N} in V and V[G] respectively.
- The desired result follows from the more general fact that $\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{P}} = \llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{Q}}$ for all $L_{\omega_1,\omega}$ -formulae ψ and all tuples $\mathbf{f} \in \mathcal{K}$.
- One proves this fact by induction on complexity of formulae.
- Quantifier case: Suppose $\psi(y) = (\exists x)\theta(x, y)$. Then:

$$\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{Q}} = \sup_{\mathbf{g} \in \mathcal{Q}} \llbracket \theta(\mathbf{g}, \mathbf{f}) \rrbracket^{\mathcal{Q}} = \sup_{\mathbf{g} \in \mathcal{P}} \llbracket \theta(\mathbf{g}, \mathbf{f}) \rrbracket^{\mathcal{Q}} = \sup_{\mathbf{g} \in \mathcal{P}} \llbracket \theta(\mathbf{g}, \mathbf{f}) \rrbracket^{\mathcal{P}} = \llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{P}}.$$

不得る 不良る 不良る

- Suppose that *N* = (*K*, *E*) is a countable randomization of *φ* in *V*.
 We want this to remain true in *V*[*G*].
- Let \mathcal{P} and \mathcal{Q} be the completions of \mathcal{N} in V and V[G] respectively.
- The desired result follows from the more general fact that $\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{P}} = \llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{Q}}$ for all $L_{\omega_1,\omega}$ -formulae ψ and all tuples $\mathbf{f} \in \mathcal{K}$.
- One proves this fact by induction on complexity of formulae.
- Quantifier case: Suppose $\psi(y) = (\exists x)\theta(x, y)$. Then:

$$\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{Q}} = \sup_{\mathbf{g} \in \mathcal{Q}} \llbracket \theta(\mathbf{g}, \mathbf{f}) \rrbracket^{\mathcal{Q}} = \sup_{\mathbf{g} \in \mathcal{P}} \llbracket \theta(\mathbf{g}, \mathbf{f}) \rrbracket^{\mathcal{Q}} = \sup_{\mathbf{g} \in \mathcal{P}} \llbracket \theta(\mathbf{g}, \mathbf{f}) \rrbracket^{\mathcal{P}} = \llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{P}}.$$

不得る 不良る 不良る

- Suppose that *N* = (*K*, *E*) is a countable randomization of *φ* in *V*.
 We want this to remain true in *V*[*G*].
- Let \mathcal{P} and \mathcal{Q} be the completions of \mathcal{N} in V and V[G] respectively.
- The desired result follows from the more general fact that $\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{P}} = \llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{Q}}$ for all $L_{\omega_1,\omega}$ -formulae ψ and all tuples $\mathbf{f} \in \mathcal{K}$.
- One proves this fact by induction on complexity of formulae.
- Quantifier case: Suppose $\psi(y) = (\exists x)\theta(x, y)$. Then:

 $\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{Q}} = \sup_{\mathbf{g} \in \mathcal{Q}} \llbracket \theta(\mathbf{g}, \mathbf{f}) \rrbracket^{\mathcal{Q}} = \sup_{\mathbf{g} \in \mathcal{P}} \llbracket \theta(\mathbf{g}, \mathbf{f}) \rrbracket^{\mathcal{Q}} = \sup_{\mathbf{g} \in \mathcal{P}} \llbracket \theta(\mathbf{g}, \mathbf{f}) \rrbracket^{\mathcal{P}} = \llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{P}}.$

A (10) A (10)

- Suppose that *N* = (*K*, *E*) is a countable randomization of *φ* in *V*.
 We want this to remain true in *V*[*G*].
- Let \mathcal{P} and \mathcal{Q} be the completions of \mathcal{N} in V and V[G] respectively.
- The desired result follows from the more general fact that $\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{P}} = \llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{Q}}$ for all $L_{\omega_1,\omega}$ -formulae ψ and all tuples $\mathbf{f} \in \mathcal{K}$.
- One proves this fact by induction on complexity of formulae.
- Quantifier case: Suppose $\psi(y) = (\exists x)\theta(x, y)$. Then:

 $\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{Q}} = \sup_{\mathbf{g} \in \mathcal{Q}} \llbracket \theta(\mathbf{g}, \mathbf{f}) \rrbracket^{\mathcal{Q}} = \sup_{\mathbf{g} \in \mathcal{P}} \llbracket \theta(\mathbf{g}, \mathbf{f}) \rrbracket^{\mathcal{Q}} = \sup_{\mathbf{g} \in \mathcal{P}} \llbracket \theta(\mathbf{g}, \mathbf{f}) \rrbracket^{\mathcal{P}} = \llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{P}}.$

く 戸 と く ヨ と く ヨ と

- Suppose that *N* = (*K*, *E*) is a countable randomization of *φ* in *V*.
 We want this to remain true in *V*[*G*].
- Let \mathcal{P} and \mathcal{Q} be the completions of \mathcal{N} in V and V[G] respectively.
- The desired result follows from the more general fact that $\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{P}} = \llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{Q}}$ for all $L_{\omega_1,\omega}$ -formulae ψ and all tuples $\mathbf{f} \in \mathcal{K}$.
- One proves this fact by induction on complexity of formulae.
- Quantifier case: Suppose $\psi(y) = (\exists x)\theta(x, y)$. Then:

$$\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{Q}} = \sup_{\mathbf{g} \in \mathcal{Q}} \llbracket \theta(\mathbf{g}, \mathbf{f}) \rrbracket^{\mathcal{Q}} = \sup_{\mathbf{g} \in \mathcal{P}} \llbracket \theta(\mathbf{g}, \mathbf{f}) \rrbracket^{\mathcal{Q}} = \sup_{\mathbf{g} \in \mathcal{P}} \llbracket \theta(\mathbf{g}, \mathbf{f}) \rrbracket^{\mathcal{P}} = \llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{P}}.$$

Lemma

Let $\mathcal{N} = (\mathcal{K}, \mathcal{B})$ be a countable randomization. Then the following two statements are equivalent:

(S) there is $i \in I$ such that $\mu^{\mathcal{N}}\llbracket \theta_i \rrbracket > 0$

(S') there is a countable \mathcal{M} with $|M| \ge 2$ and a positive measure set C in the completion of \mathcal{B} such that $\mathcal{M}^{\mathcal{L}} \cong \mathcal{N}|C$.

Here, $\mathcal{N}|C$ is the completion of the randomization \mathcal{N} with μ replaced by the conditional measure $\mu(\cdot|C)$.

Proof.

(⇒) Take $\mathcal{M} \models \theta_i$ and $C := \llbracket \theta_i \rrbracket$. (⇐) Take *i* such that $\mathcal{M} \models \theta_i$. Then

$\mu^{\mathcal{N}}\llbracket heta_i rbracket = \mu^{\mathcal{N}|\mathcal{C}}\llbracket heta_i rbracket \cdot \mu(\mathcal{C}) = \mu(\mathcal{C}) > \mathsf{0}.$

Lemma

Let $\mathcal{N} = (\mathcal{K}, \mathcal{B})$ be a countable randomization. Then the following two statements are equivalent:

(S) there is $i \in I$ such that $\mu^{\mathcal{N}}\llbracket \theta_i \rrbracket > 0$

S') there is a countable \mathcal{M} with $|\mathcal{M}| \ge 2$ and a positive measure set C in the completion of \mathcal{B} such that $\mathcal{M}^{\mathcal{L}} \cong \mathcal{N}|C$.

Here, $\mathcal{N}|C$ is the completion of the randomization \mathcal{N} with μ replaced by the conditional measure $\mu(\cdot|C)$.

Proof.

(⇒) Take $\mathcal{M} \models \theta_i$ and $C := \llbracket \theta_i \rrbracket$. (⇐) Take *i* such that $\mathcal{M} \models \theta_i$. Then

$\mu^{\mathcal{N}}\llbracket heta_i rbracket = \mu^{\mathcal{N}|\mathcal{C}}\llbracket heta_i rbracket \cdot \mu(\mathcal{C}) = \mu(\mathcal{C}) > \mathsf{0}.$

Lemma

Let $\mathcal{N} = (\mathcal{K}, \mathcal{B})$ be a countable randomization. Then the following two statements are equivalent:

- (S) there is $i \in I$ such that $\mu^{\mathcal{N}}\llbracket \theta_i \rrbracket > 0$
- (S') there is a countable \mathcal{M} with $|\mathcal{M}| \ge 2$ and a positive measure set C in the completion of \mathcal{B} such that $\mathcal{M}^{\mathcal{L}} \cong \mathcal{N}|C$.

Here, $\mathcal{N}|C$ is the completion of the randomization \mathcal{N} with μ replaced by the conditional measure $\mu(\cdot|C)$.

Proof.

(⇒) Take $\mathcal{M} \models \theta_i$ and $C := \llbracket \theta_i \rrbracket$. (⇐) Take *i* such that $\mathcal{M} \models \theta_i$. Then

$\mu^{\mathcal{N}}\llbracket heta_i rbracket = \mu^{\mathcal{N}|\mathcal{C}}\llbracket heta_i rbracket \cdot \mu(\mathcal{C}) = \mu(\mathcal{C}) > \mathsf{0}.$

Lemma

Let $\mathcal{N} = (\mathcal{K}, \mathcal{B})$ be a countable randomization. Then the following two statements are equivalent:

- (S) there is $i \in I$ such that $\mu^{\mathcal{N}}\llbracket \theta_i \rrbracket > 0$
- (S') there is a countable \mathcal{M} with $|\mathcal{M}| \ge 2$ and a positive measure set C in the completion of \mathcal{B} such that $\mathcal{M}^{\mathcal{L}} \cong \mathcal{N}|C$.

Here, $\mathcal{N}|C$ is the completion of the randomization \mathcal{N} with μ replaced by the conditional measure $\mu(\cdot|C)$.

Proof.

(⇒) Take $\mathcal{M} \models \theta_i$ and $C := \llbracket \theta_i \rrbracket$. (⇐) Take *i* such that $\mathcal{M} \models \theta_i$. Then

$\mu^{\mathcal{N}}\llbracket heta_i rbracket = \mu^{\mathcal{N}|\mathcal{C}}\llbracket heta_i rbracket \cdot \mu(\mathcal{C}) = \mu(\mathcal{C}) > 0.$

Lemma

Let $\mathcal{N} = (\mathcal{K}, \mathcal{B})$ be a countable randomization. Then the following two statements are equivalent:

- (S) there is $i \in I$ such that $\mu^{\mathcal{N}}\llbracket \theta_i \rrbracket > 0$
- (S') there is a countable \mathcal{M} with $|\mathcal{M}| \ge 2$ and a positive measure set C in the completion of \mathcal{B} such that $\mathcal{M}^{\mathcal{L}} \cong \mathcal{N}|C$.

Here, $\mathcal{N}|C$ is the completion of the randomization \mathcal{N} with μ replaced by the conditional measure $\mu(\cdot|C)$.

Proof.

(⇒) Take
$$\mathcal{M} \models \theta_i$$
 and $C := \llbracket \theta_i \rrbracket$.
(⇐) Take *i* such that $\mathcal{M} \models \theta_i$. The

$\mu^{\mathcal{N}}\llbracket heta_i rbracket = \mu^{\mathcal{N}|\mathcal{C}}\llbracket heta_i rbracket \cdot \mu(\mathcal{C}) = \mu(\mathcal{C}) > \mathsf{0}.$

Isaac Goldbring (UCI)

Lemma

Let $\mathcal{N} = (\mathcal{K}, \mathcal{B})$ be a countable randomization. Then the following two statements are equivalent:

- (S) there is $i \in I$ such that $\mu^{\mathcal{N}}\llbracket \theta_i \rrbracket > 0$
- (S') there is a countable \mathcal{M} with $|\mathcal{M}| \ge 2$ and a positive measure set C in the completion of \mathcal{B} such that $\mathcal{M}^{\mathcal{L}} \cong \mathcal{N}|C$.

Here, $\mathcal{N}|C$ is the completion of the randomization \mathcal{N} with μ replaced by the conditional measure $\mu(\cdot|C)$.

Proof.

(⇒) Take
$$\mathcal{M} \models \theta_i$$
 and $C := \llbracket \theta_i \rrbracket$.
(⇐) Take *i* such that $\mathcal{M} \models \theta_i$. Then

$$\mu^{\mathcal{N}}\llbracket heta_i
rbracket = \mu^{\mathcal{N}|\mathcal{C}}\llbracket heta_i
rbracket \cdot \mu(\mathcal{C}) = \mu(\mathcal{C}) > \mathsf{0}.$$

Lemma

Let $\mathcal{N} = (\mathcal{K}, \mathcal{B})$ be a countable randomization. Then the following two statements are equivalent:

- (S) there is $i \in I$ such that $\mu^{\mathcal{N}}\llbracket \theta_i \rrbracket > 0$
- (S') there is a countable \mathcal{M} with $|\mathbf{M}| \ge 2$, a sequence $\mathbf{B} : \mathbb{N} \to \mathcal{B}$, and double sequences $\alpha : \mathbb{N} \times \mathbb{N} \to \mathcal{M}^{\mathcal{A}}$ and $\beta : \mathbb{N} \times \mathbb{N} \to \mathcal{K}$ such that:
 - 1 (B_n) is Cauchy and $\lim_n \mu(B_n) > 0$;
 - 2 for each m, $(\alpha_{m,n})$ and $(\beta_{m,n})$ are Cauchy;
 - 3 for each x ∈ M^A, there is m_x ∈ N such that α_{m_x,n} = x for all n and likewise for K and β;
 - 4 for each L-formula $\psi(v_1, \ldots, v_k)$, we have

$$\lim_{n} \mu^{\mathcal{M}^{\mathcal{A}}}(\llbracket \psi(\vec{\alpha_{n}}) \rrbracket) = \lim_{n} \mu^{\mathcal{N}}(\llbracket \psi(\vec{\beta_{n}}) \rrbracket \sqcap B_{n}) / \mu^{\mathcal{N}}(B_{n}).$$

(S') is easily seen to be Σ_1^1 with parameter \mathcal{N} .

- URI ANDREWS, ISAAC GOLDBRING, SHERWOOD HACHTMAN, H. JEROME KEISLER, AND DAVID MARKER, Scattered sentences have few separable randomizations, preprint.
- H. JEROME KEISLER, Randomizations of scattered sentences, Beyond first order model theory (Jose Iovino, editor), CRC Press, to appear in November 2017.
- MICHAEL MORLEY, The number of countable models, Journal of Symbolic Logic, vol. 35 (1970), pp. 14–18.