Scattered sentences have few separable randomizations

Isaac Goldbring

University of California, Irvine

ASL North American Annual Meeting Special Session in Continuous Model Theory Boise, Idaho, March 2017

1 Scattered sentences

2 Randomizations

3 The main results

Vaught's conjecture

In this talk:

$\square L$ is a countable (classical) first-order language,
■ I denotes the set of isomorphism types of countable L-structures,
■ for $i \in I, \theta_{i}$ denotes a Scott sentence for i,
■ φ denotes a sentence of $L_{\omega_{1}, \omega}$, and
■ $I(\varphi)$ denotes the set of isomorphism types of countable models of φ.

```
Vaught's conjecture
I(\varphi) is either countable or has cardinality 2
```

\square
Theorem (Morley, 1970)

Vaught's conjecture

In this talk:

- L is a countable (classical) first-order language,

■ I denotes the set of isomorphism types of countable L-structures,
■ for $i \in I, \theta_{i}$ denotes a Scott sentence for i,
■ φ denotes a sentence of $L_{\omega_{1}, \omega}$, and
$\square I(\varphi)$ denotes the set of isomorphism types of countable models of φ.

Vaught's conjecture

$I(\varphi)$ is either countable or has cardinality $2^{\aleph_{0}}$.
\square
Theorem (Morley, 1970)
\square

Vaught's conjecture

In this talk:
■ L is a countable (classical) first-order language,
■ I denotes the set of isomorphism types of countable L-structures,
■ for $i \in I, \theta_{i}$ denotes a Scott sentence for i,

- φ denotes a sentence of $L_{\omega_{1}, \omega}$, and

■ $I(\varphi)$ denotes the set of isomorphism types of countable models of φ.

Vaught's conjecture

$I(\varphi)$ is either countable or has cardinality $2^{\aleph_{0}}$.
Theorem (Morley, 1970)

$$
|I(\varphi)| \leq \aleph_{1} \text { or }|I(\varphi)|=2^{\aleph_{0}} .
$$

Scattered sentences

Theorem

The following are equivalent:

- For each $\alpha<\omega_{1}$, there are only countably many \equiv_{α}-classes of models of φ;
■ There is no perfect set of models of φ.

Definition

is scattere d if either of the above equivalent conditions hold

Theorem (Morley)

- φ scattered $\Rightarrow|I(\varphi)| \leq \aleph_{1}$.

■ φ not scattered $\Rightarrow|I(\varphi)|=2^{\aleph_{0}}$

Scattered sentences

Theorem

The following are equivalent:
■ For each $\alpha<\omega_{1}$, there are only countably many \equiv_{α}-classes of models of φ;

- There is no perfect set of models of φ.

Definition

φ is scattered if either of the above equivalent conditions hold.

Theorem (Morley)

- φ scaitered $\Rightarrow|/(\varphi)| \leq \aleph_{1}$.
- φ not scattered $\Rightarrow|I(\varphi)|=2^{\aleph_{0}}$.

Scattered sentences

Theorem

The following are equivalent:

- For each $\alpha<\omega_{1}$, there are only countably many \equiv_{α}-classes of models of φ;
- There is no perfect set of models of φ.

Definition

φ is scattered if either of the above equivalent conditions hold.
Theorem (Morley)
■ φ scattered $\Rightarrow|I(\varphi)| \leq \aleph_{1}$.
■ φ not scattered $\Rightarrow|I(\varphi)|=2^{\aleph_{0}}$.

The absolute Vaught conjecture

The absolute Vaught conjecture
If φ is scattered, then $I(\varphi)$ is countable.

■ Clearly, the absolute Vaught conjecture implies Vaught's conjecture.

- Conversely, if ZFC - VC, then ZFC \vdash AVC by Schoenfield absoluteness (as being scattered is Π_{2}^{1}).

The absolute Vaught conjecture

The absolute Vaught conjecture
If φ is scattered, then $I(\varphi)$ is countable.

■ Clearly, the absolute Vaught conjecture implies Vaught's conjecture.
■ Conversely, if ZFC \vdash VC, then ZFC \vdash AVC by Schoenfield absoluteness (as being scattered is Π_{2}^{1}).

1 Scattered sentences

2 Randomizations

3 The main results

The pure randomization theory

- The continuous language L^{R} has two sorts: a sort \mathbb{K} for random variables and a sort \mathbb{E} for events.
- For each n-ary L-formula θ, there is a function symbol $\llbracket \theta(\cdot) \rrbracket$ $\mathbb{K}^{n} \rightarrow \mathbb{E}$.
- The pure randomization theory P^{R} has the following axioms:
- atomless probability algebra axioms;

■ $d(\llbracket \sigma \rrbracket, T)=0$ for all tautologies σ;

- $\sup _{B} \inf _{X, Y} d(B, \llbracket X=Y \rrbracket)=0$;
$-\sup _{B, C}|d(B, C)-\mu(B \triangle C)|=0$ and $\sup _{X, Y} \mid d(X, Y)-\mu[X \neq Y \rrbracket \mid=0$.
- Pre-models of P^{R} are called randomizations and models are called complete randomizations.

The pure randomization theory

- The continuous language L^{R} has two sorts: a sort \mathbb{K} for random variables and a sort \mathbb{E} for events.
■ For each n-ary L-formula θ, there is a function symbol $\llbracket \theta(\cdot) \rrbracket: \mathbb{K}^{n} \rightarrow \mathbb{E}$.
- The pure randomization theory P^{R} has the following axioms:

■ atomless probability algebra axioms;

- $d(\llbracket \sigma \rrbracket, \top)=0$ for all tautologies σ;
- $\sup _{B} \inf _{X, Y} d(B, \llbracket X=Y \rrbracket)=0$

- Pre-models of P^{R} are called randomizations and models are called complete randomizations.

The pure randomization theory

■ The continuous language L^{R} has two sorts: a sort \mathbb{K} for random variables and a sort \mathbb{E} for events.
■ For each n-ary L-formula θ, there is a function symbol $\llbracket \theta(\cdot) \rrbracket: \mathbb{K}^{n} \rightarrow \mathbb{E}$.
■ The pure randomization theory P^{R} has the following axioms:
■ atomless probability algebra axioms;
■ $\sup _{\vec{X}} d(\llbracket(\theta \wedge \psi)(\vec{X}) \rrbracket, \llbracket \theta(\vec{X}) \rrbracket \sqcap \llbracket \psi(\vec{X}) \rrbracket)=0$, etc...;
$■ \sup _{\vec{X}} \inf _{Y} d(\llbracket \exists y(\theta(\vec{X}, y) \rrbracket, \llbracket \theta(\vec{X}, Y) \rrbracket)=0 ;$
■ $d(\llbracket \sigma \rrbracket, \top)=0$ for all tautologies σ;
■ $\sup _{B} \inf _{X, Y} d(B, \llbracket X=Y \rrbracket)=0$;
$\square \sup _{B, C}|d(B, C)-\mu(B \triangle C)|=0$ and $\sup _{X, Y}|d(X, Y)-\mu \llbracket X \neq Y \rrbracket|=0$.

- Pre-models of P^{R} are called randomizations and models are called complete randomizations.

The pure randomization theory

■ The continuous language L^{R} has two sorts: a sort \mathbb{K} for random variables and a sort \mathbb{E} for events.
■ For each n-ary L-formula θ, there is a function symbol $\llbracket \theta(\cdot) \rrbracket: \mathbb{K}^{n} \rightarrow \mathbb{E}$.
$■$ The pure randomization theory P^{R} has the following axioms:
■ atomless probability algebra axioms;

- $\sup _{\vec{X}} d(\llbracket(\theta \wedge \psi)(\vec{X}) \rrbracket, \llbracket \theta(\vec{X}) \rrbracket \sqcap \llbracket \psi(\vec{X}) \rrbracket)=0$, etc...;

■ $\sup _{\vec{X}} \inf _{Y} d(\llbracket \exists y(\theta(\vec{X}, y) \rrbracket, \llbracket \theta(\vec{X}, Y) \rrbracket)=0$;
■ $d(\llbracket \sigma \rrbracket, \top)=0$ for all tautologies σ;
■ $\sup _{B} \inf _{X, Y} d(B, \llbracket X=Y \rrbracket)=0$;

- $\sup _{B, C}|d(B, C)-\mu(B \triangle C)|=0$ and $\sup _{X, Y}|d(X, Y)-\mu \llbracket X \neq Y \rrbracket|=0$.
\square Pre-models of P^{R} are called randomizations and models are called complete randomizations.

Borel randomizations

Example

Let \mathcal{M} be a structure with at least two elements. The Borel randomization of \mathcal{M} is the structure $\left(\mathcal{M}^{[0,1)}, \mathcal{L}\right)$, where:

- $\mathcal{M}^{[0,1)}$ is the set of functions $\mathrm{f}:[0,1) \rightarrow \mathcal{M}$ with countable range such that $\mathbf{f}^{-1}(t) \in \mathcal{L}$ for all $t \in[0,1)$;
- \mathcal{L} is the family of Borel subsets of $[0,1$) equipped with Lebesgue measure;
- $\llbracket \theta(\overrightarrow{\mathbf{f}}) \rrbracket:=\{t \in[0,1): \mathcal{M} \models \theta(\overrightarrow{\mathbf{f}}(t))\}$.

The Borel randomization is a pre-complete separable randomization.

Borel randomizations

Example

Let \mathcal{M} be a structure with at least two elements. The Borel randomization of \mathcal{M} is the structure $\left(\mathcal{M}^{[0,1)}, \mathcal{L}\right)$, where:
$\square \mathcal{M}^{[0,1)}$ is the set of functions $\mathbf{f}:[0,1) \rightarrow \mathcal{M}$ with countable range such that $\mathbf{f}^{-1}(t) \in \mathcal{L}$ for all $t \in[0,1)$;
$\square \mathcal{L}$ is the family of Borel subsets of $[0,1)$ equipped with Lebesgue measure;
$\square \llbracket \theta(\overrightarrow{\mathbf{f}}) \rrbracket:=\{t \in[0,1): \mathcal{M} \models \theta(\overrightarrow{\mathbf{f}}(t))\}$.
The Borel randomization is a pre-complete separable randomization.

Borel randomizations

Example

Let \mathcal{M} be a structure with at least two elements. The Borel randomization of \mathcal{M} is the structure $\left(\mathcal{M}^{[0,1)}, \mathcal{L}\right)$, where:
$\square \mathcal{M}^{[0,1)}$ is the set of functions $\mathbf{f}:[0,1) \rightarrow \mathcal{M}$ with countable range such that $\mathbf{f}^{-1}(t) \in \mathcal{L}$ for all $t \in[0,1)$;
■ \mathcal{L} is the family of Borel subsets of $[0,1)$ equipped with Lebesgue measure;
$■ \llbracket \theta(\overrightarrow{\mathbf{f}}) \rrbracket:=\{t \in[0,1): \mathcal{M} \models \theta(\overrightarrow{\mathbf{f}}(t))\}$.
The Borel randomization is a pre-complete separable randomization.

Basic randomizations

Example

Suppose that:
$\square[0,1)=\bigcup_{n} B_{n}$ is a partition of $[0,1)$ into positive measure Borel sets;
■ for each n, \mathcal{M}_{n} is a countable L-structure;

- $\prod_{n} \mathcal{M}_{n}^{B_{n}}$ is the set of all functions $\mathbf{f}:[0,1) \rightarrow \bigcup_{n} \mathcal{M}_{n}$ such that

$$
\left(\forall t \in B_{n}\right) \mathbf{f}(t) \in \mathcal{M}_{n} \text { and }\left(\forall a \in \mathcal{M}_{n}\right)\left\{t \in B_{n}: \mathbf{f}(t)=a\right\} \in \mathcal{L}
$$

$\square \llbracket \theta(\overrightarrow{\mathbf{f}}) \rrbracket:=\bigcup_{n}\left\{t \in B_{n}: \mathcal{M}_{n} \models \theta(\overrightarrow{\mathbf{f}}(t))\right\}$.

Then $\left(\prod_{n} \mathcal{M}_{n}^{B_{n}}, \mathcal{L}\right)$ is called a basic randomization.

Basic randomizations are also pre-complete separable randomizations. Their isomorphism type is captured by their density function.

Basic randomizations

Example

Suppose that:
$\square[0,1)=\bigcup_{n} B_{n}$ is a partition of $[0,1)$ into positive measure Borel sets;

- for each n, \mathcal{M}_{n} is a countable L-structure;
$\square \prod_{n} \mathcal{M}_{n}^{B_{n}}$ is the set of all functions $\mathbf{f}:[0,1) \rightarrow \bigcup_{n} \mathcal{M}_{n}$ such that

$$
\left(\forall t \in B_{n}\right) \mathbf{f}(t) \in \mathcal{M}_{n} \text { and }\left(\forall a \in \mathcal{M}_{n}\right)\left\{t \in B_{n}: \mathbf{f}(t)=a\right\} \in \mathcal{L}
$$

$\square \llbracket \theta(\overrightarrow{\mathbf{f}}) \rrbracket:=\bigcup_{n}\left\{t \in B_{n}: \mathcal{M}_{n} \models \theta(\overrightarrow{\mathbf{f}}(t))\right\}$.
Then $\left(\prod_{n} \mathcal{M}_{n}^{B_{n}}, \mathcal{L}\right)$ is called a basic randomization.
Basic randomizations are also pre-complete separable randomizations. Their isomorphism type is captured by their density function.

Basic randomizations

Example

Suppose that:
$\square[0,1)=\bigcup_{n} B_{n}$ is a partition of $[0,1)$ into positive measure Borel sets;
■ for each n, \mathcal{M}_{n} is a countable L-structure;
$\square \prod_{n} \mathcal{M}_{n}^{B_{n}}$ is the set of all functions $\mathbf{f}:[0,1) \rightarrow \bigcup_{n} \mathcal{M}_{n}$ such that

$$
\left(\forall t \in B_{n}\right) \mathbf{f}(t) \in \mathcal{M}_{n} \text { and }\left(\forall a \in \mathcal{M}_{n}\right)\left\{t \in B_{n}: \mathbf{f}(t)=a\right\} \in \mathcal{L}
$$

$\square \llbracket \theta(\overrightarrow{\mathbf{f}}) \rrbracket:=\bigcup_{n}\left\{t \in B_{n}: \mathcal{M}_{n} \models \theta(\overrightarrow{\mathbf{f}}(t))\right\}$.
Then $\left(\prod_{n} \mathcal{M}_{n}^{B_{n}}, \mathcal{L}\right)$ is called a basic randomization.
Basic randomizations are also pre-complete separable randomizations. Their isomorphism type is captured by their density function.

Randomizations of $L_{\omega_{1}, \omega}$-sentences

Theorem (Keisler)

If \mathcal{P} is a complete separable randomization, then there is a unique mapping $\llbracket \|^{\mathcal{P}}$ from $L_{\omega_{1}, \omega}$-sentences to events that agrees with the interpretation of $\llbracket \cdot \rrbracket$ on first-order sentences that also respects validity, countable connectives, and quantification. Moreover, the maps are all Lipshitz with bound 1.

Definition

If \mathcal{N} is a separable randomization with completion \mathcal{P}, we say that \mathcal{N} is a randomization of φ if $\mu^{N}[\varphi]:=\mu\left([\varphi]^{\mathcal{P}}\right)=1$.

Randomizations of $L_{\omega_{1}, \omega}$-sentences

Theorem (Keisler)

If \mathcal{P} is a complete separable randomization, then there is a unique mapping $\llbracket \cdot \rrbracket^{\mathcal{P}}$ from $L_{\omega_{1}, \omega}$-sentences to events that agrees with the interpretation of $\llbracket \cdot \rrbracket$ on first-order sentences that also respects validity, countable connectives, and quantification. Moreover, the maps are all Lipshitz with bound 1.

Definition

If \mathcal{N} is a separable randomization with completion \mathcal{P}, we say that \mathcal{N} is a randomization of φ if $\mu^{\mathcal{N}} \llbracket \varphi \rrbracket:=\mu\left(\llbracket \varphi \rrbracket^{\mathcal{P}}\right)=1$.

Basic randomizations of $L_{\omega_{1}, \omega}$-sentences

Proposition

Suppose that \mathcal{N} is the reduction of the basic randomization $\left(\prod_{n} \mathcal{M}_{n}^{B_{n}}, \mathcal{L}\right)$. Then \mathcal{N} is a randomization of φ if and only if each $\mathcal{M}_{n} \models \varphi$, in which case we say that \mathcal{N} is a basic randomization of φ.

Definition

We say that φ has few separable randomizations if every complete randomization of φ is isomorphic to a basic randomization.

Natural Question

Which sentences have few separable randomizations?

Basic randomizations of $L_{\omega_{1}, \omega}$-sentences

Proposition

Suppose that \mathcal{N} is the reduction of the basic randomization $\left(\prod_{n} \mathcal{M}_{n}^{B_{n}}, \mathcal{L}\right)$. Then \mathcal{N} is a randomization of φ if and only if each $\mathcal{M}_{n} \models \varphi$, in which case we say that \mathcal{N} is a basic randomization of φ.

Definition

We say that φ has few separable randomizations if every complete randomization of φ is isomorphic to a basic randomization.

Natural Question

Which sentences have few separable randomizations?

Basic randomizations of $L_{\omega_{1}, \omega}$-sentences

Proposition

Suppose that \mathcal{N} is the reduction of the basic randomization $\left(\prod_{n} \mathcal{M}_{n}^{B_{n}}, \mathcal{L}\right)$. Then \mathcal{N} is a randomization of φ if and only if each $\mathcal{M}_{n} \models \varphi$, in which case we say that \mathcal{N} is a basic randomization of φ.

Definition

We say that φ has few separable randomizations if every complete randomization of φ is isomorphic to a basic randomization.

Natural Question

Which sentences have few separable randomizations?

1 Scattered sentences

2 Randomizations

3 The main results

Scattered sentences and few separable randomizations

Theorem (Keisler)

If φ has few separable randomizations, then φ is scattered.

> Theorem (Keisler)
> Assume that Lebesgue measure is \aleph_{1}-additive (e.g. assume $M A\left(\aleph_{1}\right)$). If φ is scattered, then φ has few separable randomizations.

Theorem (Andrews, G., Hachtman, Keisler, Marker)
If φ is scattered, then φ has few separable randomizations.
Summing up: φ is scattered if and only if φ has few separable randomizations.

Scattered sentences and few separable randomizations

Theorem (Keisler)

If φ has few separable randomizations, then φ is scattered.

Theorem (Keisler)
Assume that Lebesgue measure is \aleph_{1}-additive (e.g. assume $M A\left(\aleph_{1}\right)$). If φ is scattered, then φ has few separable randomizations.

Theorem (Andrews, G., Hachtman, Keisler, Marker)

If φ is scattered, then φ has foun separable randomizations.
Summing up: φ is scattered if and only if φ has few separable randomizations.

Scattered sentences and few separable randomizations

Theorem (Keisler)

If φ has few separable randomizations, then φ is scattered.

Theorem (Keisler)
Assume that Lebesgue measure is \aleph_{1}-additive (e.g. assume $M A\left(\aleph_{1}\right)$). If φ is scattered, then φ has few separable randomizations.

Theorem (Andrews, G., Hachtman, Keisler, Marker)
If φ is scattered, then φ has few separable randomizations.
Summing up: φ is scattered if and only if φ has few separable randomizations.

Scattered sentences and few separable randomizations

Theorem (Keisler)

If φ has few separable randomizations, then φ is scattered.
Theorem (Keisler)
Assume that Lebesgue measure is \aleph_{1}-additive (e.g. assume $M A\left(\aleph_{1}\right)$). If φ is scattered, then φ has few separable randomizations.

Theorem (Andrews, G., Hachtman, Keisler, Marker)
If φ is scattered, then φ has few separable randomizations.
Summing up: φ is scattered if and only if φ has few separable randomizations.

A representation theorem

Theorem (Keisler)

Every complete separable randomization of φ is isomorphic to the completion of a countable randomization $\mathcal{N}=(\mathcal{K}, \mathcal{B})$ such that for some atomless probability space $(\Omega, \mathcal{E}, \nu)$ and family of countable models $\left\langle\mathcal{M}_{t}\right\rangle_{t \in \Omega}$ of φ we have:
(a) $\mathcal{K} \subseteq \prod_{t \in \Omega} M_{t}$ and $\mathcal{B} \subseteq \mathcal{E}$.
(b) $M_{t}=\{\boldsymbol{f}(t) \mid \boldsymbol{f} \in \mathcal{K}\}$ for each $t \in \Omega$.
(c) $(\Omega, \mathcal{E}, \nu)$ is the (σ-additive) probability space generated by $(\Omega, \mathcal{B}, \mu)$.
(d) For each $L_{\omega_{1} \omega}$-formula $\psi(\cdot)$ and tuple $\overrightarrow{\boldsymbol{f}}$ in \mathcal{K},

$$
\mu^{\mathcal{N}}(\llbracket \psi(\overrightarrow{\boldsymbol{f}}) \rrbracket)=\nu\left(\left\{t \in \Omega \mid \mathcal{M}_{t} \models \psi(\overrightarrow{\boldsymbol{f}}(t))\right\}\right) .
$$

If, in addition, φ is scattered, then we may take $(\Omega, \mathcal{E}, \nu)=([0,1), \mathcal{L}, \lambda)$.

Few separable randomizations implies scattered

$■$ Suppose that φ is not scattered, so there is a perfect set $\left\langle\mathcal{M}_{t}\right\rangle$ of nonisomorphic models of φ.

- By the Borel isomorphism theorem, we might as well assume $t \in[0,1)$.
■ From this data, we can then build a countable randomization \mathcal{N} as in the representation theorem.
\square For any $i \in I,\left|\left\{t \in[0,1): \mathcal{M}_{t} \models \theta_{i}\right\}\right| \leq 1$, whence $\mu^{\mathcal{N}}\left(\llbracket \theta_{i} \rrbracket\right)=0$.
- But in a basic randomization \mathcal{P}, there is $i \in I$ such that $\mu^{\mathcal{P}}\left(\left[\theta_{i}\right]\right)>0$.
- It follows that the completion of \mathcal{N} is not isomorphic to \mathcal{P} and thus φ does not have few separable randomizations.

Few separable randomizations implies scattered

$■$ Suppose that φ is not scattered, so there is a perfect set $\left\langle\mathcal{M}_{t}\right\rangle$ of nonisomorphic models of φ.
■ By the Borel isomorphism theorem, we might as well assume $t \in[0,1)$.

- From this data, we can then build a countable randomization \mathcal{N} as in the representation theorem.
- For any $i \in I,\left|\left\{t \in[0,1): \mathcal{1}_{t} \downarrow \theta_{i}\right\}\right| \leq 1$, whence $\mu^{N}\left(\llbracket \theta_{i} \rrbracket\right)=0$.
- But in a basic randomization \mathcal{P}, there is $i \in I$ such that $\mu^{\mathcal{P}}\left(\llbracket \theta_{i} \rrbracket\right)>0$.
- It follows that the completion of \mathcal{N} is not isomorphic to \mathcal{P} and thus φ does not have few separable randomizations.

Few separable randomizations implies scattered

■ Suppose that φ is not scattered, so there is a perfect set $\left\langle\mathcal{M}_{t}\right\rangle$ of nonisomorphic models of φ.
■ By the Borel isomorphism theorem, we might as well assume $t \in[0,1)$.
■ From this data, we can then build a countable randomization \mathcal{N} as in the representation theorem.

- But in a basic randomization \mathcal{P}, there is $i \in I$ such that $\mu^{\mathcal{P}}\left(\llbracket \theta_{i} \Pi\right)>0$.
- It follows that the completion of \mathcal{N} is not isomorphic to \mathcal{P} and thus φ does not have few separable randomizations.

Few separable randomizations implies scattered

$■$ Suppose that φ is not scattered, so there is a perfect set $\left\langle\mathcal{M}_{t}\right\rangle$ of nonisomorphic models of φ.
■ By the Borel isomorphism theorem, we might as well assume $t \in[0,1)$.
■ From this data, we can then build a countable randomization \mathcal{N} as in the representation theorem.
■ For any $i \in I,\left|\left\{t \in[0,1): \mathcal{M}_{t} \models \theta_{i}\right\}\right| \leq 1$, whence $\mu^{\mathcal{N}}\left(\llbracket \theta_{i} \rrbracket\right)=0$.

- But in a basic randomization \mathcal{P}, there is $i \in I$ such that
$\mu^{\mathcal{P}}\left(\llbracket \theta_{i} \rrbracket\right)>0$.
■ It follows that the completion of \mathcal{N} is not isomorphic to \mathcal{P} and thus φ does not have few separable randomizations.

Few separable randomizations implies scattered

$■$ Suppose that φ is not scattered, so there is a perfect set $\left\langle\mathcal{M}_{t}\right\rangle$ of nonisomorphic models of φ.
■ By the Borel isomorphism theorem, we might as well assume $t \in[0,1)$.
■ From this data, we can then build a countable randomization \mathcal{N} as in the representation theorem.
$■$ For any $i \in I,\left|\left\{t \in[0,1): \mathcal{M}_{t} \models \theta_{i}\right\}\right| \leq 1$, whence $\mu^{\mathcal{N}}\left(\llbracket \theta_{i} \rrbracket\right)=0$.
\square But in a basic randomization \mathcal{P}, there is $i \in I$ such that $\mu^{\mathcal{P}}\left(\llbracket \theta_{i} \rrbracket\right)>0$.

- It follows that the completion of \mathcal{N} is not isomorphic to \mathcal{P} and thus φ does not have few separable randomizations.

Few separable randomizations implies scattered

■ Suppose that φ is not scattered, so there is a perfect set $\left\langle\mathcal{M}_{t}\right\rangle$ of nonisomorphic models of φ.
■ By the Borel isomorphism theorem, we might as well assume $t \in[0,1)$.
■ From this data, we can then build a countable randomization \mathcal{N} as in the representation theorem.
$■$ For any $i \in I,\left|\left\{t \in[0,1): \mathcal{M}_{t} \vDash \theta_{i}\right\}\right| \leq 1$, whence $\mu^{\mathcal{N}}\left(\llbracket \theta_{i} \rrbracket\right)=0$.
\square But in a basic randomization \mathcal{P}, there is $i \in I$ such that $\mu^{\mathcal{P}}\left(\llbracket \theta_{i} \rrbracket\right)>0$.
■ It follows that the completion of \mathcal{N} is not isomorphic to \mathcal{P} and thus φ does not have few separable randomizations.

A test for being isomorphic to a basic randomization

Lemma (Keisler)

Suppose we have:
■ a countable subset $J \subseteq I$;
■ for each $j \in J$, a structure \mathcal{M}_{j} with isomorphism type j;

- a basic randomization $\mathcal{P}=\left(\prod_{j \in J} \mathcal{M}_{j}^{A_{j}}, \mathcal{L}\right)$, and
- a separable randomization \mathcal{N}.

Then $\mathcal{N} \cong \mathcal{P}$ if and only if: for each $j \in J$, we have $\mu^{\mathcal{N}}\left(\left[\theta_{j} \rrbracket\right)=\lambda\left(A_{j}\right)\right.$.

Corollary (Keisler)
whas few senarable randomizations if and only if every separable randomization \mathcal{N} of φ satisfies property (S): there is $i \in I$ such that

A test for being isomorphic to a basic randomization

Lemma (Keisler)

Suppose we have:
■ a countable subset $J \subseteq I$;
■ for each $j \in J$, a structure \mathcal{M}_{j} with isomorphism type j;

- a basic randomization $\mathcal{P}=\left(\prod_{j \in J} \mathcal{M}_{j}^{A_{j}}, \mathcal{L}\right)$, and
- a separable randomization \mathcal{N}.

Then $\mathcal{N} \cong \mathcal{P}$ if and only if: for each $j \in J$, we have $\mu^{\mathcal{N}}\left(\llbracket \theta_{j} \rrbracket\right)=\lambda\left(A_{j}\right)$.

Corollary (Keisler)
is has few senarable randomizations if and only if every separable randomization \mathcal{N} of φ satisfies property (S): there is $i \in I$ such that

A test for being isomorphic to a basic randomization

Lemma (Keisler)

Suppose we have:
■ a countable subset $J \subseteq I$;
■ for each $j \in J$, a structure \mathcal{M}_{j} with isomorphism type j;

- a basic randomization $\mathcal{P}=\left(\prod_{j \in J} \mathcal{M}_{j}^{A_{j}}, \mathcal{L}\right)$, and

■ a separable randomization \mathcal{N}.
Then $\mathcal{N} \cong \mathcal{P}$ if and only if: for each $j \in J$, we have $\mu^{\mathcal{N}}\left(\llbracket \theta_{j} \rrbracket\right)=\lambda\left(A_{j}\right)$.

Corollary (Keisler)

φ has few separable randomizations if and only if every separable randomization \mathcal{N} of φ satisfies property (S): there is $i \in I$ such that $\mu^{\mathcal{N}} \llbracket \theta_{i} \rrbracket>0$.

Scattered implies few separable randomizations (assuming MA($\left.\aleph_{1}\right)$)

■ Suppose that φ is scattered and let \mathcal{N} be a separable randomization of φ with representation as in the theorem.

- For each $i \in I(\varphi)$, let $B_{i}:=\left\{t: \mathcal{M}_{t}=\theta_{i}\right\} \in \mathcal{L}$.

Scattered implies few separable randomizations (assuming MA($\left.\aleph_{1}\right)$)

■ Suppose that φ is scattered and let \mathcal{N} be a separable randomization of φ with representation as in the theorem.
$■$ For each $i \in I(\varphi)$, let $B_{i}:=\left\{t: \mathcal{M}_{t} \models \theta_{i}\right\} \in \mathcal{L}$.

- Note that

■ Let $J:=\left\{i \in I(\varphi): \lambda\left(B_{i}\right)>0\right\}$. Then $|I(\varphi) \backslash J| \leq \aleph_{1}$ so

\square Fix $j_{0} \in J$. For $j \in J \backslash\left\{j_{0}\right\}$, set $A_{j}:=B_{j}$. Set $A_{j_{0}}=[0,1) \backslash \square_{j \neq j_{0}} B$
■ So $\left\langle A_{j}\right\rangle_{j \in J}$ is a partition of $[0,1)$ and $\lambda\left(A_{j}\right)=\lambda\left(B_{j}\right)$ for all $j \in J$.

- Let \mathcal{M}_{j} have isomornhism tyne j and set $\mathcal{P}:=\left(\prod_{j \in,}, \mathcal{M}_{j}^{A_{j}}, \mathcal{L}\right)$
- Since $\lambda\left(\left[\theta_{j} \rrbracket^{\mathcal{N}}\right)=\lambda\left(A_{j}\right)\right.$ for all $j \in J$, we have that \mathcal{N} is isomorphic to the basic randomization \mathcal{P} by the above test.

Scattered implies few separable randomizations (assuming MA($\left.\aleph_{1}\right)$)

■ Suppose that φ is scattered and let \mathcal{N} be a separable randomization of φ with representation as in the theorem.
$■$ For each $i \in I(\varphi)$, let $B_{i}:=\left\{t: \mathcal{M}_{t} \models \theta_{i}\right\} \in \mathcal{L}$.
■ Note that $|I(\varphi)| \leq \aleph_{1}$ and $[0,1)=\bigsqcup_{i \in I(\varphi)} B_{i}$.

■ So $\left\langle A_{j}\right\rangle_{j \in J}$ is a partition of $[0,1)$ and $\lambda\left(A_{j}\right)=\lambda\left(B_{j}\right)$ for all $j \in J$.

- Let \mathcal{M}_{j} have isomornhism tyne j and set $\mathcal{P}:=\left(\prod_{j \in,}, \mathcal{M}_{j}^{A_{j}}, \mathcal{L}\right)$
- Since $\lambda\left(\left[\theta_{j} \rrbracket^{\mathcal{N}}\right)=\lambda\left(A_{j}\right)\right.$ for all $j \in J$, we have that \mathcal{N} is isomorphic to the basic randomization \mathcal{P} by the above test.

Scattered implies few separable randomizations (assuming MA($\left.\aleph_{1}\right)$)

■ Suppose that φ is scattered and let \mathcal{N} be a separable randomization of φ with representation as in the theorem.
$■$ For each $i \in I(\varphi)$, let $B_{i}:=\left\{t: \mathcal{M}_{t} \models \theta_{i}\right\} \in \mathcal{L}$.
■ Note that $|I(\varphi)| \leq \aleph_{1}$ and $[0,1)=\bigsqcup_{i \in I(\varphi)} B_{i}$.
■ Let $J:=\left\{i \in I(\varphi): \lambda\left(B_{i}\right)>0\right\}$. Then $|I(\varphi) \backslash J| \leq \aleph_{1}$ so $\lambda\left(\bigcap_{j \neq J} B_{j}\right)=0$ and hence $\lambda\left(\bigsqcup_{j \in J} B_{j}\right)=1$ by $\operatorname{MA}\left(\aleph_{1}\right)$.

Scattered implies few separable randomizations (assuming MA($\left.\aleph_{1}\right)$)

■ Suppose that φ is scattered and let \mathcal{N} be a separable randomization of φ with representation as in the theorem.
\square For each $i \in I(\varphi)$, let $B_{i}:=\left\{t: \mathcal{M}_{t} \models \theta_{i}\right\} \in \mathcal{L}$.
\square Note that $|I(\varphi)| \leq \aleph_{1}$ and $[0,1)=\bigsqcup_{i \in I(\varphi)} B_{i}$.
■ Let $J:=\left\{i \in I(\varphi): \lambda\left(B_{i}\right)>0\right\}$. Then $|I(\varphi) \backslash J| \leq \aleph_{1}$ so $\lambda\left(\bigcap_{j \neq J} B_{j}\right)=0$ and hence $\lambda\left(\bigsqcup_{j \in J} B_{j}\right)=1$ by $\operatorname{MA}\left(\aleph_{1}\right)$.
\square Fix $j_{0} \in J$. For $j \in J \backslash\left\{j_{0}\right\}$, set $A_{j}:=B_{j}$. Set $A_{j_{0}}=[0,1) \backslash \bigsqcup_{j \neq j_{0}} B_{j}$.
So $\left\langle A_{j}\right\rangle_{j \in J}$ is a partition of $[0,1)$ and $\lambda\left(A_{j}\right)=\lambda\left(B_{j}\right)$ for all $j \in J$.
Let \mathcal{M}_{j} have isomorphism type j and set $\mathcal{P}:=\left(\prod_{j \in J} \mathcal{M}_{j}^{A_{j}}, \mathcal{L}\right)$.
Since $\lambda\left(\llbracket \theta_{j} \rrbracket^{\mathcal{N}}\right)=\lambda\left(A_{j}\right)$ for all $j \in J$, we have that \mathcal{N} is isomorphic to the basic randomization \mathcal{P} by the above test.

Scattered implies few separable randomizations (assuming MA($\left.\aleph_{1}\right)$)

■ Suppose that φ is scattered and let \mathcal{N} be a separable randomization of φ with representation as in the theorem.
\square For each $i \in I(\varphi)$, let $B_{i}:=\left\{t: \mathcal{M}_{t} \models \theta_{i}\right\} \in \mathcal{L}$.
\square Note that $|I(\varphi)| \leq \aleph_{1}$ and $[0,1)=\bigsqcup_{i \in I(\varphi)} B_{i}$.
■ Let $J:=\left\{i \in I(\varphi): \lambda\left(B_{i}\right)>0\right\}$. Then $|I(\varphi) \backslash J| \leq \aleph_{1}$ so $\lambda\left(\bigcap_{j \neq J} B_{j}\right)=0$ and hence $\lambda\left(\bigsqcup_{j \in J} B_{j}\right)=1$ by $\operatorname{MA}\left(\aleph_{1}\right)$.
\square Fix $j_{0} \in J$. For $j \in J \backslash\left\{j_{0}\right\}$, set $A_{j}:=B_{j}$. Set $A_{j_{0}}=[0,1) \backslash \bigsqcup_{j \neq j_{0}} B_{j}$.
■ So $\left\langle A_{j}\right\rangle_{j \in J}$ is a partition of $[0,1)$ and $\lambda\left(A_{j}\right)=\lambda\left(B_{j}\right)$ for all $j \in J$.

- Let \mathcal{M}_{j} have isomorphism type j and set $\mathcal{P}:=\left(\prod_{j \in J} \mathcal{M}_{j}^{A_{j}}, \mathcal{L}\right)$

■ Since $\lambda\left(\llbracket \theta_{j} \rrbracket^{\mathcal{N}}\right)=\lambda\left(A_{j}\right)$ for all $j \in J$, we have that \mathcal{N} is isomorphic to the basic randomization \mathcal{P} by the above test.

Scattered implies few separable randomizations (assuming MA($\left(\aleph_{1}\right)$)

■ Suppose that φ is scattered and let \mathcal{N} be a separable randomization of φ with representation as in the theorem.
\square For each $i \in I(\varphi)$, let $B_{i}:=\left\{t: \mathcal{M}_{t} \models \theta_{i}\right\} \in \mathcal{L}$.
■ Note that $|I(\varphi)| \leq \aleph_{1}$ and $[0,1)=\bigsqcup_{i \in I(\varphi)} B_{i}$.
■ Let $J:=\left\{i \in I(\varphi): \lambda\left(B_{i}\right)>0\right\}$. Then $|I(\varphi) \backslash J| \leq \aleph_{1}$ so $\lambda\left(\bigcap_{j \neq J} B_{j}\right)=0$ and hence $\lambda\left(\bigsqcup_{j \in J} B_{j}\right)=1$ by $\operatorname{MA}\left(\aleph_{1}\right)$.
\square Fix $j_{0} \in J$. For $j \in J \backslash\left\{j_{0}\right\}$, set $A_{j}:=B_{j}$. Set $A_{j_{0}}=[0,1) \backslash \bigsqcup_{j \neq j_{0}} B_{j}$.
■ So $\left\langle A_{j}\right\rangle_{j \in J}$ is a partition of $[0,1)$ and $\lambda\left(A_{j}\right)=\lambda\left(B_{j}\right)$ for all $j \in J$.
$■$ Let \mathcal{M}_{j} have isomorphism type j and set $\mathcal{P}:=\left(\prod_{j \in J} \mathcal{M}_{j}^{A_{j}}, \mathcal{L}\right)$.

- Since $\lambda\left(\left[\theta_{j}\right]^{\mathcal{N}}\right)=\lambda\left(A_{j}\right)$ for all $j \in J$, we have that \mathcal{N} is isomorphic
to the basic randomization \mathcal{P} by the above test.

Scattered implies few separable randomizations (assuming MA($\left.\aleph_{1}\right)$)

■ Suppose that φ is scattered and let \mathcal{N} be a separable randomization of φ with representation as in the theorem.
$■$ For each $i \in I(\varphi)$, let $B_{i}:=\left\{t: \mathcal{M}_{t} \models \theta_{i}\right\} \in \mathcal{L}$.
\square Note that $|I(\varphi)| \leq \aleph_{1}$ and $[0,1)=\bigsqcup_{i \in I(\varphi)} B_{i}$.
■ Let $J:=\left\{i \in I(\varphi): \lambda\left(B_{i}\right)>0\right\}$. Then $|I(\varphi) \backslash J| \leq \aleph_{1}$ so $\lambda\left(\bigcap_{j \neq J} B_{j}\right)=0$ and hence $\lambda\left(\bigsqcup_{j \in J} B_{j}\right)=1$ by $\operatorname{MA}\left(\aleph_{1}\right)$.
\square Fix $j_{0} \in J$. For $j \in J \backslash\left\{j_{0}\right\}$, set $A_{j}:=B_{j}$. Set $A_{j_{0}}=[0,1) \backslash \bigsqcup_{j \neq j_{0}} B_{j}$.
■ So $\left\langle A_{j}\right\rangle_{j \in J}$ is a partition of $[0,1)$ and $\lambda\left(A_{j}\right)=\lambda\left(B_{j}\right)$ for all $j \in J$.
$■$ Let \mathcal{M}_{j} have isomorphism type j and set $\mathcal{P}:=\left(\prod_{j \in J} \mathcal{M}_{j}^{A_{j}}, \mathcal{L}\right)$.
■ Since $\lambda\left(\llbracket \theta_{j} \rrbracket^{\mathcal{N}}\right)=\lambda\left(A_{j}\right)$ for all $j \in J$, we have that \mathcal{N} is isomorphic to the basic randomization \mathcal{P} by the above test.

Getting rid of MA $\left(\aleph_{1}\right)$

■ Suppose, in V, that φ is scattered and that \mathcal{N} is a countable randomization of φ.

- We show that \mathcal{N} has property (S) in V.
- Go to a forcing extension $V[G]$ with the same ordinals such that MA $\left(\aleph_{1}\right)$ holds.
- By Shoenfield absoluteness, φ is still scattered in V[G], whence has few separable randomizations in $V[G]$ by Keisler's theorem.
■ One must show that \mathcal{N} is still a countable randomization of φ in $V[G]$, whence, in $V[G], \mathcal{N}$ satisfies property (S).
- One then shows that property (S) is Σ_{1}^{1}, whence absolute, so also true in V.

Getting rid of MA $\left(\aleph_{1}\right)$

■ Suppose, in V, that φ is scattered and that \mathcal{N} is a countable randomization of φ.
■ We show that \mathcal{N} has property (S) in V.

- Go to a forcing extension $V[G]$ with the same ordinals such that MA (\aleph_{1}) holds.
■ By Shoenfield absoluteness, φ is still scattered in $V[G]$, whence has few separable randomizations in V[G] by Keisler's theorem.

■ One must show that \mathcal{N} is still a countable randomization of φ in $V[G]$, whence, in $V[G], \mathcal{N}$ satisfies property (S).

- One then shows that property (S) is Σ_{1}^{1}, whence absolute, so also true in V.

Getting rid of MA $\left(\aleph_{1}\right)$

■ Suppose, in V, that φ is scattered and that \mathcal{N} is a countable randomization of φ.
■ We show that \mathcal{N} has property (S) in V.
■ Go to a forcing extension $V[G]$ with the same ordinals such that $\mathrm{MA}\left(\aleph_{1}\right)$ holds.

- By Shoenfield absoluteness, φ is still scattered in V[G], whence has few separable randomizations in $V[G]$ by Keisler's theorem.

■ One must show that \mathcal{N} is still a countable randomization of φ in $V[G]$, whence, in $V[G], \mathcal{N}$ satisfies property (S)
■ One then shows that property (S) is Σ_{1}^{1}, whence absolute, so also true in V.

Getting rid of MA($\left(\aleph_{1}\right)$

■ Suppose, in V, that φ is scattered and that \mathcal{N} is a countable randomization of φ.
■ We show that \mathcal{N} has property (S) in V.
■ Go to a forcing extension $V[G]$ with the same ordinals such that MA (\aleph_{1}) holds.
\square By Shoenfield absoluteness, φ is still scattered in $V[G]$, whence has few separable randomizations in $V[G]$ by Keisler's theorem.

- One must show that \mathcal{N} is still a countable randomization of φ in $V[G]$, whence, in $V[G], \mathcal{N}$ satisfies property (S)
- One then shows that pronerty (S) is \sum_{1}^{1}, whence absolute, so also true in V.

Getting rid of MA($\left(\aleph_{1}\right)$

■ Suppose, in V, that φ is scattered and that \mathcal{N} is a countable randomization of φ.
■ We show that \mathcal{N} has property (S) in V.
■ Go to a forcing extension $V[G]$ with the same ordinals such that MA $\left(\aleph_{1}\right)$ holds.

- By Shoenfield absoluteness, φ is still scattered in $V[G]$, whence has few separable randomizations in $V[G]$ by Keisler's theorem.
\square One must show that \mathcal{N} is still a countable randomization of φ in $V[G]$, whence, in $V[G], \mathcal{N}$ satisfies property (S).
- One then shows that property (S) is Σ_{1}^{1}, whence absolute, so also true in V.

Getting rid of MA($\left(\aleph_{1}\right)$

■ Suppose, in V, that φ is scattered and that \mathcal{N} is a countable randomization of φ.
■ We show that \mathcal{N} has property (S) in V.
■ Go to a forcing extension $V[G]$ with the same ordinals such that MA (\aleph_{1}) holds.

- By Shoenfield absoluteness, φ is still scattered in $V[G]$, whence has few separable randomizations in $V[G]$ by Keisler's theorem.
$■$ One must show that \mathcal{N} is still a countable randomization of φ in $V[G]$, whence, in $V[G], \mathcal{N}$ satisfies property (S).
\square One then shows that property (S) is Σ_{1}^{1}, whence absolute, so also true in V.

Preservation of countable randomizations

■ Suppose that $\mathcal{N}=(\mathcal{K}, \mathcal{E})$ is a countable randomization of φ in V. We want this to remain true in $V[G]$.

- Let \mathcal{P} and \mathcal{Q} be the completions of \mathcal{N} in V and $V[G]$ respectively.
- The desired result follows from the more general fact that $\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{P}}=\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{Q}}$ for all $L_{\omega_{1}, \omega}$-formulae ψ and all tuples $\mathbf{f} \in \mathcal{K}$.
- One proves this fact by induction on complexity of formulae.

■ Quantifier case: Suppose $\psi(y)=(\exists x) \theta(x, y)$. Then:

Preservation of countable randomizations

■ Suppose that $\mathcal{N}=(\mathcal{K}, \mathcal{E})$ is a countable randomization of φ in V. We want this to remain true in $V[G]$.
■ Let \mathcal{P} and \mathcal{Q} be the completions of \mathcal{N} in V and $V[G]$ respectively.

- The desired result follows from the more general fact that $\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{P}}=\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{Q}}$ for all $L_{\omega_{1}, \omega}$-formulae ψ and all tuples $\mathbf{f} \in \mathcal{K}$.
- One proves this fact by induction on complexity of formulae.
- Quantifier case: Suppose $\psi(y)=(\exists x) \theta(x, y)$. Then:

Preservation of countable randomizations

■ Suppose that $\mathcal{N}=(\mathcal{K}, \mathcal{E})$ is a countable randomization of φ in V. We want this to remain true in $V[G]$.
\square Let \mathcal{P} and \mathcal{Q} be the completions of \mathcal{N} in V and $V[G]$ respectively.

- The desired result follows from the more general fact that $\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{P}}=\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{Q}}$ for all $L_{\omega_{1}, \omega}$-formulae ψ and all tuples $\mathbf{f} \in \mathcal{K}$.
- One proves this fact by induction on complexity of formulae.
- Quantifier case: Suppose $\psi(y)=(\exists x) \theta(x, y)$. Then:

Preservation of countable randomizations

■ Suppose that $\mathcal{N}=(\mathcal{K}, \mathcal{E})$ is a countable randomization of φ in V. We want this to remain true in $V[G]$.
\square Let \mathcal{P} and \mathcal{Q} be the completions of \mathcal{N} in V and $V[G]$ respectively.

- The desired result follows from the more general fact that $\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{P}}=\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{Q}}$ for all $L_{\omega_{1}, \omega}$-formulae ψ and all tuples $\mathbf{f} \in \mathcal{K}$.
$■$ One proves this fact by induction on complexity of formulae.
- Quantifier case: Suppose $\psi(y)=(\exists x) \theta(x, y)$. Then:

Preservation of countable randomizations

■ Suppose that $\mathcal{N}=(\mathcal{K}, \mathcal{E})$ is a countable randomization of φ in V. We want this to remain true in $V[G]$.
\square Let \mathcal{P} and \mathcal{Q} be the completions of \mathcal{N} in V and $V[G]$ respectively.
\square The desired result follows from the more general fact that $\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{P}}=\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{Q}}$ for all $L_{\omega_{1}, \omega}$-formulae ψ and all tuples $\mathbf{f} \in \mathcal{K}$.
\square One proves this fact by induction on complexity of formulae.
■ Quantifier case: Suppose $\psi(y)=(\exists x) \theta(x, y)$. Then:

Preservation of countable randomizations

■ Suppose that $\mathcal{N}=(\mathcal{K}, \mathcal{E})$ is a countable randomization of φ in V. We want this to remain true in $V[G]$.
■ Let \mathcal{P} and \mathcal{Q} be the completions of \mathcal{N} in V and $V[G]$ respectively.
\square The desired result follows from the more general fact that $\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{P}}=\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{Q}}$ for all $L_{\omega_{1}, \omega}$-formulae ψ and all tuples $\mathbf{f} \in \mathcal{K}$.
$■$ One proves this fact by induction on complexity of formulae.
■ Quantifier case: Suppose $\psi(y)=(\exists x) \theta(x, y)$. Then:

$$
\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{Q}}=\sup _{\mathbf{g} \in \mathcal{Q}} \llbracket \theta(\mathbf{g}, \mathbf{f}) \rrbracket^{\mathcal{Q}}=\sup _{\mathbf{g} \in \mathcal{P}} \llbracket \theta(\mathbf{g}, \mathbf{f}) \rrbracket^{\mathcal{Q}}=\sup _{\mathbf{g} \in \mathcal{P}} \llbracket \theta(\mathbf{g}, \mathbf{f}) \rrbracket^{\mathcal{P}}=\llbracket \psi(\mathbf{f}) \rrbracket^{\mathcal{P}}
$$

Absoluteness of property (S)

Lemma

Let $\mathcal{N}=(\mathcal{K}, \mathcal{B})$ be a countable randomization. Then the following two statements are equivalent:

```
(S) there is i 
(S') there is a countable }\mathcal{M}\mathrm{ with }|M|\geq2\mathrm{ and a positive measure set }
in the completion of }\mathcal{B}\mathrm{ such that }\mp@subsup{\mathcal{M}}{}{\mathcal{L}}\cong\mathcal{N}|C\mathrm{ .
```

Here, $\mathcal{N} \mid C$ is the completion of the randomization \mathcal{N} with μ replaced
by the conditional measure $\mu(\cdot \mid C)$.

Proof.

(\Leftarrow) Take i such that $\mathcal{M}=\theta_{i}$. Then

Absoluteness of property (S)

Lemma

Let $\mathcal{N}=(\mathcal{K}, \mathcal{B})$ be a countable randomization. Then the following two statements are equivalent:
(S) there is $i \in I$ such that $\mu^{\mathcal{N}} \llbracket \theta_{i} \rrbracket>0$
there is a countable \mathcal{M} with $|M| \geq 2$ and a positive measure set C in the completion of \mathcal{B} such that $\mathcal{M}^{\mathcal{L}} \cong \mathcal{N} \mid C$.

Here $\mathcal{N} \mathcal{C}$ is the completion of the randomization Λ with μ replaced by the conditional measure $\mu(\cdot \mid C)$.

Proof.

(\Leftarrow) Take i such that $\mathcal{M}=\theta_{i}$. Then

Absoluteness of property (S)

Lemma

Let $\mathcal{N}=(\mathcal{K}, \mathcal{B})$ be a countable randomization. Then the following two statements are equivalent:
(S) there is $i \in I$ such that $\mu^{\mathcal{N}} \llbracket \theta_{i} \rrbracket>0$
(S') there is a countable \mathcal{M} with $|M| \geq 2$ and a positive measure set C in the completion of \mathcal{B} such that $\mathcal{M}^{\mathcal{L}} \cong \mathcal{N} \mid C$.
Here, $\mathcal{N} \mid C$ is the completion of the randomization \mathcal{N} with μ replaced by the conditional measure $\mu(\cdot \mid C)$.

Proof.

(\Leftarrow) Take i such that $\mathcal{M} \models \theta_{i}$. Then

Absoluteness of property (S)

Lemma

Let $\mathcal{N}=(\mathcal{K}, \mathcal{B})$ be a countable randomization. Then the following two statements are equivalent:
(S) there is $i \in I$ such that $\mu^{\mathcal{N}} \llbracket \theta_{i} \rrbracket>0$
$\left(S^{\prime}\right)$ there is a countable \mathcal{M} with $|M| \geq 2$ and a positive measure set C in the completion of \mathcal{B} such that $\mathcal{M}^{\mathcal{L}} \cong \mathcal{N} \mid C$.
Here, $\mathcal{N} \mid C$ is the completion of the randomization \mathcal{N} with μ replaced by the conditional measure $\mu(\cdot \mid C)$.

Proof.

Take i such that $\mathcal{M}=\theta_{i}$. Then

Absoluteness of property (S)

Lemma

Let $\mathcal{N}=(\mathcal{K}, \mathcal{B})$ be a countable randomization. Then the following two statements are equivalent:
(S) there is $i \in I$ such that $\mu^{\mathcal{N}} \llbracket \theta_{i} \rrbracket>0$
$\left(S^{\prime}\right)$ there is a countable \mathcal{M} with $|M| \geq 2$ and a positive measure set C in the completion of \mathcal{B} such that $\mathcal{M}^{\mathcal{L}} \cong \mathcal{N} \mid C$.
Here, $\mathcal{N} \mid C$ is the completion of the randomization \mathcal{N} with μ replaced by the conditional measure $\mu(\cdot \mid C)$.

Proof.

(\Rightarrow) Take $\mathcal{M} \models \theta_{i}$ and $C:=\llbracket \theta_{i} \rrbracket$.
Take i such that $\mathcal{M}=\theta_{i}$. Then

Absoluteness of property (S)

Lemma

Let $\mathcal{N}=(\mathcal{K}, \mathcal{B})$ be a countable randomization. Then the following two statements are equivalent:
(S) there is $i \in I$ such that $\mu^{\mathcal{N}} \llbracket \theta_{i} \rrbracket>0$
(S') there is a countable \mathcal{M} with $|M| \geq 2$ and a positive measure set C in the completion of \mathcal{B} such that $\mathcal{M}^{\mathcal{L}} \cong \mathcal{N} \mid C$.
Here, $\mathcal{N} \mid C$ is the completion of the randomization \mathcal{N} with μ replaced by the conditional measure $\mu(\cdot \mid C)$.

Proof.

(\Rightarrow) Take $\mathcal{M} \models \theta_{i}$ and $C:=\llbracket \theta_{i} \rrbracket$.
(\Leftarrow) Take i such that $\mathcal{M} \models \theta_{i}$. Then

$$
\mu^{\mathcal{N}} \llbracket \theta_{i} \rrbracket=\mu^{\mathcal{N} \mid C} \llbracket \theta_{i} \rrbracket \cdot \mu(C)=\mu(C)>0
$$

Absoluteness of property (S)

Lemma

Let $\mathcal{N}=(\mathcal{K}, \mathcal{B})$ be a countable randomization. Then the following two statements are equivalent:
(S) there is $i \in I$ such that $\mu^{\mathcal{N}} \llbracket \theta_{i} \rrbracket>0$
(S') there is a countable \mathcal{M} with $|M| \geq 2$, a sequence $B: \mathbb{N} \rightarrow \mathcal{B}$, and double sequences $\alpha: \mathbb{N} \times \mathbb{N} \rightarrow \mathcal{M}^{\mathcal{A}}$ and $\beta: \mathbb{N} \times \mathbb{N} \rightarrow \mathcal{K}$ such that:
$1\left(B_{n}\right)$ is Cauchy and $\lim _{n} \mu\left(B_{n}\right)>0$;
2 for each m, $\left(\alpha_{m, n}\right)$ and $\left(\beta_{m, n}\right)$ are Cauchy;
3 for each $x \in \mathcal{M}^{\mathcal{A}}$, there is $m_{x} \in \mathbb{N}$ such that $\alpha_{m_{x}, n}=x$ for all n and likewise for \mathcal{K} and β;
4 for each L-formula $\psi\left(v_{1}, \ldots, v_{k}\right)$, we have

$$
\lim _{n} \mu^{\mathcal{M}^{\mathcal{A}}}\left(\llbracket \psi\left(\overrightarrow{\alpha_{n}}\right) \rrbracket\right)=\lim _{n} \mu^{\mathcal{N}}\left(\llbracket \psi\left(\overrightarrow{\beta_{n}}\right) \rrbracket \sqcap B_{n}\right) / \mu^{\mathcal{N}}\left(B_{n}\right)
$$

$\left(S^{\prime}\right)$ is easily seen to be Σ_{1}^{1} with parameter \mathcal{N}.

References

■ Uri Andrews, Isaac Goldbring, Sherwood Hachtman, H. Jerome Keisler, and David Marker, Scattered sentences have few separable randomizations, preprint.
■ H. Jerome Keisler, Randomizations of scattered sentences, Beyond first order model theory (Jose lovino, editor), CRC Press, to appear in November 2017.
■ Michael Morley, The number of countable models, Journal of Symbolic Logic, vol. 35 (1970), pp. 14-18.

