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Scattered sentences

Vaught’s conjecture

In this talk:

L is a countable (classical) first-order language,
I denotes the set of isomorphism types of countable L-structures,
for i ∈ I, θi denotes a Scott sentence for i ,
ϕ denotes a sentence of Lω1,ω, and
I(ϕ) denotes the set of isomorphism types of countable models of
ϕ.

Vaught’s conjecture

I(ϕ) is either countable or has cardinality 2ℵ0 .

Theorem (Morley, 1970)

|I(ϕ)| ≤ ℵ1 or |I(ϕ)| = 2ℵ0 .
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Scattered sentences

Scattered sentences

Theorem

The following are equivalent:
For each α < ω1, there are only countably many ≡α-classes of
models of ϕ;
There is no perfect set of models of ϕ.

Definition

ϕ is scattered if either of the above equivalent conditions hold.

Theorem (Morley)

ϕ scattered⇒ |I(ϕ)| ≤ ℵ1.
ϕ not scattered⇒ |I(ϕ)| = 2ℵ0 .
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Scattered sentences

The absolute Vaught conjecture

The absolute Vaught conjecture

If ϕ is scattered, then I(ϕ) is countable.

Clearly, the absolute Vaught conjecture implies Vaught’s
conjecture.
Conversely, if ZFC`VC, then ZFC`AVC by Schoenfield
absoluteness (as being scattered is Π1

2).
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Randomizations

The pure randomization theory

The continuous language LR has two sorts: a sort K for random
variables and a sort E for events.
For each n-ary L-formula θ, there is a function symbol
Jθ(·)K : Kn → E.
The pure randomization theory PR has the following axioms:

atomless probability algebra axioms;
sup~X d(J(θ ∧ ψ)(~X )K, Jθ(~X )K u Jψ(~X )K) = 0, etc...;
sup~X infY d(J∃y(θ(~X , y)K, Jθ(~X ,Y )K) = 0;
d(JσK,>) = 0 for all tautologies σ;
supB infX ,Y d(B, JX = Y K) = 0;
supB,C |d(B,C)− µ(B4C)| = 0 and
supX ,Y |d(X ,Y )− µJX 6= Y K| = 0.

Pre-models of PR are called randomizations and models are
called complete randomizations.
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Randomizations

Borel randomizations

Example

LetM be a structure with at least two elements. The Borel
randomization ofM is the structure (M[0,1),L), where:

M[0,1) is the set of functions f : [0,1)→M with countable range
such that f−1(t) ∈ L for all t ∈ [0,1);
L is the family of Borel subsets of [0,1) equipped with Lebesgue
measure;
Jθ(~f)K := {t ∈ [0,1) : M |= θ(~f(t))}.

The Borel randomization is a pre-complete separable randomization.
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Randomizations

Basic randomizations

Example

Suppose that:
[0,1) =

⋃
n Bn is a partition of [0,1) into positive measure Borel

sets;
for each n,Mn is a countable L-structure;∏

nM
Bn
n is the set of all functions f : [0,1)→

⋃
nMn such that

(∀t ∈ Bn)f(t) ∈Mn and (∀a ∈Mn){t ∈ Bn : f(t) = a} ∈ L;

Jθ(~f)K :=
⋃

n{t ∈ Bn : Mn |= θ(~f(t))}.
Then (

∏
nM

Bn
n ,L) is called a basic randomization.

Basic randomizations are also pre-complete separable randomizations.
Their isomorphism type is captured by their density function.
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Randomizations

Randomizations of Lω1,ω-sentences

Theorem (Keisler)

If P is a complete separable randomization, then there is a unique
mapping J·KP from Lω1,ω-sentences to events that agrees with the
interpretation of J·K on first-order sentences that also respects validity,
countable connectives, and quantification. Moreover, the maps are all
Lipshitz with bound 1.

Definition

If N is a separable randomization with completion P, we say that N is
a randomization of ϕ if µN JϕK := µ(JϕKP) = 1.
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Randomizations

Basic randomizations of Lω1,ω-sentences

Proposition

Suppose that N is the reduction of the basic randomization
(
∏

nM
Bn
n ,L). Then N is a randomization of ϕ if and only if each

Mn |= ϕ, in which case we say that N is a basic randomization of ϕ.

Definition

We say that ϕ has few separable randomizations if every complete
randomization of ϕ is isomorphic to a basic randomization.

Natural Question

Which sentences have few separable randomizations?
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The main results

Scattered sentences and few separable
randomizations

Theorem (Keisler)

If ϕ has few separable randomizations, then ϕ is scattered.

Theorem (Keisler)

Assume that Lebesgue measure is ℵ1-additive (e.g. assume MA(ℵ1)).
If ϕ is scattered, then ϕ has few separable randomizations.

Theorem (Andrews, G., Hachtman, Keisler, Marker)

If ϕ is scattered, then ϕ has few separable randomizations.

Summing up: ϕ is scattered if and only if ϕ has few separable
randomizations.
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The main results

A representation theorem

Theorem (Keisler)

Every complete separable randomization of ϕ is isomorphic to the
completion of a countable randomization N = (K,B) such that for
some atomless probability space (Ω, E , ν) and family of countable
models 〈Mt〉t∈Ω of ϕ we have:
(a) K ⊆

∏
t∈Ω Mt and B ⊆ E .

(b) Mt = {f (t) | f ∈ K} for each t ∈ Ω.
(c) (Ω, E , ν) is the (σ-additive) probability space generated by

(Ω,B, µ).

(d) For each Lω1ω-formula ψ(·) and tuple ~f in K,

µN (Jψ(~f )K) = ν({t ∈ Ω | Mt |= ψ(~f (t))}).

If, in addition, ϕ is scattered, then we may take (Ω, E , ν) = ([0,1),L, λ).
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The main results

Few separable randomizations implies scattered

Suppose that ϕ is not scattered, so there is a perfect set 〈Mt〉 of
nonisomorphic models of ϕ.
By the Borel isomorphism theorem, we might as well assume
t ∈ [0,1).
From this data, we can then build a countable randomization N as
in the representation theorem.
For any i ∈ I, |{t ∈ [0,1) : Mt |= θi}| ≤ 1, whence µN (JθiK) = 0.
But in a basic randomization P, there is i ∈ I such that
µP(JθiK) > 0.
It follows that the completion of N is not isomorphic to P and thus
ϕ does not have few separable randomizations.
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The main results

A test for being isomorphic to a basic randomization

Lemma (Keisler)

Suppose we have:
a countable subset J ⊆ I;
for each j ∈ J, a structureMj with isomorphism type j;

a basic randomization P = (
∏

j∈JM
Aj
j ,L), and

a separable randomization N .
Then N ∼= P if and only if: for each j ∈ J, we have µN (JθjK) = λ(Aj).

Corollary (Keisler)

ϕ has few separable randomizations if and only if every separable
randomization N of ϕ satisfies property (S): there is i ∈ I such that
µN JθiK > 0.
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The main results

Scattered implies few separable randomizations
(assuming MA(ℵ1))

Suppose that ϕ is scattered and let N be a separable
randomization of ϕ with representation as in the theorem.
For each i ∈ I(ϕ), let Bi := {t : Mt |= θi} ∈ L.
Note that |I(ϕ)| ≤ ℵ1 and [0,1) =

⊔
i∈I(ϕ) Bi .

Let J := {i ∈ I(ϕ) : λ(Bi) > 0}. Then |I(ϕ) \ J| ≤ ℵ1 so
λ(

⋂
j /∈J Bj) = 0 and hence λ(

⊔
j∈J Bj) = 1 by MA(ℵ1).

Fix j0 ∈ J. For j ∈ J \ {j0}, set Aj := Bj . Set Aj0 = [0,1) \
⊔

j 6=j0 Bj .
So 〈Aj〉j∈J is a partition of [0,1) and λ(Aj) = λ(Bj) for all j ∈ J.

LetMj have isomorphism type j and set P := (
∏

j∈JM
Aj
j ,L).

Since λ(JθjKN ) = λ(Aj) for all j ∈ J, we have that N is isomorphic
to the basic randomization P by the above test.
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The main results

Getting rid of MA(ℵ1)

Suppose, in V , that ϕ is scattered and that N is a countable
randomization of ϕ.
We show that N has property (S) in V .
Go to a forcing extension V [G] with the same ordinals such that
MA(ℵ1) holds.
By Shoenfield absoluteness, ϕ is still scattered in V [G], whence
has few separable randomizations in V [G] by Keisler’s theorem.
One must show that N is still a countable randomization of ϕ in
V [G], whence, in V [G], N satisfies property (S).
One then shows that property (S) is Σ1

1, whence absolute, so also
true in V .
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The main results

Preservation of countable randomizations

Suppose that N = (K, E) is a countable randomization of ϕ in V .
We want this to remain true in V [G].
Let P and Q be the completions of N in V and V [G] respectively.
The desired result follows from the more general fact that
Jψ(f)KP = Jψ(f)KQ for all Lω1,ω-formulae ψ and all tuples f ∈ K.
One proves this fact by induction on complexity of formulae.
Quantifier case: Suppose ψ(y) = (∃x)θ(x , y). Then:

Jψ(f)KQ = sup
g∈Q

Jθ(g, f)KQ = sup
g∈P

Jθ(g, f)KQ = sup
g∈P

Jθ(g, f)KP = Jψ(f)KP .
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The main results

Absoluteness of property (S)

Lemma

Let N = (K,B) be a countable randomization. Then the following two
statements are equivalent:
(S) there is i ∈ I such that µN JθiK > 0
(S’) there is a countableM with |M| ≥ 2 and a positive measure set C

in the completion of B such thatML ∼= N|C.
Here, N|C is the completion of the randomization N with µ replaced
by the conditional measure µ(·|C).

Proof.

(⇒) TakeM |= θi and C := JθiK.
(⇐) Take i such thatM |= θi . Then

µN JθiK = µN|CJθiK · µ(C) = µ(C) > 0.
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Absoluteness of property (S)

Lemma

Let N = (K,B) be a countable randomization. Then the following two
statements are equivalent:
(S) there is i ∈ I such that µN JθiK > 0
(S’) there is a countableM with |M| ≥ 2, a sequence B : N→ B, and

double sequences α : N×N→MA and β : N×N→ K such that:
1 (Bn) is Cauchy and limn µ(Bn) > 0;
2 for each m, (αm,n) and (βm,n) are Cauchy;
3 for each x ∈MA, there is mx ∈ N such that αmx ,n = x for all n and

likewise for K and β;
4 for each L-formula ψ(v1, . . . , vk ), we have

lim
n
µM

A
(Jψ( ~αn)K) = lim

n
µN (Jψ( ~βn)K u Bn)/µN (Bn).

(S’) is easily seen to be Σ1
1 with parameter N .
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