Fraïssé Theory for C*-algebras

Alessandro Vignati York University, Toronto

ASL Winter Meeting, Boise, Idaho March, 21st, 2017

Alessandro Vignati York University, Toronto Fraïssé Theory for C*-algebras

▶ ★ 문 ▶ ★ 문 ▶ · · 문

Introduction

 ${\it @ } {\mathcal Z} \text{ and } {\mathcal W}$

Onnections with quantifier elimination

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Introduction

 $\textcircled{O} \ \mathcal{Z} \ \text{and} \ \mathcal{W}$

Onnections with quantifier elimination

Alessandro Vignati York University, Toronto Fraïssé Theory for C*-algebras

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

The first two slides of this talk can be taken from Bradd's talk. In particular, we will work in the setting of $\rm C^*\mbox{-algebras}.$

Definition

A trace τ on a C*-algebra A is a linear functional $\tau: A \to \mathbb{C}$ with $\|\tau\| = 1$, $\tau(aa^*) \ge 0$ and $\tau(ab) = \tau(ba)$ for all $a, b \in A$. τ is faithful if $\tau(aa^*) = 0$ implies a = 0.

If A and B are C*-algebras, σ, τ traces on A and B resp., and ϕ is such that $\tau(\phi(a)) = \sigma(a)$ for all $a \in A$, ϕ is said trace preserving, denoted $\phi: (A, \sigma) \to (B, \tau)$. If A and B are unital the pullback of a trace is a trace, so every unital embedding is trace preserving for some traces.

If we consider the language of C^* -algebra together with a trace, trace preserving injections are exactly our embeddings.

The first two slides of this talk can be taken from Bradd's talk. In particular, we will work in the setting of $\rm C^*\mbox{-algebras}.$

Definition

A trace τ on a C*-algebra A is a linear functional $\tau: A \to \mathbb{C}$ with $\|\tau\| = 1$, $\tau(aa^*) \ge 0$ and $\tau(ab) = \tau(ba)$ for all $a, b \in A$. τ is faithful if $\tau(aa^*) = 0$ implies a = 0.

If A and B are C*-algebras, σ, τ traces on A and B resp., and ϕ is such that $\tau(\phi(a)) = \sigma(a)$ for all $a \in A$, ϕ is said trace preserving, denoted $\phi: (A, \sigma) \to (B, \tau)$. If A and B are unital the pullback of a trace is a trace, so every unital embedding is trace preserving for some traces.

If we consider the language of C^* -algebra together with a trace, trace preserving injections are exactly our embeddings.

臣

The first two slides of this talk can be taken from Bradd's talk. In particular, we will work in the setting of $\rm C^*\mbox{-algebras}.$

Definition

A trace τ on a C*-algebra A is a linear functional $\tau: A \to \mathbb{C}$ with $\|\tau\| = 1$, $\tau(aa^*) \ge 0$ and $\tau(ab) = \tau(ba)$ for all $a, b \in A$. τ is faithful if $\tau(aa^*) = 0$ implies a = 0.

If A and B are C*-algebras, σ, τ traces on A and B resp., and ϕ is such that $\tau(\phi(a)) = \sigma(a)$ for all $a \in A$, ϕ is said trace preserving, denoted $\phi: (A, \sigma) \to (B, \tau)$. If A and B are unital the pullback of a trace is a trace, so every unital embedding is trace preserving for some traces.

If we consider the language of C^* -algebra together with a trace, trace preserving injections are exactly our embeddings.

イロト イ部ト イヨト イヨト

臣

The first two slides of this talk can be taken from Bradd's talk. In particular, we will work in the setting of $\rm C^*\mbox{-}algebras.$

Definition

A trace τ on a C*-algebra A is a linear functional $\tau: A \to \mathbb{C}$ with $\|\tau\| = 1$, $\tau(aa^*) \ge 0$ and $\tau(ab) = \tau(ba)$ for all $a, b \in A$. τ is faithful if $\tau(aa^*) = 0$ implies a = 0.

If A and B are C*-algebras, σ, τ traces on A and B resp., and ϕ is such that $\tau(\phi(a)) = \sigma(a)$ for all $a \in A$, ϕ is said trace preserving, denoted $\phi: (A, \sigma) \to (B, \tau)$. If A and B are unital the pullback of a trace is a trace, so every unital embedding is trace preserving for some traces.

If we consider the language of $\mathrm{C}^*\mbox{-algebra}$ together with a trace, trace preserving injections are exactly our embeddings.

イロト イ部ト イヨト イヨト

1

Let \mathcal{L} be a language including the language of C^* -algebras, and \mathcal{K} be a class of finitely generated \mathcal{L} -structures considered with distinguished generators. \mathcal{K} is said a Fraïssé class if it satisfies:

- the JEP: for all A, B ∈ K there is C ∈ K in which A and B both embed;
- the NAP: if A, B₁, B₂ are in K and φ_i: A → B_i are L-embeddings, F ⊆ A is finite and ε > 0 then there are C ∈ K and ψ_i: B_i → C such that

$$\|\psi_1 \circ \phi_1(a) - \psi_2 \circ \phi_2(a)\| < \epsilon$$
, whenever $a \in F$

Let \mathcal{K}_n be the space of all *n*-generated elements of \mathcal{K} , $A, B \in \mathcal{K}_n$ with distinguished generators \bar{a} and \bar{b} . Consider the pseudo-metric

$$d_n(A,B) = \inf_{C,\phi,\psi} \sup_{i \le n} \left\| \phi(\bar{a}) - \psi(\bar{b}) \right\|_C$$

where C is quantified in \mathcal{K} and ψ, ϕ quantify over all embeddings $\phi: A \to C, \ \psi: B \to C.$

• the WPP: the \mathcal{K}_n considered with the pseudo-metric d_n is separable, for all n.

《曰》《聞》《臣》《臣》 [臣]

Let \mathcal{L} be a language including the language of C^* -algebras, and \mathcal{K} be a class of finitely generated \mathcal{L} -structures considered with distinguished generators. \mathcal{K} is said a Fraïssé class if it satisfies:

- the JEP: for all A, B ∈ K there is C ∈ K in which A and B both embed;
- the NAP: if A, B_1 , B_2 are in \mathcal{K} and $\phi_i : A \to B_i$ are \mathcal{L} -embeddings, $F \subseteq A$ is finite and $\epsilon > 0$ then there are $C \in \mathcal{K}$ and $\psi_i : B_i \to C$ such that

$$\|\psi_1 \circ \phi_1(a) - \psi_2 \circ \phi_2(a)\| < \epsilon$$
, whenever $a \in F$

Let \mathcal{K}_n be the space of all *n*-generated elements of \mathcal{K} , $A, B \in \mathcal{K}_n$ with distinguished generators \overline{a} and \overline{b} . Consider the pseudo-metric

$$d_n(A,B) = \inf_{C,\phi,\psi} \sup_{i \le n} \left\| \phi(\bar{a}) - \psi(\bar{b}) \right\|_C$$

where C is quantified in \mathcal{K} and ψ, ϕ quantify over all embeddings $\phi: A \to C, \ \psi: B \to C.$

 the WPP: the K_n considered with the pseudo-metric d_n is separable, for all n. Let \mathcal{L} be a language including the language of C^{*}-algebras, and \mathcal{K} be a class of finitely generated \mathcal{L} -structures considered with distinguished generators. \mathcal{K} is said a Fraïssé class if it satisfies:

- the JEP: for all $A, B \in \mathcal{K}$ there is $C \in \mathcal{K}$ in which A and B both embed:
- the NAP: if A, B_1 , B_2 are in \mathcal{K} and $\phi_i \colon A \to B_i$ are \mathcal{L} -embeddings, $F \subseteq A$ is finite and $\epsilon > 0$ then there are $C \in \mathcal{K}$ and $\psi_i \colon B_i \to C$ such that

$$\|\psi_1 \circ \phi_1(a) - \psi_2 \circ \phi_2(a)\| < \epsilon$$
, whenever $a \in F$

Let \mathcal{K}_n be the space of all *n*-generated elements of \mathcal{K} , $A, B \in \mathcal{K}_n$ with distinguished generators \bar{a} and \bar{b} . Consider the pseudo-metric

$$d_n(A,B) = \inf_{C,\phi,\psi} \sup_{i < n} \left\| \phi(\bar{a}) - \psi(\bar{b}) \right\|_C$$

where C is quantified in \mathcal{K} and ψ, ϕ quantify over all embeddings $\phi: A \to C, \psi: B \to C.$

• the WPP: the \mathcal{K}_n considered with the pseudo-metric d_n is separable, for all *n*. 990

If \mathcal{K} is a Fraïssé class, and M is a limit of structures in \mathcal{K} , M is called a \mathcal{K} -structure. A \mathcal{K} -structure is

- \mathcal{K} -universal if every element of \mathcal{K} embeds in M
- approximately *K*-homogeneous if for all *A* ∈ *K*, *F* ⊆ *A* finite, *ϵ* > 0 and *φ*₁, *φ*₂: *A* → *M* embeddings there is an automorphism *ρ* of *M* with

$$\|
ho(\phi_1(a)) - \phi_2(a)\| < \epsilon, \ a \in F$$

If \mathcal{K} is a Fraïssé class and M is a separable \mathcal{K} -structure which is both \mathcal{K} -universal and approximately \mathcal{K} -homogeneous, M is said a Fraïssé limit.

Theorem (Ben Yaacov)

If $\mathcal K$ is a Fraïssé class and its Fraïssé limit exists, it is unique up to isomorphism.

If \mathcal{K} is a Fraïssé class, and M is a limit of structures in \mathcal{K} , M is called a \mathcal{K} -structure. A \mathcal{K} -structure is

- \mathcal{K} -universal if every element of \mathcal{K} embeds in M
- approximately *K*-homogeneous if for all *A* ∈ *K*, *F* ⊆ *A* finite, *ϵ* > 0 and *φ*₁, *φ*₂: *A* → *M* embeddings there is an automorphism *ρ* of *M* with

$$\|
ho(\phi_1(a))-\phi_2(a)\|<\epsilon,\ a\in F$$

If \mathcal{K} is a Fraïssé class and M is a separable \mathcal{K} -structure which is both \mathcal{K} -universal and approximately \mathcal{K} -homogeneous, M is said a Fraïssé limit.

Theorem (Ben Yaacov)

If $\mathcal K$ is a Fraïssé class and its Fraïssé limit exists, it is unique up to isomorphism.

${\rm @}~{\mathcal Z}~{\rm and}~{\mathcal W}$

Onnections with quantifier elimination

Alessandro Vignati York University, Toronto Fraïssé Theory for C*-algebras

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● のへで

If p and q are coprime, let

 $Z_{p,q} = \{f \in C([0,1], M_p \otimes M_q) \mid f(0) \in M_p \otimes 1, f(1) \in 1 \otimes M_q\}.$

 $Z_{p,q}$ are called dimension drop algebras. Traces of $Z_{p,q}$ correspond to probability measures on [0, 1] by

$$\tau_{\mu}(f) = \int_0^1 \tau(f(t)) d\mu(t).$$

All traces are of this form. If μ is diffuse, τ is said diffuse. Every (nonzero) *-homomorphism $\phi: Z_{p,q} \to Z_{p',q'}$ is trace preserving for some traces σ and τ .

Proposition

- pq divides p'q' if and only if there is an embedding $Z_{p,q} \rightarrow Z_{p',q'}$.
- Let σ, τ be faithful traces on Z_{p,q}. If τ is diffuse, there is an embedding (Z_{p,q}, σ) → (Z_{p,q}, τ).
- If also σ is diffuse, ϕ can be chosen to be an isomorphism.

If p and q are coprime, let

$$Z_{p,q} = \{f \in C([0,1], M_p \otimes M_q) \mid f(0) \in M_p \otimes 1, f(1) \in 1 \otimes M_q\}.$$

 $Z_{p,q}$ are called dimension drop algebras. Traces of $Z_{p,q}$ correspond to probability measures on [0, 1] by

$$au_\mu(f) = \int_0^1 au(f(t)) d\mu(t).$$

All traces are of this form. If μ is diffuse, τ is said diffuse. Every (nonzero) *-homomorphism $\phi: Z_{p,q} \to Z_{p',q'}$ is trace preserving for some traces σ and τ .

Proposition

- pq divides p'q' if and only if there is an embedding $Z_{p,q} \rightarrow Z_{p',q'}$.
- Let σ, τ be faithful traces on Z_{p,q}. If τ is diffuse, there is an embedding (Z_{p,q}, σ) → (Z_{p,q}, τ).
- If also σ is diffuse, ϕ can be chosen to be an isomorphism.

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ

900

If p and q are coprime, let

$$Z_{p,q} = \{f \in C([0,1], M_p \otimes M_q) \mid f(0) \in M_p \otimes 1, f(1) \in 1 \otimes M_q\}.$$

 $Z_{p,q}$ are called dimension drop algebras. Traces of $Z_{p,q}$ correspond to probability measures on [0, 1] by

$$au_\mu(f) = \int_0^1 au(f(t)) d\mu(t).$$

All traces are of this form. If μ is diffuse, τ is said diffuse. Every (nonzero) *-homomorphism $\phi: Z_{p,q} \to Z_{p',q'}$ is trace preserving for some traces σ and τ .

Proposition

- pq divides p'q' if and only if there is an embedding $Z_{p,q} \rightarrow Z_{p',q'}$.
- Let σ, τ be faithful traces on Z_{p,q}. If τ is diffuse, there is an embedding (Z_{p,q}, σ) → (Z_{p,q}, τ).
- If also σ is diffuse, ϕ can be chosen to be an isomorphism.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回 めんの

There are increasing sequences of coprimes p_i , q_i and maps $\phi_i : Z_{p_i,q_i} \rightarrow Z_{p_{i+1},q_{i+1}}$ such that $\mathcal{Z} = \lim_i (Z_{p_i,q_i}, \phi_i)$ is simple, monotracial and has the same K-theory as \mathbb{C} . Let p_i , q_i and ψ_i and $\mathcal{A} = \lim_i (Z_{p_i,q_i}, \psi_i)$. If \mathcal{A} is simple monotracial and has the same K-theory as \mathcal{Z} , then $\mathcal{A} \cong \mathcal{Z}$.

Jiang and Su's \mathcal{Z} is pivotal in the classification programme of C^* -algebras. \mathcal{Z} is unique and universal in many senses. It is self-absorbing ($\mathcal{Z} \otimes \mathcal{Z} \cong \mathcal{Z}$) in a very strong sense. The (amenable) algebras that have the property of absorbing \mathcal{Z} (i.e., $A \otimes \mathcal{Z} \cong A$) are the ones for which there are hopes of obtaining classification.

《曰》《聞》《臣》《臣》 [] 臣.

There are increasing sequences of coprimes p_i , q_i and maps $\phi_i: Z_{p_i,q_i} \rightarrow Z_{p_{i+1},q_{i+1}}$ such that $\mathcal{Z} = \lim_i (Z_{p_i,q_i}, \phi_i)$ is simple, monotracial and has the same K-theory as \mathbb{C} . Let p_i , q_i and ψ_i and $\mathcal{A} = \lim_i (Z_{p_i,q_i}, \psi_i)$. If \mathcal{A} is simple monotracial and has the same K-theory as \mathcal{Z} , then $\mathcal{A} \cong \mathcal{Z}$.

Jiang and Su's \mathcal{Z} is pivotal in the classification programme of C^* -algebras. \mathcal{Z} is unique and universal in many senses. It is self-absorbing ($\mathcal{Z} \otimes \mathcal{Z} \cong \mathcal{Z}$) in a very strong sense. The (amenable) algebras that have the property of absorbing \mathcal{Z} (i.e., $A \otimes \mathcal{Z} \cong A$) are the ones for which there are hopes of obtaining classification.

《曰》《聞》《臣》《臣》 [] 臣.

There are increasing sequences of coprimes p_i , q_i and maps $\phi_i: Z_{p_i,q_i} \to Z_{p_{i+1},q_{i+1}}$ such that $\mathcal{Z} = \lim_i (Z_{p_i,q_i}, \phi_i)$ is simple, monotracial and has the same K-theory as \mathbb{C} . Let p_i , q_i and ψ_i and $\mathcal{A} = \lim_i (Z_{p_i,q_i}, \psi_i)$. If \mathcal{A} is simple monotracial and has the same K-theory as \mathcal{Z} , then $\mathcal{A} \cong \mathcal{Z}$.

Jiang and Su's Z is pivotal in the classification programme of C*-algebras. Z is unique and universal in many senses. It is self-absorbing ($Z \otimes Z \cong Z$) in a very strong sense. The (amenable) algebras that have the property of absorbing Z (i.e., $A \otimes Z \cong A$) are the ones for which there are hopes of obtaining classification.

There are increasing sequences of coprimes p_i , q_i and maps $\phi_i: Z_{p_i,q_i} \to Z_{p_{i+1},q_{i+1}}$ such that $\mathcal{Z} = \lim_i (Z_{p_i,q_i}, \phi_i)$ is simple, monotracial and has the same K-theory as \mathbb{C} . Let p_i , q_i and ψ_i and $\mathcal{A} = \lim_i (Z_{p_i,q_i}, \psi_i)$. If \mathcal{A} is simple monotracial and has the same K-theory as \mathcal{Z} , then $\mathcal{A} \cong \mathcal{Z}$.

Jiang and Su's \mathcal{Z} is pivotal in the classification programme of C*-algebras. \mathcal{Z} is unique and universal in many senses. It is self-absorbing ($\mathcal{Z} \otimes \mathcal{Z} \cong \mathcal{Z}$) in a very strong sense. The (amenable) algebras that have the property of absorbing \mathcal{Z} (i.e., $A \otimes \mathcal{Z} \cong A$) are the ones for which there are hopes of obtaining classification.

《曰》《聞》《臣》《臣》 [臣]

Theorem (EFHKKL, Masumoto)

The class $\{(Z_{p,q}, \tau) \mid p, q \text{ coprimes}, \tau \text{ faithful trace}\}$ is a Fraïssé class. \mathcal{Z} is its Fraïssé limit.

So for all p, q coprimes, $\phi_1, \phi_2 \colon Z_{p,q} \to \mathcal{Z}$, $F \subseteq Z_{p,q}$ and $\epsilon > 0$ there is an automorphism ρ of \mathcal{Z} such that

 $\|\rho(\phi_1(a)) - \phi_2(a)\| < \epsilon$

for all $a \in F$.

EFHKKL's Proof is based on some known facts about \mathcal{Z} . Masumoto's one on a careful study of what the maps between dimension drop algebras can be.

《曰》《聞》《臣》《臣》 [] 臣]

Theorem (EFHKKL, Masumoto)

The class $\{(Z_{p,q}, \tau) \mid p, q \text{ coprimes}, \tau \text{ faithful trace}\}$ is a Fraïssé class. \mathcal{Z} is its Fraïssé limit.

So for all p, q coprimes, $\phi_1, \phi_2 \colon Z_{p,q} \to \mathcal{Z}$, $F \subseteq Z_{p,q}$ and $\epsilon > 0$ there is an automorphism ρ of \mathcal{Z} such that

$$\|\rho(\phi_1(a)) - \phi_2(a)\| < \epsilon$$

for all $a \in F$.

EFHKKL's Proof is based on some known facts about \mathcal{Z} . Masumoto's one on a careful study of what the maps between dimension drop algebras can be.

(日) (部) (문) (문) (문)

Theorem (EFHKKL, Masumoto)

The class $\{(Z_{p,q}, \tau) \mid p, q \text{ coprimes}, \tau \text{ faithful trace}\}$ is a Fraïssé class. Z is its Fraïssé limit.

So for all p, q coprimes, $\phi_1, \phi_2 \colon Z_{p,q} \to \mathcal{Z}$, $F \subseteq Z_{p,q}$ and $\epsilon > 0$ there is an automorphism ρ of \mathcal{Z} such that

$$\|\rho(\phi_1(a)) - \phi_2(a)\| < \epsilon$$

for all $a \in F$.

EFHKKL's Proof is based on some known facts about \mathcal{Z} . Masumoto's one on a careful study of what the maps between dimension drop algebras can be.

Question

As we know that $Z \cong Z \otimes Z$, what can we say about maps $\phi_1, \phi_2: Z_{p,q} \otimes Z_{p',q'} \to Z$? In other terms, can we prove that Z and $Z \otimes Z$ are the Fraïssé limit of the same class?

This is more difficult than one can think. In fact, maps $Z_{p,q} \otimes Z_{p,q} \rightarrow Z_{p',q'} \otimes Z_{p',q'}$ are more complicated than one can think. Despite that, maps $Z_{p,q} \otimes Z_{p',q'} \rightarrow Z_{p'',q''}$ are always well behaved.

Theorem (Jacelon-V.)

The class $\{(Z_{p,q}, \tau), (Z_{p,q} \otimes Z_{p',q'}, \sigma)\}$ is a Fraïssé class. Both \mathcal{Z} and $\mathcal{Z} \otimes \mathcal{Z}$ are its Fraïssé limits, so $\mathcal{Z} \cong \mathcal{Z} \otimes \mathcal{Z}$.

Question

As we know that $Z \cong Z \otimes Z$, what can we say about maps $\phi_1, \phi_2: Z_{p,q} \otimes Z_{p',q'} \to Z$? In other terms, can we prove that Z and $Z \otimes Z$ are the Fraïssé limit of the same class?

This is more difficult than one can think. In fact, maps $Z_{p,q} \otimes Z_{p,q} \rightarrow Z_{p',q'} \otimes Z_{p',q'}$ are more complicated than one can think. Despite that, maps $Z_{p,q} \otimes Z_{p',q'} \rightarrow Z_{p'',q''}$ are always well behaved.

Theorem (Jacelon-V.)

The class $\{(Z_{p,q}, \tau), (Z_{p,q} \otimes Z_{p',q'}, \sigma)\}$ is a Fraïssé class. Both \mathcal{Z} and $\mathcal{Z} \otimes \mathcal{Z}$ are its Fraïssé limits, so $\mathcal{Z} \cong \mathcal{Z} \otimes \mathcal{Z}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Question

As we know that $Z \cong Z \otimes Z$, what can we say about maps $\phi_1, \phi_2: Z_{p,q} \otimes Z_{p',q'} \to Z$? In other terms, can we prove that Z and $Z \otimes Z$ are the Fraïssé limit of the same class?

This is more difficult than one can think. In fact, maps $Z_{p,q} \otimes Z_{p,q} \rightarrow Z_{p',q'} \otimes Z_{p',q'}$ are more complicated than one can think. Despite that, maps $Z_{p,q} \otimes Z_{p',q'} \rightarrow Z_{p'',q''}$ are always well behaved.

Theorem (Jacelon-V.)

The class $\{(Z_{p,q}, \tau), (Z_{p,q} \otimes Z_{p',q'}, \sigma)\}$ is a Fraïssé class. Both \mathcal{Z} and $\mathcal{Z} \otimes \mathcal{Z}$ are its Fraïssé limits, so $\mathcal{Z} \cong \mathcal{Z} \otimes \mathcal{Z}$.

Let

$A_{n,k} = C([0,1], M_n \otimes M_k) \mid f(0) = 1 \otimes c, f(1) = 1_{n-1} \otimes c\}$

These are called Razak's blocks. Traces are, as before, given by probability measures on the interval. The absence of the unit doesn't allow to say that every embedding of $A_{n,k} \rightarrow A_{n',k'}$ is trace preserving.

Proposition

If σ, τ are faithful diffuse traces on A_{n,k} then there is an isomorphism (A_{n,k}, σ) → (A_{n,k}, τ)

If p ≥ 2 and τ, σ are faithful traces on A_{n,k} and A_{pn,(pn-1)k}, τ being diffuse, there is a trace preserving embedding φ: (A_{n,k}, σ) → (A_{pn,(pn-1)k}, τ).

(日) (四) (종) (종) (종)

Let

$$A_{n,k} = C([0,1], M_n \otimes M_k) \mid f(0) = 1 \otimes c, f(1) = 1_{n-1} \otimes c\}$$

These are called Razak's blocks. Traces are, as before, given by probability measures on the interval. The absence of the unit doesn't allow to say that every embedding of $A_{n,k} \rightarrow A_{n',k'}$ is trace preserving.

Proposition

If σ, τ are faithful diffuse traces on A_{n,k} then there is an isomorphism (A_{n,k}, σ) → (A_{n,k}, τ)

If p ≥ 2 and τ, σ are faithful traces on A_{n,k} and A_{pn,(pn-1)k}, τ being diffuse, there is a trace preserving embedding φ: (A_{n,k}, σ) → (A_{pn,(pn-1)k}, τ).

(日) (四) (日) (日) (日) (日)

Let

$$A_{n,k} = C([0,1], M_n \otimes M_k) \mid f(0) = 1 \otimes c, f(1) = 1_{n-1} \otimes c\}$$

These are called Razak's blocks. Traces are, as before, given by probability measures on the interval. The absence of the unit doesn't allow to say that every embedding of $A_{n,k} \rightarrow A_{n',k'}$ is trace preserving.

Proposition

- If σ, τ are faithful diffuse traces on A_{n,k} then there is an isomorphism (A_{n,k}, σ) → (A_{n,k}, τ)
- If p ≥ 2 and τ, σ are faithful traces on A_{n,k} and A_{pn,(pn-1)k}, τ being diffuse, there is a trace preserving embedding φ: (A_{n,k}, σ) → (A_{pn,(pn-1)k}, τ).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Theorem (Jacelon)

There are increasing sequences n_i , k_i and trace preserving (for some traces) maps $\phi_i : A_{n_i,k_i} \rightarrow A_{n_{i+1},k_{i+1}}$ such that $\mathcal{W} = \lim_i (A_{n_i,k_i}, \phi_i)$ is simple, stably projectionless monotracial and with trivial K-theory. Let n_i , k_i and ψ_i and $A = \lim_{i \to \infty} (A_{n_i,k_i}, \psi_i)$. If A is simple monotracial stably projectionless and with trivial K-theory, then $A \cong \mathcal{W}$.

Recent work of Elliott-Niu and Gong-Lin showed the first evidences that \mathcal{W} plays the same role in the classification of nonunital algebras as \mathcal{Z} does for the unital case. \mathcal{W} is a universal objects in many ways. On the other hand, that $\mathcal{W} \otimes \mathcal{W} \cong \mathcal{W}$ was only recently proved, involving a long and complicated proof in classification theory.

토 🖌 🖉 토 👘 🗉 토

Theorem (Jacelon)

There are increasing sequences n_i , k_i and trace preserving (for some traces) maps $\phi_i : A_{n_i,k_i} \rightarrow A_{n_{i+1},k_{i+1}}$ such that $\mathcal{W} = \lim_i (A_{n_i,k_i}, \phi_i)$ is simple, stably projectionless monotracial and with trivial K-theory. Let n_i , k_i and ψ_i and $A = \lim_i (A_{n_i,k_i}, \psi_i)$. If A is simple monotracial stably projectionless and with trivial K-theory, then $A \cong \mathcal{W}$.

Recent work of Elliott-Niu and Gong-Lin showed the first evidences that \mathcal{W} plays the same role in the classification of nonunital algebras as \mathcal{Z} does for the unital case. \mathcal{W} is a universal objects in many ways. On the other hand, that $\mathcal{W} \otimes \mathcal{W} \cong \mathcal{W}$ was only recently proved, involving a long and complicated proof in classification theory.

《曰》 《聞》 《臣》 《臣》 三臣

Theorem (Jacelon)

There are increasing sequences n_i , k_i and trace preserving (for some traces) maps $\phi_i : A_{n_i,k_i} \rightarrow A_{n_{i+1},k_{i+1}}$ such that $\mathcal{W} = \lim_i (A_{n_i,k_i}, \phi_i)$ is simple, stably projectionless monotracial and with trivial K-theory. Let n_i , k_i and ψ_i and $A = \lim_i (A_{n_i,k_i}, \psi_i)$. If A is simple monotracial stably projectionless and with trivial K-theory, then $A \cong \mathcal{W}$.

Recent work of Elliott-Niu and Gong-Lin showed the first evidences that $\mathcal W$ plays the same role in the classification of nonunital algebras as $\mathcal Z$ does for the unital case. $\mathcal W$ is a universal objects in many ways. On the other hand, that $\mathcal W\otimes\mathcal W\cong\mathcal W$ was only recently proved, involving a long and complicated proof in classification theory.

Theorem (Jacelon-V.)

The class $\{(A_{n,k}, \sigma) \mid \sigma \text{ is a faithful trace}\}$ is a Fraïssé class. W is its limit.

Whenever $\phi_1, \phi_2: (A_{n,k}, \sigma) \to (W, \tau)$ are embeddings for some faithful diffuse σ and $F \subseteq A_{n,k}$ and $\epsilon > 0$ are given there is an automorphism ρ of W such that

$$\|\rho(\phi_1(a)) - \phi_2(a)\| < \epsilon$$

for $a \in F$.

The techniques used are similar to the ones of Masumoto's proof that $\ensuremath{\mathcal{Z}}$ is a Fraïssé limit.

토 🖌 🖉 토 👘 🗉 토

Theorem (Jacelon-V.)

The class $\{(A_{n,k}, \sigma) \mid \sigma \text{ is a faithful trace}\}$ is a Fraïssé class. W is its limit. Whenever $\phi_1, \phi_2 \colon (A_{n,k}, \sigma) \to (W, \tau)$ are embeddings for some faithful diffuse σ and $F \subseteq A_{n,k}$ and $\epsilon > 0$ are given there is an automorphism ρ of W such that

$$\|\rho(\phi_1(a)) - \phi_2(a)\| < \epsilon$$

for $a \in F$.

The techniques used are similar to the ones of Masumoto's proof that $\ensuremath{\mathcal{Z}}$ is a Fraïssé limit.

토 / 토 / 토 -

Theorem (Jacelon-V.)

The class $\{(A_{n,k}, \sigma) \mid \sigma \text{ is a faithful trace}\}$ is a Fraïssé class. W is its limit. Whenever $\phi_1, \phi_2 \colon (A_{n,k}, \sigma) \to (W, \tau)$ are embeddings for some faithful diffuse σ and $F \subseteq A_{n,k}$ and $\epsilon > 0$ are given there is an automorphism ρ of W such that

$$\|\rho(\phi_1(a)) - \phi_2(a)\| < \epsilon$$

for $a \in F$.

The techniques used are similar to the ones of Masumoto's proof that $\ensuremath{\mathcal{Z}}$ is a Fraïssé limit.

《曰》《聞》《臣》《臣》 [臣]

The goal is to reproduce the argument used for $\{(Z_{p,q}, \tau), (Z_{p,q} \otimes Z_{p',q'}, \sigma)\}$ to show that $\{(A_{n,k}, \sigma), (A_{n,k} \otimes A_{n',k'}, \tau)\}$ is a Fraïssé class.

Proposition

Fix n, k.

- There are well-behaved maps $A_{n,k} \rightarrow A_{n',k'}$ for some n', k'.
- There are well-behaved maps $A_{n,k} \otimes A_{n,k} \rightarrow A_{n',k'}$ for some n', k'.

Problem

Not all maps $A_{n,k} \otimes A_{n,k} \rightarrow A_{n',k'}$ are well-behaved. Proving NAP seems difficult. Also, there is no well-behaved trace preserving map $A_{n,k} \rightarrow A_{n',k'} \otimes A_{n'',k''}$

Question

Is there any trace preserving map $A_{n,k} \rightarrow A_{n',k'} \otimes A_{n',k'}$? Do we need to add more structure and remove the trace?

(日) (部) (王) (王) (王)

The goal is to reproduce the argument used for $\{(Z_{p,q}, \tau), (Z_{p,q} \otimes Z_{p',q'}, \sigma)\}$ to show that $\{(A_{n,k}, \sigma), (A_{n,k} \otimes A_{n',k'}, \tau)\}$ is a Fraïssé class.

Proposition

Fix n, k.

- There are well-behaved maps $A_{n,k} \rightarrow A_{n',k'}$ for some n', k'.
- There are well-behaved maps $A_{n,k} \otimes A_{n,k} \rightarrow A_{n',k'}$ for some n', k'.

Problem

Not all maps $A_{n,k} \otimes A_{n,k} \rightarrow A_{n',k'}$ are well-behaved. Proving NAP seems difficult. Also, there is no well-behaved trace preserving map $A_{n,k} \rightarrow A_{n',k'} \otimes A_{n'',k''}$

Question

Is there any trace preserving map $A_{n,k} \rightarrow A_{n',k'} \otimes A_{n',k'}$? Do we need to add more structure and remove the trace?

The goal is to reproduce the argument used for $\{(Z_{p,q}, \tau), (Z_{p,q} \otimes Z_{p',q'}, \sigma)\}$ to show that $\{(A_{n,k}, \sigma), (A_{n,k} \otimes A_{n',k'}, \tau)\}$ is a Fraïssé class.

Proposition

Fix n, k.

- There are well-behaved maps $A_{n,k} \rightarrow A_{n',k'}$ for some n', k'.
- There are well-behaved maps $A_{n,k} \otimes A_{n,k} \rightarrow A_{n',k'}$ for some n', k'.

Problem

Not all maps $A_{n,k} \otimes A_{n,k} \rightarrow A_{n',k'}$ are well-behaved. Proving NAP seems difficult. Also, there is no well-behaved trace preserving map $A_{n,k} \rightarrow A_{n',k'} \otimes A_{n'',k''}$

Question

Is there any trace preserving map $A_{n,k} \rightarrow A_{n',k'} \otimes A_{n',k'}$? Do we need to add more structure and remove the trace?

The goal is to reproduce the argument used for $\{(Z_{p,q}, \tau), (Z_{p,q} \otimes Z_{p',q'}, \sigma)\}$ to show that $\{(A_{n,k}, \sigma), (A_{n,k} \otimes A_{n',k'}, \tau)\}$ is a Fraïssé class.

Proposition

Fix n, k.

- There are well-behaved maps $A_{n,k} \rightarrow A_{n',k'}$ for some n', k'.
- There are well-behaved maps $A_{n,k} \otimes A_{n,k} \rightarrow A_{n',k'}$ for some n', k'.

Problem

Not all maps $A_{n,k} \otimes A_{n,k} \rightarrow A_{n',k'}$ are well-behaved. Proving NAP seems difficult. Also, there is no well-behaved trace preserving map $A_{n,k} \rightarrow A_{n',k'} \otimes A_{n'',k''}$

Question

Is there any trace preserving map $A_{n,k} \rightarrow A_{n',k'} \otimes A_{n',k'}$? Do we need to add more structure and remove the trace?

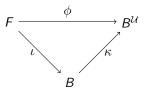
《曰》《聞》《臣》《臣》 [臣]

 $\textcircled{O} \ \mathcal{Z} \ \text{and} \ \mathcal{W}$

Onnections with quantifier elimination

< □ > < 母 > < E > < E > E の Q @ 16/21

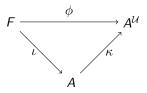
A separable C^{*} algebra A has quantifier elimination if, for all separable $B \equiv A$, all F finitely generated C^{*}-algebras, $\mathcal{U} \in \beta \mathbb{N} \setminus \mathbb{N}$ and embeddings $\phi \colon F \to B^{\mathcal{U}}$, $\iota \colon F \to B$ there is $\kappa \colon B \to B^{\mathcal{U}}$ such that the following commutes:



▶ ★ 문 ▶ ★ 문 ▶ · · 문

990

A has property (*) if for all F finitely generated C*-algebras, $\mathcal{U} \in \beta \mathbb{N} \setminus \mathbb{N}$ and embeddings $\phi: F \to A^{\mathcal{U}}$, $\iota: F \to A$ there is $\kappa: A \to A^{\mathcal{U}}$ such that the following commutes:



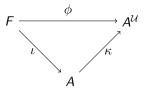
This property, for example, holds if $A = O_2$ and F is assumed to be nuclear.

900

18/21

▶ ★ 문 ▶ ★ 문 ▶ ... 문

A has property (*) if for all F finitely generated C*-algebras, $\mathcal{U} \in \beta \mathbb{N} \setminus \mathbb{N}$ and embeddings $\phi: F \to A^{\mathcal{U}}$, $\iota: F \to A$ there is $\kappa: A \to A^{\mathcal{U}}$ such that the following commutes:



This property, for example, holds if $A = O_2$ and F is assumed to be nuclear.

▶ ▲ 문 ▶ ▲ 문 ▶ _ 문 _

Theorem (Eagle-Farah-Kirchberg-V., Eagle-Goldbring-V.)

- In the language of unital C^{*}-algebras, the only C^{*}-algebras with QE are C, C², M₂(C) and C(2^N).
- The only nonabelian C^* -algebra with (\star) is $M_2(\mathbb{C})$.

→ 母 ▶ → 国 ▶ → 国 ▶ → 句 ♥ ♥

If A is a Fraïssé limit for the Fraïssé class \mathcal{K} , for all the examples we have, A satisfies (*) whenever $F \in \mathcal{K}$. This is where the absence of HP kicks in.

Question

Does Z satisfy (*) in the language of tracial unital C*-algebras? Does it have QE?

Question

What is the largest class of algebras for which $\mathcal W$ satisfies (*) in the language of tracial C^* -algebras?

- 제품에 제품에 제품에 드통

If A is a Fraïssé limit for the Fraïssé class \mathcal{K} , for all the examples we have, A satisfies (*) whenever $F \in \mathcal{K}$. This is where the absence of HP kicks in.

Question

Does Z satisfy (*) in the language of tracial unital C^* -algebras? Does it have QE?

Question

What is the largest class of algebras for which $\mathcal W$ satisfies (*) in the language of tracial C^* -algebras?

《曰》 《聞》 《臣》 《臣》 三臣

If A is a Fraïssé limit for the Fraïssé class \mathcal{K} , for all the examples we have, A satisfies (*) whenever $F \in \mathcal{K}$. This is where the absence of HP kicks in.

Question

Does Z satisfy (*) in the language of tracial unital C*-algebras? Does it have QE?

Question

What is the largest class of algebras for which ${\cal W}$ satisfies (*) in the language of tracial C^{*}-algebras?

《曰》《聞》《臣》《臣》 [] 臣]

If A is a Fraïssé limit for the Fraïssé class \mathcal{K} , for all the examples we have, A satisfies (*) whenever $F \in \mathcal{K}$. This is where the absence of HP kicks in.

Question

Does Z satisfy (*) in the language of tracial unital C*-algebras? Does it have QE?

Question

What is the largest class of algebras for which \mathcal{W} satisfies (*) in the language of tracial C^* -algebras?

《曰》《聞》《臣》《臣》 [] 臣]

JOC.

Thank you!

<ロ > < 団 > < 臣 > < 臣 > < 臣 > 臣 の Q C 21/21