The Main Theorem

@ T is a complete continuous theory in L;

@ T is contained in T', a complete continuous theory in L'
containing L;

@ the forgetful functor from Mod(T’) to Mod(T) is an
equivalence of categories, then

@ every sortin L' is in definable bijection with a definable
zero setin L.

This will tell us by stable embeddedness that every L’ function
and relation can also be expressed as a definable predicate in
L.
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A sketch of the proof

@ Fix a saturated model M of T’ and suppose c € S(M), S a
sort from L'. Consider ¢(X, c) where X ranges over sorts

from L.
@ By stable embeddedness and compactness, for each n,
there are ¢;(x, y;) fori =1,..., m, such that

.. = v v 1
mininf |o(X, c) — ¥i(X, ¥)| < on
Y

@ Let ¢, be the single formula which codes the canonical
parameters for ¢y ... ¢m, and S;be the sort of those
canoncial parameters.

Sso - H Ss,
n

@ The definable predicate ¢ (X, ) is captured by an element
of S, a sort entirely in T¢9.
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Not quite

@ The identification of ¢ (X, ¢) with an element of S, may not
be canonical; we fix this with “forced convergence”.

@ For a sequence of real numbers a, for n € N we define
numbers b, such that b, = ap1 if
bhr—2""<a,<by+27" If ap = by, + 27" then let
bni1 = by +2 "andif a, < b, — 27" then let
bn+1 =b,—27".

@ This produces a continuous function from sequences of
real numbers to fast converging Cauchy sequences; we
identify sequences which converge to this same forced
limit.

@ This gives a formula on S, W(x, ¢) which outputs the the
same forced limit when we compute the limit of the
sequence of ¥,’s.

° Sp will be the sort in which we quotient by the canonical
parameters for V.
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A sketch of the proof, contd

@ Consider

ckew,xel}u

x| =

Th = {suple(X,c) — (X, )| <
X

(ds(c.¢) > 1)

@ X, is inconsistent by assumption for every n so by
compactness there are countably many formulas ¢;(Xx, y)
such that if two elements of S agree on all these formulas
then they are equal.

@ So there is a definable injection from Sinto [[; S,,, and we
can identify S with the definable zero set which is the
range of this map.
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4 ways to say stable: definition 1

Definition

We say that a complete theory T is A-stable if whenever

M= T, x(M) < Xthen x(S(M)) < X\ where the type space has
the metric topology.

T is stable if it is A-stable for some .

@ The theory of infinite-dimensional Hilbert space is stable;
in fact it is Rp-stable.

@ If M is the infinite dimensional separable Hilbert space
then S(M) or more precisely the space of 1-types in x over
the unit ball of M is determined, by quantifier elimination,
essentially by specifying the inner product of x with each
element of an orthonormal basis for M.

@ There are clearly 2% many types but what is the density of
these types?
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Definition 1, cont’d

@ Suppose that p(x) is any type over M. p(x) determines the
orthogonal projection of x onto M; call this u,. Otherwise,
p determines the length of x — u, which is an element
orthogonal to M.

@ Since M is separable, we can specify countably many
types with up from a countable dense set and we can have
|x — up| be rational. This set of types is dense in S(M).

@ To use this definition of stability, one needs to know a lot of
information about the types which is usually only available
if you have some form of quantifier simplification.
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Definition 2

Definition
Suppose that T is a complete theory and ¢(x, y) is a formula.
T is said to have the order property with respect to ¢ if there

are numbers r < s, M = T and a sequence {anb, : ne Ny c M
such that

e(@m,bp) < rifm< nand p(am,bp) = sifm>n

T is said to have the order property if it has the order property
with respect to some formula.

@ Urysohn space has the order property: picture.
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@ Fix a saturated model M and suppose we have a ternary
relation | between small subsets of M (of size < x(M)).
We define a series of properties such a relation might
have:

@ (Invariance) For any o € Aut(M), A | ¢ Biff
o(A) lo(c) o(B).
@ (Symmetry) A |¢ Biff B | ¢ A.
@ (Transitivity) If C< Dthen A |[g Cand A |gc Diff A g D.

@ (Extension) If B€ C< Dand A | C then there is
o € Aut(M/C) such that o(A) |¢ D.

Bradd Hart Stability



Definition 3, cont’d

@ (Finite character) A | ¢ B iff for all finite Ay < A, By < B,
Ao lc Bo.

@ (Local character) There is a « such that for all Aand B,
there is By < B such that x(By) < x + x(A) and A | g, B.

@ (Stationarity) Forany Aand N < M, if N < C and
o € Aut(M/N) such that A |y C and o(A) |n C then there
is u € Aut(M/C) such that p(A) = o(A).

Definition

We say that M or Th(M) supports a stationary independence
relation if it has a ternary relation between small subsets which
satisfies all of the above conditions.
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Definition 3, cont’d

@ This notion is a weakening of the van der Waerden axioms
for a dependence relation. You can’t define dimension
using this relation; you do have the exchange property.

@ The theory of an infinite dimensional Hilbert space
supports a stationary independence relation. Define | by
A lc Biffif ae (AC) and ais orthogonal to C then aiis
orthogonal to B.

@ Notice that if T supports a stationary independence
relation then T is stable:

@ Fix A such that A\ = X\ where xk > x(L) and « satisfies the
local character axiom. Choose M = T with x(M) < A. If
p € S(M) then p is the unique extension of some type
prMO, My < M and X(Mo) < K.

@ There are at most A\* many possible Mp’s and 2 many
possible types over each My so |[S(M)| < A" = \.

@ We only used some of the axioms here: invariance,

stationarity, local character, transitivity.
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Definition 4

@ Suppose that L is separable and M is a separable
L-structure. Fix non-principal ultrafilters U and V on N and
ask if MY =~ MV,

@ Unfortunately, this question is dependent a little on
cardinalities. Remember that MY is R4-saturated and so if
2% = Xy, it would be saturated. So then MY ~ MV since
they are elementarily equivalent.

@ What if this happens even if CH does not hold? If it
happens that MY ~ MV for all non-principal ultrafilters U, V
on N no matter what the value of the continuum, we say
that these ultrapowers are necessarily isomorphic.
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Main Theorem

The following are equivalent:
Q T is stable.
© T does not have the order property.
© T supports a stationary independence relation.

Q (L separable) For all (any) separable models of T, the
ultrapowers with respect to non-principal ultrafilters on N
are necessarily isomorphic.

@ We have seen that 3 implies 1. The rest are difficult and
require the introduction of several new techniques.
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Indiscernibles

Suppose that (/, <) is a linear order and (g; : i € /) is an
l-indexed sequence in some model M. Then this sequence is
said to be indiscernible if whenever iy < i < ... < iy and
h<p<..<jpthent(a,...a;,) = t(a,...a,).

Suppose that M is a non-compact metric structure. Then for
any (I, <) there is an M' = Th(M) and an I-indexed
non-constant indiscernible sequence in M'.

v

@ Since M is not compact there is an ¢ > 0 such that M is not
covered by finitely many e-balls. Fix an infinite set
{a; : i € N} such that for i # j, d(a;, &) = e.
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Indiscernibles, cont’d

@ We need to show that Th(M) is satisfiable with the set of
formulas, for each ¢(x1,...,x,), ke Nand
h<...<lipfi <...<fpinl,

|§0(C/'1a- s C/n) - QO(CA,. R C/n)| < 1/k

and forevery i # jin I, d(c;, ¢j) = e.
@ We do this by compactness so fix finitely many formulas

©1,-..,omand Ky, ..., kn € N. We may assume that all the
formulas have the same number of free variables say
X1 g ey Xn.

@ Fix finite 1/k;-partitions P; of the range of ¢;. We define a
colouring of n-element subsets of N by Py x ... x Py if
i1 <...<ipinN, let

f({it, ... in}) = (1,...,pn) iffforall i < m,oM(a;,...,a;,) € p;
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Indiscernibles, cont’d

@ By Ramsey’s Theorem, we can find a homogeneous
subset of N such that f takes a constant value on
n-element subsets of this set.

@ Moreover, all the elements of the homogeneous subset are
at least ¢ apart.

@ We conclude that our set of formulas is satisfiable and we
find M’ which contains an /-indiscernible sequence.

@ Example: In an infinite dimensional Hilbert space, an
orthonormal set is indiscernible ordered any way you like.

@ The sequence which withessed the order property for
Urysohn space was also indiscernible ordered in the way it
was given.
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Order implies unstable

Corollary (to the previous proof)
If T has the order property then T is unstable.

@ Proof sketch: Fix ¢(X, y) and r < s which witnesses the
order property. Using the same style of proof from the
previous theorem we can prove that for any ordered set
(I,<),we can find M = T and l-indexed indiscernible
sequence {a;b; : i € Iy such that ¢(a;, Bj) <rifi<jand
(p(a,',bj) =sifi>].

@ Now fix a cardinal A and choose « least such that 2% > \.
Then k < Aand 2<F < A,

@ Order 2" by n < u if, for the greatest « such that
Nla = pla na) < p(e).

@ Identify 2=" with those elements of 2 which are eventually
0.
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Proof cont'd

@ Pick a model M and a 2"-indexed indiscernible sequence
(apby, : n € 2") ordered by .

@ Let B={b,:ne2"}, asetof size <\

@ For n e 27\2=", consider all the types t(a,/B). Now if
n < u, choose i € 2<% such that n < i < u. Then

p(ay, bp) < rand p(a,, bg) = s

@ So t(a,/B) and t(a,/B) are not equal. Moreover, if e = &L
and we choose ¢ from the continuity modulus for ¢ in the
x-variable, we see that t(a,/B) and t(a,/B) are at least ¢
apart so x(S(B)) = 2" > A and x(B) < A.

@ Bisn’'t a model but we could extend B to a model of the
same density character and we would still have too many
separated types over this model.

@ So the order property implies that T is not A-stable for any
A
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Unstable implies order

We say p(x) € S(M) is finitely determined if for every formula
»(x,y) and every € > 0 there is a finite B< M and § > 0 such

that for all ¢1, co € M, if

max |p(b, ¢1) — (b, c2)| < 6
beB

then
|pso(x,01) _ pw(x,02)| <e

The following are equivalent:
@ 7 is stable.
© T does not have the order property.
© Forevery M =T, every type in S(M) is finitely determined.
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Unstable implies order: proof

@ We just proved that 1 implies 2. Let’s show that 3 implies 1.

@ Fix X such that \X(t) = X\, Thenif M = T and x(M) < ),
there are at most AX() = \ many types in S(M) by finite
determinancy. So T is \-stable.

@ We show now that the failure of 3 implies the existence of
order. So fix a type p(x) € S(M) which is not finitely
determined say witnessed by a formula ¢(x, y) and € > 0.

@ We use p to construct a sequence a;b;c; in M inductively;
assume we have constructed these for all i < j.

@ By assumption, we know that we can find b; and ¢; so that

max |io(ai, ) — (@, by)| < & and o) — pre9)] > ¢
i<j
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Unstable implies order: proof, cont'd

@ Now by the approximate finite satisfiability of p, we can find
a; € M so that

. € ) €
(@, by) — P | < 7 and (g, G) — PPV < 5

w

@ So we have thatif i <j
|(,0(ai, bj) - (p(aia Cj)| <
and for i > j,

lp(a;, by) — p(a;, )| =

Wl

o If we let 0(x1y121, Xoy220) := |p(X1, Y2) — (X1, Z2)| then 0
orders the sequence {a;b;c; : i € N).
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