
Comments on Problem sessions 3 and 4

Problem session 3:
We discussed the completeness of the reals: every bounded increasing (or

decreasing) sequence of real numbers has a limit. This is the most critical
defining property of the reals and gets used in many Putnam problems when
one needs to see that a limit exists. We looked specifically at the problem

lim
n→∞

1/n+ . . .+ 1/2n

Each term in this sequence is positive so the sequence is bounded below by
0. The sequence decreases since 1/n > 1/(2n + 1) + 1/(2n + 2) and so this
limit exists by the completeness of the reals.

We also did A2 and B1 from last year’s exam: Both questions are good
examples of how the examiners try to confuse you with too much information.
In A2, after experimenting with some functions for a little while, one would
conjecture that the only functions which satisfy the given criteria are of the
form f(x) = ax + b. To prove this, one only needs the given property for
n = 1, 2.

B1 requires a little additional knowledge; the solution I suggested was to
use the Cauchy-Schwartz inequality. Here is a proof that uses less heavy-
sounding linear algebra (but is still using the same idea). Suppose we have
a sequence of real numbers a1, a2, . . . such that∑

i

ani = n

for all n. Again there is too much information here; let’s use only this
information for n = 2, 3, 4. We do need to know that if u, v are two vectors
in Rn then u · v = |u||v| cos(θ) where θ is the angle between u and v. In fact,
all I want to use about this fact is that in Rn,

|u · v| ≤ |u||v|

As those who know what the Cauchy-Schwarz inequality is, they will recog-
nize this as that inequality in the special case of Rn. Now we go back to our
original sequence and choose N big enough so that

N∑
i=1

a3i ≥ 2.9
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Then if we think about the sequences u = (a1, a2, . . . , aN) and v = (a21, a
2
2, . . . , a

2
N)

we should have (u ·v)2 = (
∑N

i=1 a
3
i )

2 ≥ 2.92 and at the same time ≤ |u|2|v|2 ≤
2 · 4 = 8 which is a contradiction.
Problem session 4:

For Matt’s warm-up problem, the total circumference is π times the height
of the triangle. To see this, draw a series of diameters of all the circles
perpendicular to the base and you get the height of the triangle.

For B1 from 2008, it is easy enough to construct a circle with two rational
points on its perimeter but with non-rational centre. One needs to see that
if you have three rational points on the perimeter, then the centre itself is
rational. To see this, construct two chords of the circle using the rational
points. The slopes of these lines is rational and the midpoint of the chords
is rational all because the points we start with have rational coordinates.
This means that the lines passing through the midpoints at right angles
to the chords also have rational slope and y-intercept. Then centre is the
intersection of these two lines and hence is rational.

For A2 from 2007, there was a gap in the proof I presented. One can
restrict to a quadrilateral with one point on each branch of the two hy-
perbolas; the issue was why was this figure symmetric about the origin.
Matt has provided a proof of this which I will link to the Putnam train-
ing website (it has a pretty picture). Once we have it is symmetric about
the origin, one was left computing the area of the quadrilateral with corners
at A = (a, 1/a), B = (−b, 1/b), C = (−a,−1/a) and D = (b,−1/b) where
a, b > 0. This is a parallelogram and hence its area can be computed by look-
ing at the length of the cross-product CB × CD or equivalently, computing
the determinant of (

a+ b 1/a− 1/b
a− b 1/a+ 1/b

)
which is 2(a/b + b/a). If we let λ = a/b then we are trying to minimize
2(λ + 1/λ) which an easy calculation shows occurs when λ = 1. So the
minimal area is obtained whenever a = b and is 4.

For B3 from 2006, the key thing to do here is figure out what the answer
should be. To do this, if we let an be the sought after number for n points,
compute enough values of an to make a conjecture. It was suggested at the
session that a good conjecture is an+1 = an + n. If this is true then the

correct answer is an =
(
n
2

)
+1. We’ll discuss ways of proving this this Friday.
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