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a b s t r a c t

We study the weak anchoring condition for nematic liquid crystals in the context of the
Landau–De Gennes model. We restrict our attention to two dimensional samples and to
nematic director fields lying in the plane, for which the Landau–De Gennes energy reduces
to the Ginzburg–Landau functional, and the weak anchoring condition is realized via a
penalized boundary term in the energy. We study the singular limit as the length scale
parameter " ! 0, assuming theweak anchoring parameter� = �(") ! 1 at a prescribed
rate. We also consider a specific example of a bulk nematic liquid crystal with an included
oil droplet and derive a precise description of the defect locations for this situation, for
�(") = K"�↵ with ↵ 2 (0, 1]. We show that defects lie on the weak anchoring boundary
for ↵ 2 (0, 1

2 ), or for ↵ = 1
2 and K small, but they occur inside the bulk domain ⌦ for

↵ > 1
2 or ↵ = 1

2 with K large.
© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we examine the weak anchoring condition for nematic liquid crystals in the context of the Landau–De
Gennes model. Weak anchoring refers to the imposition of boundary behavior by means of energy penalization, rather
than via a nonhomogeneous Dirichlet condition (which is referred to as ‘‘strong anchoring’’). We restrict our attention
to two-dimensional samples and to nematic director fields lying in the plane. With this dimensional restriction, the
Landau–De Gennes energy reduces to the familiar Ginzburg–Landau energy, for a complex valued order parameter uwhich
is mapped to the Q -tensor in the Landau–De Gennes theory, and the weak coupling condition is expressed as a boundary
penalization term added to the Ginzburg–Landau energy. We study the singular limit as the length scale parameter " ! 0,
assuming theweak anchoring penalization strength� = �(") ! 1 at a prescribed rate.We also consider a specific example
of a bulk nematic liquid crystal with an included oil droplet [1], and derive a precise description of the defect locations for
this situation, depending on the relative strength of the weak anchoring parameter �("). Although the Ginzburg–Landau
functional represents a highly simplified model for nematic liquid crystals, we expect that it nevertheless captures the
salient information concerning the formation of singularities under the weak anchoring condition.

We first describe our results in the context of the Ginzburg–Landaumodelwith boundary penalization; the description of
the Landau–De Gennes model and the physical droplet setting, together with the reduction to the Ginzburg–Landau energy,
will be explained afterwards. In particular, the solution to the droplet problem is stated in Theorem 1.2. Let

� = �(") = K"�↵
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for↵ 2 (0, 1], K > 0 constant.We impose theweak anchoring condition on a connected component� of @⌦ via a boundary
term in the energy. Let g : � ! S1 be a C2 smooth map, and define

E"(u) := 1
2

Z

⌦

✓

|ru|2 + 1
2"2

�|u|2 � 1
�2
◆

dx + �

2

Z

�

|u � g|2 dS.

A critical point of E"(u) in H1(⌦; C) solves

�1u + 1
"2

(|u|2 � 1)u = 0, in⌦,

@u
@⌫

+ �(u � g) = 0, on � .

9

>

=

>

;

(1.1)

We consider three different geometries, each with some physical motivation.
Problem I: ⌦ ⇢ R2 is simply connected and with smooth C2 boundary @⌦ = � . In this case, the appropriate space is
HI := H1(⌦; C), and (1.1) gives the Euler–Lagrange equations corresponding to this variational problem.
Problem II: ⌦ = ⌦1 \ ⌦0 is a topological annulus, with C2 smooth boundary in two components, � = @⌦0 the interior
boundary, and @⌦1 the exterior. We impose weak anchoring via g : � ! S1 on the interior boundary, and a constant
Dirichlet condition on the exterior, so the Euler–Lagrange equations are (1.1) with the additional condition,

u = 1, on @⌦1. (1.2)

The appropriate space is

HII := {u 2 H1(⌦; C) : u = 1 on @⌦1}.
The choice of a constant as a Dirichlet (strong anchoring) boundary condition is motivated by the physical model of a

droplet ⌦0 included in a bulk nematic (described below); mathematically, the problem may be posed with any S1-valued
map imposed on the outer boundary @⌦1.
Problem III:⌦ = R2 \⌦0 is an exterior domain, with boundary � = @⌦0. We impose a weak anchoring condition on � via
the C2 map g : � ! S1 ⇢ C, and assume that there exists a constant �0 2 (�⇡ ,⇡] for which

u(x) ! ei�0 as |x| ! 1. (1.3)

We minimize E" in the space

HIII := {u 2 H1
loc(⌦; C) : 9�0 2 R such that u ! ei�0 as |x| ! 1},

andminimizers satisfy the Euler–Lagrange equations (1.1) in the unbounded domain⌦ , with asymptotic condition (1.3). As
in Problem II, the choice of a constant at infinity is motivated by the droplet problem posed in [1].

The space HIII is problematic, as the Dirichlet energy does not control the phase of u as |x| ! 1, and in fact the existence
of minimizers for fixed " > 0 is not immediate. Indeed, unlike the Dirichlet problems I and II, we may not specify a limiting
constant as |x| ! 1; the asymptotic phase �0 is an unknown quantity in the problem, determined by the choice of⌦0 and
g . In the application to nematic liquid crystals, ⌦0 = D1(0) a disk, and g = eiD✓ is symmetric, and in this case we may in
fact conclude that the energy minimizers satisfy u(x) ! 1 as |x| ! 1 (see Theorem 2.1).

Our aim in this paper is to study the minimizers of E" as " ! 0, for each problem I, II, III, and determine how the location
of the vortices is affected by the weak anchoring strength � = �(") = K"�↵ . In particular, we observe that ↵ = 1

2 is the
critical value for the weak anchoring strength, with vortices lying on the boundary component � for ↵ < 1

2 and inside ⌦
for ↵ > 1

2 . Here is our main result for Problems I, II, and III:

Theorem 1.1. Let g : � ! S1 be a given C2 function with degree D 2 N. Let u" be minimizers of E" in one of the spaces Hi,
i = I, II, III. For any sequence of " ! 0 there is a subsequence "n ! 0 and D points {p1, . . . , pD} in⌦ [ � such that

u"n ! u⇤ in C1,µ
loc (⌦ \ {p1, . . . , pD}),

for 0 < µ < 1, with u⇤ : ⌦ \ {p1, . . . , pD} ! S1 a harmonic map. Moreover,

(a) u⇤ = g on � \ {p1, . . . , pD}.
(b) For each i = 1, . . . , D , deg(u⇤; pi) = 1 in problem I, and deg(u⇤; pi) = �1 in problems II and III.
(c) If 0 < ↵ < 1

2 , each pi 2 � ; if 1
2 < ↵  1, then pi 2 ⌦ for all i = 1, . . . , D .

(d) If ↵ = 1
2 , there exist K0 < K1 2 R such that the vortices lie on � for K < K0 and they lie inside⌦ for K > K1.

(e) There are Renormalized Energy functions W⌦ : ⌦D ! R and W� : � D ! R such that if (p1, . . . , pD) lie on � , they
minimize W� , and if they lie inside⌦ they minimize W⌦ .
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The Renormalized Energies will be defined and their properties analyzed in Section 6. The passage to the limit in
Theorem 1.1 is done using ⌘-compactness (or ⌘-ellipticity) methods, introduced by Struwe [2], Rivière [3], and the
Renormalized Energy analysis follows the treatment of the Dirichlet problem by Bethuel–Brézis–Hélein [4]. The boundary
vortices may be treated in a similar way as in thin-filmmodels of micromagnetics, as analyzed by Kurzke [5] and Moser [6],
although the boundary condition itself is not the same. Similar estimates (although for a very different problem) were
employed by André and Shafrir [7].

It is for Problem III that we obtain our most complete results, and it is this case (with interior boundary � = @B1(0) and
g = ei✓ ) which is directly motivated by physical considerations. These are described together with the physical context in
the following paragraphs, and in Theorem 1.2.
Models of nematic liquid crystals. The equilibrium state of a nematic liquid crystal (in dimension N , N = 2, 3), may be
described by a unit director field n(x), |n(x)| = 1 at each x 2 ⌦ ⇢ RN . An early (and widely used) simplified model for ne-
matics is the Oseen–Frankmodel [8,9], in which the director is taken to be an SN�1-valued vector field, n : ⌦ ⇢ RN ! SN�1.
Assuming all elastic constants to be equal, the director minimizes the Dirichlet energy, and thus is a harmonic map with
values in SN�1.

An objection to the Oseen–Frank approach is that the director n(x) is a vector field, and hence carries an orientation
at each point, whereas the directors n(x) and �n(x) represent the same physical state of the nematic liquid crystal at x. A
more appropriate description of the nematic would entail a field taking values in the projective plane RPN�1, not the sphere.
De Gennes proposed a mechanism to represent non-oriented direction fields by means of a symmetric trace-zero N by N
matrix-valued function Q (x), called a Q -tensor. The class of all nematic directors n(x), |n(x)| = 1 with the identification
n ⇠ �n is embedded as a subspace in the linear space of traceless symmetric matrices via Q (x) = s(n ⇥ n � 1

N Id), where s
is a scalar. The Q -tensors which are associated to unit director fields in this way are called uniaxial.

The Landau–de Gennes functional measures the Dirichlet energy of a Q -tensor while penalizing tensors which are not
uniaxial [1,10–13]:

FLdG(Q ) :=
Z

⌦

✓

1
2
|rQ |2 + 1

L
fB(Q )

◆

dx,

with

fB(Q ) := � a
2
tr
�

Q 2�� b
3
tr
�

Q 3�+ c
4
�

tr
�

Q 2��2 � d,

with (temperature dependent) constants a, b, c; the constant d may be chosen so that min fB = 0. Assuming that the tem-
perature is below the critical temperature for the nematic to isotropic transition, we take the values of a, b, c > 0. Then fB
is minimized for uniaxial Q , of the form

Q = s+
✓

n ⌦ n � 1
N
Id
◆

, (1.4)

with a specific constant s+ = s+(a, b, c) > 0. When N = 3, s+ = b+
p

b2+24ac
4c , and for N = 2, s+ = a

p
2

c (see [14]). For
such uniaxial Q , the Landau–de Gennes functional reduces to a constant multiple of the Dirichlet energy of n. Thus, FLdG is
a relaxation of the harmonic map energy of uniaxial tensor fields, in the same way that the Ginzburg–Landau model is for
harmonic maps to Sn. As is observed in [10], for many problems involving singularities in nematic liquid crystals the energy
minimizing director field may not be representable by orientable n(x), and thus the Oseen–Frank model cannot always de-
termine the optimal configuration in these examples. As above, we write the Landau–de Gennes functional assuming the
equality of the elastic constants (splay, twist, and bend); a more accurate model would have an anisotropic gradient energy
with separate terms for each elastic distortion of the crystal.

In this paper we restrict our attention to planar (thin film or cylindrical) samples, for which the director lies in the
same plane as the sample. In the non-oriented (projective) case, there are two settings in which planar Q -tensors lead
to a Landau–de Gennes model which is equivalent to the Ginzburg–Landau energy. In the first setting [14], we consider the
space Q2 of 2⇥ 2 traceless symmetric matrices. Elements of Q2 are parametrized by two real coordinates, and so the space
may be associated with C. In addition, the potential fB is then minimized on the set of uniaxial tensors of the form

Q = a
p
2

c

✓

n ⌦ n � 1
2
Id
◆

.

Following [14], the energyFLdG may be exactly transformed to the Ginzburg–Landaumodel via the order parameter defined
by u = 2

s+ [q11 + iq12]. We note that if n = ei� , the corresponding uniaxial Q -tensor is

Q = a
c
p
2

✓

cos(2�) sin(2�)
sin(2�) � cos(2�)

◆

,

and so the associated complex order parameter has a doubled phase, u = e2i� . Thus, a simple vortex in the Ginzburg–Landau
representation yields a non-orientable half-degree singularity in the associated Q -tensor (see Fig. 1).
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Fig. 1. Some sample defects: (a) Oriented degree +1 vortex; (b) Non-oriented degree + 1
2 defect; (c) Oriented degree �1 vortex; (d) Non-oriented degree

� 1
2 defect.

A different representation of planar Q -tensors may be derived as in [10], using three-dimensional symmetric traceless
matrices but restricting to uniaxial configurations (1.4) corresponding to planar n = (n1, n2, 0). For such planar n, the
uniaxial Q -tensors may be represented by means of an order parameter (or auxiliary vector field, see [10]),

u = 2
s
Q11 � 1

2
+ i

2
s
Q12 = 2n2

1 � 1 + 2in1n2.

For any n 2 S1 we may thus determine a unique uwith |u| = 1, and inversely for S1-valued uwe may recover a unit vector
n (modulo n ⇠ �n) via a unique uniaxial Q -tensor,

Q = s+

0

B

B

B

B

B

@

n2
1 � 1

3
n1n2 0

n1n2 n2
2 � 1

3
0

0 0 �1
3

1

C

C

C

C

C

A

= s+
2

0

B

B

B

B

B

@

u1 + 1
3

u2 0

u2
1
3

� u1 0

0 0 �2
3

1

C

C

C

C

C

A

. (1.5)

It may then be shown [10] that the Landau–de Gennes energy for Q of the form (1.5) reduces to a constant multiple of a
Ginzburg–Landau energy for u.

We note that this procedure of reducing the Landau–de Gennes model for planar uniaxial Q -tensors in three dimensions
to the classical Ginzburg–Landau model is not an equivalence. Indeed, as has been noted in [12], a more complete
representation of planar Q -tensors involves both a complex order parameter u and a scalar function s = s(x), giving rise to
a more complex planar system with three real unknown functions. Nevertheless, we expect that the results concerning the
strength of the weak anchoring constant and the formation of defects obtained in the Ginzburg–Landau setting of this paper
will extend to the more refined models (as in [12]), as the energy costs associated to boundary and interior vortices will be
of the same order of magnitude in both the simpler and more refined models.

As we will see, non-orientability will be an essential feature of minimizers in two dimensions. However, for comparison,
we point out that the Ginzburg–Landau energymay be used as a very simplemodel for oriented directors, as it is a relaxation
of the S1 harmonicmap energy. The complex order parameter u : ⌦ ⇢ R2 ! C, but the constraint u 2 S1 is obtained by the
penalization term in the energy. The singularities in the liquid crystal will correspond to regions where |u| ⌧ 1, and thus
disobeys the S1 constraint. This is a very simplified model of liquid crystals with planar directors, and leads to the energy
functional E"(u) for the case of orientable 2D director fields with weak anchoring. Although this model is very simple, it
serves to illustrate the importance of nonorientability in the study of defects in 2D (see Remark 1.3). We again note that a
more realistic model of nematics is anisotropic, due to different values of the elastic coefficients in the gradient term, as in
thewidely accepted Ericksenmodel [8]. The effect of anisotropy in two dimensional liquid crystals has been recently studied
in [15].
Weak anchoring. Following [13], the weak anchoring condition is obtained by introducing a surface term in the energy

F� = W
2

Z

�

(Q � Q� )2 ds,

where Q� is the value of the (uniaxial) Q -tensor preferred by the boundary material � , and W > 0 is a constant giving the
anchoring energy along � . By introducing the complex order parameter u as above (either interpreting Q 2 Q2 as a two-
dimensional traceless symmetric matrix as in [14] or by the ansatz (1.5) as in [10]), this translates into a similar penalization
term to be added to the classical Ginzburg–Landau energy for the order parameter, W̃

2

R

�
|u � g|2 ds, where g : � ! S1 is

the order parameter associated to the given tensor Q� . Thus, after nondimensionalization, we obtain the energy E" for the
order parameter u subjected to a weak anchoring condition on � .
Weak anchoring around a droplet. In a nematic, it is common to assume homeotropic anchoring, in which the preferred
direction is with the director n aligned along the unit normal ⌫ to � at each point. As noted above, if we represent ⌫ = ei�(s)

in complex notation, with � parametrized by arclength s, the uniaxial Q -tensor associated to ⌫ will have complex order
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Fig. 2. (a) Boundary vortex for 0 < ↵ < 1
2 ; (b) Interior vortex for 1

2 < ↵ 6 1.

parameter u = e2i�(s). In particular, for a simple closed boundary component � , the normal field ⌫ being of degree one, we
will thus obtain an order parameter with deg(u;� ) = 2. As it is well known (see [4]) that for small " > 0, interior vortices
for Ginzburg–Landau minimizers must be of degree ±1, this implies that minimizers of Landau–de Gennes (under the
above planar ansatz) will prefer pairs of non-orientable half-degree singularities rather than ‘‘hedgehog’’ shaped degree-one
vortices.

Following an example in [1], we consider the case of a bulk nematic liquid crystal with an included oil droplet. In our
two-dimensional setting, the oil droplet is assumed to be circular, and the nematic occupies the exterior domain, which we
assume is either a large disk (Problem II) or the entire plane excluding the droplet (Problem III). In either case, we assume
that the droplet is of unit radius, and centered at the origin, and so the homeotropic weak anchoring condition prefers a
director n = ⌫ = ei✓ , written in complex notation. As observed above, this corresponds to the choice

g(✓) = e2i✓ ,

of degreeD = 2 in Theorem1.1. As a corollary of Theorem1.1 and the detailed study of the associated Renormalized Energies
(in Section 6) we have:

Theorem 1.2. Let ⌦ = R2 \ B1(0), g(✓) = e2i✓ , 0  ✓ < 2⇡ , and u" the minimizers of E" in HIII corresponding to ⌦ and g.
Then, there exist points p1 = (0, t), p2 = (0, �t), with t � 1 such that u" ! u⇤ in Ck,µ

loc (⌦ \ {p1, p2}), with u⇤ an S1-valued
harmonic map, and any k � 0. Moreover, u⇤ ! 1 as |x| ! 1, deg(u⇤, pj) = �1, and

(1) If 0 < ↵ < 1
2 , both antivortices lie on @B1(0), p1 = (0, 1), p2 = (0, �1).

(2) If 1
2 < ↵  1, both antivortices lie inside⌦ , p1 = (0, 4p2), p2 = (0, � 4p2).

(3) If ↵ = 1
2 , there exists K0  K1 such that both antivortices lie on @B1(0) for K < K0 and inside⌦ for K > K1.

We recall that a degree ±1 vortex for u corresponds to a half-vortex for the associated director n. The conclusions of the
theorem are illustrated in Fig. 2.

We observe that ↵ = 1
2 is critical for the scaling in this problem. In particular, if we consider minimizing

Ẽ",R(v) =
Z

R2\BR(0)



1
2
|rv|2 + 1

4"2
(|v|2 � 1)2

�

dx + 1
2"1/2

Z

@BR(0)
|v � g|2 ds,

with ⌦̃R = R2 \ BR(0), v 2 HIII, then by rescaling v(x) = v(Ry) = u(y), |y| > 1, we obtain Ẽ",R(v) = E"/R(u), with K = p
R.

Thus, with critical ↵ = 1
2 , minimizers in the exterior of droplets of large radius Rwill have pairs of half anti-vortices lying in

the exterior domain ⌦̃R, whereas for droplets of small radius R the vortices will cling to the boundary � . This conclusion is
very different from that drawn in [1], which predicts a single hyperbolic (degree �1) vortex along the axis of symmetry for
large (3D) spherical droplets. On the other hand, the resultwe obtain here is consistentwith a two-dimensional cross-section
of the ‘‘Saturn ring’’ configuration predicted for smaller sized droplets in [1] (see Fig. 7 of that paper). The difference with [1]
is due to the two-dimensional geometry of our problem. Indeed, our ‘‘point’’ disclinations are in fact line singularities in a
cylindrical three-dimensional setting, whereas the hyperbolic hedgehog found in [1] is a true point defect. The calculation
of the energy of each singularity is thus different in different dimensions. In particular, in 3D the half-degree disclinations
are line singularities, forming loops (as for the Saturn rings), and will be energetically favorable only if the length of the
disclination loop is small.
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Remark 1.3. If we were to restrict our attention to oriented director fields n(x) : ⌦ ! S1, using the Ginzburg–Landau
energy E" as a relaxation of the harmonic map energy, Theorem 1.1 implies a very different form for minimizers. In this ori-
entable Oseen–Frank setting, the homeotropic anchoring condition imposes g(✓) = ei✓ on � = @B1(0). In this case D = 1,
and there is a single antivortex p 2 ⌦ , with all of the conclusions as in Theorem 1.1. The explicit form of the Renormalized
Energy in this case predicts a single, (orientable) degree �1 antivortex, behind the droplet: we have p = (�1, 0) 2 � for
↵ < 1

2 (or ↵ = 1
2 and K small), and p = (�2, 0) 2 ⌦ for ↵ > 1

2 (or ↵ = 1
2 and K large). This illustrates the importance of

orientability in the analysis of the physical liquid crystal problem.

Micromagnetics. We remark that the mechanism of imposing boundary behavior via energy penalization is also present in
other physical contexts. Notable among these are models of thin film micromagnets (see [16]). For these energies, similar
analyses exploiting the connection to the Ginzburg–Landau functional have been undertaken by Kurzke [5] and Moser [6].
There are two essential differences between the micromagnetic models and Landau–De Gennes: the first is that magnetic
materials do have an oriented, S2-valued magnetization vector. The second is the physics of the boundary behavior, as the
magnetization vector tends to point tangentially to any boundary component, not homeotropically (as a nematic). As wewill
see in our analysis of the singular limit " ! 0, this difference is reflected in the cost of boundary vortices, and the critical
weak coupling for micromagnets will occur at ↵ = 1 rather than our ↵ = 1

2 as a result. Nevertheless, the methods derived
in [5,6] will be very useful in the analysis of the energy E" .

2. The exterior domain

For fixed ", �, the existence of a minimizer in Problems I and II follows from standard arguments. Problem III, posed in
the exterior domain⌦ = R2 \⌦0, requires some more care, and we present here an existence result for minimizers.

For ! ⇢ ⌦ , we define a localized energy,

E"(u;!) := 1
2

Z

!

✓

|ru|2 + 1
2"2

�|u|2 � 1
�2
◆

dx + �

2

Z

�\!
|u � g|2 dS.

We also define some useful spaces,

X := {u 2 H1
loc(R

2 \⌦0) : 9�0 2 R such that u(x) ! ei�0 as |x| ! 1}.
X0 := {u 2 X : u(x) ! 1 as |x| ! 1},
X�,R := {u 2 H1(BR \⌦0) : u(x) = ei� on @BR},

and consider minimization of E" in each class,

m := inf
u2X

E"(u), m0 := inf
u2X0

E"(u), m�,R := inf
u2X�,R

E"(u; BR \⌦0).

Theorem 2.1. Let ⌦0 ⇢ R2 be a bounded, smooth, simply connected domain, and ⌦ = R2 \ ⌦0. Then, for each fixed " > 0,
m = minX E" is attained, by a solution of (1.1) with (1.3) holding for some �0 2 R. If ⌦0 = BR0 is a disk and g = g(✓) = eiD✓ ,
then m0 = minX0 E" is also attained (with �0 = 0).

Proof. First, by standard arguments in the calculus of variations, m0,R is attained for all R > diam (⌦0), by a solution uR(x)
of (1.1) with (1.2) on @⌦1 = @BR. By Lemma 3.2, |uR(x)|  1 and there exists a constant C , independent of R, for which
|ruR|  C/". By standard elliptic estimates and a diagonal argument, there exists a subsequence Rj ! 1 and u 2 Ck(⌦)

for all k, such that uRj ! u pointwise on ⌦ in Ck(K) for any fixed compact K b ⌦ , and u solves (1.1). We must show
that u 2 X .

The next step is to show that

m0 = m = lim
R!1 m0,R. (2.1)

Assuming (2.1) true for themoment, we show that the u obtained above (as limits of theminimizers uRj in bounded regions)
is indeed a minimizer of E" in X . For any fixed R1, strong convergence on compact sets implies that

Z

BR1 \⌦0

e"(u) dx = lim
R!1

Z

BR1 \⌦0

e"(uR) dx  lim
R!1 m0,R = m.

Taking the supremum over R1, we conclude that E"(u)  m. Since the energy is finite, we may then apply the estimates
of [17] to conclude that |u| ! 1 as |x| ! 1, and deg( u

|u| , 1) = 0. Finally, by [18], there exists �0 2 R with u(x) ! ei�0 as
|x| ! 1. Thus, u 2 X , and attains the minimum of E" .

In the case that ⌦0 = BR0 , suppose u attains the minimum in X , and u(x) ! ei�0 as |x| ! 1 with �0 2 (�⇡ ,⇡] and
�0 6= 0. Using complex notation z = x+ iy for z 2 C \ BR0 ' R2 \ BR0 , define v(z) = e�i�0u(zei�0/D). Then, v 2 X0, and since
e�i�0g(zei�0/D) = g(z) for g(z) = eiD✓ , we have E"(v) = E"(u). Sincem0 = m, v attains the minimum of E" in X0 as desired.
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To conclude the proof, it remains to verify the claim (2.1) On one hand, if we define ũR as the extension of uR to⌦ with
ũR(x) = 1 for x 2 R2 \ BR, then ũR 2 X0 and E"(ũR) = E"(uR; BR \⌦0) = m0,R. In particular, we conclude that

m  m0  m0,R

holds for all R. To obtain a complementary bound, let ⌘ > 0 be given, and choose u 2 X with E"(u)  m + 1
10⌘. Since

u 2 X , there exists �0 2 (�⇡ ,⇡] with u(x) ! ei�0 as |x| ! 1. Since |u(x)| ! 1, we may choose R sufficiently large that
u(x) = ⇢(x)eia(x) for |x| � R, with ⇢(x) = |u(x)| > 1

2 and |a(x) � �0| < ⌘
10 for |x| � R. By making R larger if necessary, we

may also assume

E"(u; R2 \ BR) <
⌘

10
. (2.2)

Define a family of cut-off functions,

�N,R(x) =

8

>

<

>

:

0, if r  R,
ln(r/R)
lnN

, if R < r < NR,

1, if r � NR.

Now define ũ(x) := ⇢̃(x)eiã(x), where

⇢̃(x) := �N,R(x) + (1 � �N,R(x))⇢(x), ã(x) := (1 � �N,R(x))a(x).

Then, ũ 2 X0,NR, and using (2.2), |a(x)|  |�0| + ⌘
10 < 2⇡ , and 1

2 < ⇢(x)  ⇢̃(x)  1 for |x| � R, we have

E"(ũ)  E"(u; BR) + 1
2

Z

R|x|NR

✓

|r⇢̃|2 + ⇢̃2|r ã|2 + 1
2"2

(1 � ⇢̃2)2
◆

dx

 E"(u; BNR) + 1
2

Z

R|x|NR

�|r⇢̃|2 + ⇢̃2|r ã|2� dx

 m + ⌘

10
+
Z

R|x|NR

�|r⇢|2 + (1 � ⇢)2|r�N,R|2 + |ra|2 + a2|r�N,R|2
�

dx

 m + ⌘

10
+ 8E(u; R2 \ BR) + 8⇡3

Z NR

R
[lnN]�2 dr

r

 m + 9⌘
10

+ 8⇡3

lnN
.

Choosing N0 sufficiently large that 8⇡3

lnN0
< ⌘

10 , we obtain functions ũ 2 X0,NR, for all N � N0, with m0,NR  E(ũ)  m + ⌘.
Thus, we have

lim sup
R!1

m0,R  m  m0  inf
R

m0,R,

and the claim (2.1) is established. ⌅

3. Some basic estimates

In this section we prove two fundamental estimates: a rough upper bound on the energy of minimizers, and a pair of a
priori pointwise bounds for all solutions of the Euler–Lagrange equations (1.1).

Lemma 3.1. Let

D = deg(g;� ) > 0.

For each problem i = I, II, III, there exists a constant C = C(g,� ), independent of ", for which

inf
u2Hi

E"(u)  ⇡ min{2↵, 1}D | ln "| + C . (3.1)

Proof. For ↵ > 1
2 , we choose a test function u" as in [4]. This is a standard procedure, so we merely describe the steps to

take in each problem, I, II, III. In problem I, � = @⌦ , so this is done exactly as in [4], treating the weak anchoring condition
as a Dirichlet condition, and defining an S1-valued map v" in the complement of D disks of radius ", with degree one on
the boundary of each excised disk and v" = g on @⌦ = � . For problem II, we again treat the weak anchoring condition as
a Dirichlet condition, but the function v" is chosen with degree �1 on each excised disk. For problem III, it suffices to take
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Fig. 3. The domain !R(q) = BR(q) \⌦ , used in the upper bound construction.

v" constructed for problem II in⌦ = BR \ ⌦1, and extend v" = 1 in R2 \ BR. For each problem, we obtain the same upper
bound, E"(u")  ⇡D | ln "| + C , when ↵ > 1

2 .
For 0 < ↵  1

2 , we construct functions u" with constraint |u"| = 1, using the technique of Kurzke [5]. As our weak
coupling condition is subtly different from his, we give some details of the construction below.

We choose D points q1, . . . , qD 2 � which are well separated, and let R < 1
2 |qi � qj|, for all i 6= j. For each qi, we first

define v" = v(i)
" in !R(qi) = BR(qi) \ ⌦ . Let ⌧i be the tangent vector to � at qi, oriented in the same direction as � . We

introduce polar coordinates (r, ✓) centered at qi, with angle ✓ measured from the ray defined by the oriented tangent vector
⌧ . Since � is smooth, by choosing R sufficiently small wemay ensure that the domain!R(qi) is a polar rectangle: there exist
C1 functions ✓1(r), ✓2(r), so that

!R(qi) = {(r, ✓) : ✓1(r) < ✓ < ✓2(r), 0 < r < R}.
Furthermore, there exists a constant c1 for which |✓1(r)|  cr and |⇡ � ✓2(r)|  cr .

Let � be a lifting of g on the arc� \BR(qi), so g = ei� on this arc. Our choice of coordinates in!R(qi) divides� \BR(qi)\{qi}
into two pieces, �1,�2, parametrized by (r, ✓1(r)), (r, ✓2(r)), 0 < r < R, respectively. (See Fig. 3.)

Define

h1(r) = �
�

ei✓1(r)
�

, h2(r) = �
�

ei✓2(r)
�+ 2⇡ .

Following [5], we now define an S1-valued function in !R(qi) \ {qi} via its phase,

�(r, ✓) = h2(r) � h1(r)
✓2(r) � ✓1(r)

(✓ � ✓1(r)) + h1(r).

Note that on �j, j = 1, 2, we have �(r, ✓j(r)) = hj(r), and so ei� = g on � \ {qi}. Finally, we define a cutoff near qi,
�"(r) 2 C1, with 0  �"(r)  1 for all r , �"(r) = 0 for r < "↵ , and �"(r) = 1 for r � 2"↵ . The desired test configuration
in !R(qi) is then

v" = v(i)
" = exp {i [�"(r)�(r, ✓) + (1 � �"(r))� (qi)]} .

We observe that the phase of v" turns by approximately 2⇡ on the approximate semicircle @!R(qi), as opposed to the
construction in [5] in which the phase rotates by only ⇡ .

Since |v"| = 1 in !R(qi) and v" = g on � \ B2"↵ (qi), i = 1, 2, we have
1
"2

Z

!R(qi)
(|v"|2 � 1)2 dx = 0, �

Z

�\BR(qi)
|v" � g|2 ds  c2,

with constant c2 independent of ". A straightforward calculation also shows that both
Z

!R(qi)
|@rv"|2 dx,

Z

!2"↵ (qi)
|@✓v"|2 dx  c3,

are uniformly bounded in ". So the main contribution comes from the theta derivative in the annular region, AR,"↵ =
!R(qi) \ !"↵ (qi),

Z

AR,"↵

1
2
|@✓v"|2 dx = 1

2

Z R

"↵

(h2(r) � h1(r))2

✓2(r) � ✓1(r)
dr
r

 1
2

Z R

"↵

(2⇡ + c1r)2

(2⇡ � c1r)
dr
r

 2⇡↵ ln
✓

1
"

◆

+ c4.
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Next we construct v" in ⌦̃ = ⌦ \ SD
i=1 !R(qi). Let �̃ denote the closed contour which follows � away from !R(qi),

i = 1, . . . , D , and @!R(qi) \ ⌦ . We then define g̃ : �̃ ! S1 by g̃ = g on � \SD
i=1 !R(qi) and g̃ = v(i)

" on @!R(qi) \ ⌦ .
Orienting �̃ in the same sense as � where they coincide, we note that the arcs along @!R(qi) \⌦ are negatively oriented,
and so the phase of g̃ turns by �2⇡ along each of these circular arcs. In particular, deg(g̃; �̃ ) = 0. Thus, we may define v"
in ⌦̃ as the S1-valued harmonic extension of g̃ to ⌦̃ , which has bounded energy,

Z

⌦̃

1
2
|rv"|2 dx  c5.

Putting these pieces together, when 0 < ↵  1
2 , we obtain v" , with |v"| = 1 in all⌦ , and with the estimate

E"(v")  2↵⇡D ln
1
"

+ C,

as desired. ⌅

We have the following pointwise upper bounds on solutions to (1.1).

Lemma 3.2. Let u" be any solution of (1.1). Then |u"(x)|  1 and there exists a constant C0 = C0(⌦) > 0 so that |ru"|  C0/",
for all x 2 ⌦ .

Proof. Let u solve (1.1), in settings I, II, or III, and set V = |u|2 � 1. Then, rV = 2u · ru and 1
21V � 1

"2
(V + 1)V in⌦ . In

problems I, II, we multiply this inequality by V+ = max{V , 0}, and integrate over⌦ , to obtain:

0  1
"2

Z

⌦

|u|2V+  1
2

Z

@⌦

V+
@V
@⌫

ds � 1
2

Z

⌦

|rV+|2. (3.2)

On � ⇢ @⌦ , we have

V+
@V
@⌫

= �2V+�u · (u � g)  0,

since |u|2 � u · g � |u|(|u| � 1) � 0 when V+ 6= 0. On @⌦ \ � , |u| = 1 so V+ = 0, and hence the boundary integral in (3.2)
is nonpositive. Hence, (3.2) implies

0  1
"2

Z

⌦

|u|2V+  �1
2

Z

⌦

|rV+|2  0, (3.3)

and hence both integrals are zero. In conclusion, V+ ⌘ 0, and |u|  1 in⌦ .
For the exterior problem III, by the definition of the spaces X, X0 and the finiteness of the energy E"(u), there exists a

sequence Rn ! 1 such that |u(Rn, ✓)|  2 and
Z 2⇡

0



1
2
|ru(Rn, ✓)|2 + 1

4"2
(|u(Rn, ✓)|2 � 1)2

�

Rn d✓ ! 0.

As above, we multiply the inequality for V by V+, but now integrate over ⌦ \ BRn to obtain an inequality as in (3.2). The
boundary term on the right hand side may be estimated as:

�

�

�

�

�

Z

@BRn

V+
@V
@⌫

ds

�

�

�

�

�

= 2
�

�

�

�

Z 2⇡

0
(|u(Rn, ✓)|2 � 1)+u(Rn, ✓) · @u

@r
(Rn, ✓) Rn d✓

�

�

�

�

 4
Z 2⇡

0

⇥|ru(Rn, ✓)|2 + (|u(Rn, ✓)|2 � 1)2
⇤

Rn d✓ ! 0.

Passing to the limit Rn ! 1, we arrive at the same string (3.3) of inequalities, and hence |u|  1 as before.
To establish the gradient bound, we argue by contradiction: suppose there exist sequences "k ! 0, xk 2 ⌦ for which

tk := |ruk(xk)| = krukk1 satisfies tk"k ! 1. Blowing up at scale tk around the points xk, define vk(x) := uk

⇣

xk + x
tk

⌘

. By
our choice of scaling, kvkk1 = 1, and vk solves

�1vk = 1
(tk"k)2

(|vk|2 � 1)vk ! 0,

uniformly on⌦ (since kukk1 = kvkk1  1, by the first part of the lemma). If, for some subsequence, tkdist (xk, @⌦) ! 1,
then the domain tk[⌦ � xk] of vk converges to all R2, and vk ! v in Ck

loc. Moreover, the limit v is a bounded harmonic
function on R2, and hence constant: rv(x) ⌘ 0. However, by construction, |rvk(0)| = 1 for all k, and hence |rv(0)| = 1,
a contradiction.
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On the other hand, if tkdist (xk, @⌦) is uniformly bounded, then the domains tk[⌦ � xk] of vk converge to a half-space
R2+, with boundary condition

@vk

@⌫
= � �

tk



vk � g
✓

xk + x
tk

◆�

! 0.

That is, vk ! v which is bounded and harmonic in R2+, and with a Neumann condition @⌫v = 0 on the boundary. By the
reflection principle and Liouville’s theorem we again conclude that v is constant, which leads to the same contradiction as
in the previous case. Thus, the desired gradient bound must hold. ⌅

4. ⌘-compactness

We begin by proving an ⌘-compactness (or ⌘-ellipticity) result (see [2,3]). Basically, if the energy contained in a ball of
radius "� is too small, there can be no vortex in a slightly smaller ball, B"� (x0). To this end, we recall that � = �(") = K"�↵
for ↵ 2 (0, 1], K > 0 constant, and fix �, � such that 3

4↵  � < � < ↵.

Proposition 4.1 (⌘-Compactness). There exist constants ⌘, C, "0 > 0 such that for any solution u" of (1.1) with " 2 (0, "0), if
x0 2 ⌦ and

E"
�

u"; B"� (x0)
�  ⌘ | ln "|, (4.1)

then

|u"| � 1
2

in B"� (x0), (4.2)

|u" � g|  1
4

on � \ B"� (x0), (4.3)

1
4"2

Z

B"� (x0)

�|u"|2 � 1
�2 dx + �

2

Z

�\B"� (x0)
|u" � g|2 ds  C⌘. (4.4)

We note that in case � \ B"� (x0) = ;, this has been proven in Lemma 2.3 of [2], and hence it suffices to consider
x0 2 � ⇢ @⌦ when proving Proposition 4.1.

Define �r(x0) = @⌦ \ Br(x0), and following Struwe [2],

F(r) = F(r; x0, u, ") = r

"

Z

@Br (x0)\⌦

⇢

|ru|2 + 1
2"2

(|u|2 � 1)2
�

ds + �(")
X

x2@�r (x0)
|u(x) � g(x)|2

#

. (4.5)

Note that if @�r(x0) 6= ;, then for r > 0 sufficiently small it consists of two points.
The proof of Proposition 4.1 relies on the following estimate. For any x0 2 ⌦ and R > 0, we define (as in the proof of

Lemma 3.1)

!R(x0) = BR(x0) \⌦.

Then, we prove:

Lemma 4.2. There exist C > 0 and r0 > 0 such that for " 2 (0, 1), x0 2 � , and r 2 (0, r0), we have that

1
2"2

Z

!r (x0)

�|u"|2 � 1
�2 dx + �

Z

�r (x0)
|u � g|2 dS 6 C



r
Z

!r (x0)
|ru"|2 dx + F(r) + r2�

�

.

Proof of Lemma 4.2. We denote u = u" , !r = !r(x0), and �r = �r(x0) for convenience, as x0 2 � and " > 0 are fixed.
Let  2 C1(⌦; R2) be a vector field, to be determined later. Taking the complex scalar product of Eq. (1.1) with  · ru

and integrating over !r , we obtain the Pohozaev-type equality,
Z

@!r

⇢

�(@⌫u, · ru) + 1
2
|ru|2( · ⌫) + 1

4"2
(|u|2 � 1)2( · ⌫)

�

ds

=
Z

!r

(

1
4"2

(|u|2 � 1)2div + 1
2
|ru|2div �

X

i,j

@i j(@iu, @ju)

)

dx. (4.6)

We choose r0 > 0 sufficiently small so that � \ Br(x0) consists of a single smooth arc, and !r is strictly starshaped with
respect to some x1 2 !r , for all 0 < r  r0.
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Let N be a 2r0-neighborhood of � . We claim that, by taking r0 smaller if necessary, there exists a vector field X 2
C2(N ; R2) with the following properties (see [5,6]):

X · ⌫ = 0, for all x 2 �r , (4.7)

|X � (x � x0)|  C |x � x0|2, |DX � Id|  C |x � x0|, for all x 2 !r , (4.8)

for a constant C > 0, for any x0 2 � . The existence of such a vector field in a disk Br(x0) follows from the smoothness of � ;
to obtain the uniform global estimates (4.7), (4.8) we use the compactness of � and a partition of unity. In particular, note
that X = (X · ⌧ )⌧ ' (x � x0)⌧ lies along the tangent vector on �r .

We now take = X in (4.6) and estimate each term in (4.6), separating the @!r terms into the pieces along �r and along
@Br(x0) \⌦ . First, on �r we have X · ⌫ = 0, and the only contribution to the left hand side of (4.6) is:

�
Z

�r

(@⌫u, · ru) ds = �

Z

�r

(u � g, (X · ⌧ )@⌧u) ds

= �

Z

�r

[(u � g, @⌧ (u � g)) + (u � g, @⌧ g)] X · ⌧ ds. (4.9)

The first term in (4.9) may be evaluated by integration by parts:

�

Z

�r

(u � g, @⌧ (u � g)) ds = �

2

Z

�r

@⌧
�|u � g|2� (X · ⌧ )ds

= �

2



|u � g|2(X · ⌧ )|@�r �
Z

�r

|u � g|2@⌧ (X · ⌧ ) ds
�

.

On the endpoints of �r , |X · ⌧ ⌥ r|  Cr2 and on �r itself, @⌧ (X · ⌧ ) = 1+O(|x� x0|), by (4.8). Hence, there exists a constant
C > 0 for which

�

Z

�r

(u � g, @⌧ (u � g)) ds  �

2

"

�
Z

�r

|u � g|2 ds + r
X

@�r

|u � g|2
#

+ C�r2. (4.10)

For the second term of (4.9), we have the rough estimate
�

�

�

�

�

Z

�r

(u � g, @⌧ g)(X · ⌧ ) ds
�

�

�

�

 CkgkC1�r2. (4.11)

The remaining terms on the left-hand side of (4.6) may also be estimated in a simple way, using |X · ⌫|, |X · ⌧ |  Cr:
�

�

�

�

Z

@!r\⌦



(u � g, @⌧ g)(X · ⌧ ) � 1
2
|ru|2(X · ⌫)

�

ds
�

�

�

�

 Cr
Z

@!r\⌦
|ru|2 ds, (4.12)

1
4"2

Z

!r

(|u|2 � 1)2 (X · ⌫) ds = 1
4"2

Z

@Br\⌦
(|u|2 � 1)2 (X · ⌫) ds  Cr

"2

Z

@Br\⌦
(|u|2 � 1)2 (X · ⌫) ds. (4.13)

For the terms on the right side of (4.6), we use (4.8): |@iXj � �ij|  Cr , and for r0 chosen smaller if necessary, we may assume
div X � 2 � Cr > 1 in !r . Thus, the right side of (4.6) may be estimated as:

Z

!r

(

1
4"2

(|u|2 � 1)2div X + 1
2
|ru|2div X �

X

i,j

@iXj(@iu, @ju)

)

dx �
Z

!r

⇢

1
4"2

(|u|2 � 1)2 � Cr|ru|2
�

dx. (4.14)

Putting the above estimates together, we arrive at the desired bound. ⌅

Proof of Proposition 4.1. We follow [2,6]. If x0 2 ⌦ \ � , this is proven in [2], so we restrict our attention to x0 2 � .
Since

⌘ ln
1
"

� E"(u";!"� \ !"� ) =
Z "�

"�

F(r)
r

dr, (4.15)

there exists r" 2 ("� , "�) so that

F(r")  ⌘

� � �
.

By Lemma 4.2 and the upper bound (3.1), we deduce (4.4).
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Fig. 4. Annulus Ar,R .

Suppose that for some x2 2 B"� (x0) it were true that |u"(x2)| < 1
2 . By Lemma 3.2, |ru"|  C0/", so it would follow that

|u"(x)| < 3
4 for x 2 B"/4C0(x2). But then,

1
4"2

Z

B"� (x0)
(|u"|2 � 1)2 � 1

4"2

Z

B"/4C0 (x2)
(|u"|2 � 1)2 � 49⇡

214C0
,

which contradicts (4.4) provided ⌘ is chosen small enough. Thus, for the appropriate choice of ⌘ (which is independent of
x0), we must have (4.2) verified.

To verify (4.3), we return to the Pohozaev identity (4.6). We recall that for r = r" (as in the proof of (4.4)) sufficiently
small, the smoothness and compactness of � ensure that !r is strictly starshaped around some x1 2 !r , and for "0 chosen
sufficiently small, we have (x � x1) · ⌫ � r/4 on @!r . We apply (4.6) with vector field  = x � x1, and obtain:

Z

@!r

�

(x � x1) · ⌫ ⇥|@⌧u"|2 � |@⌫u"|2
⇤+ (x � x1) · ⌧ (@⌫u", @⌧u")

 

ds  1
"2

Z

!r

(1 � |u"|2)2dx. (4.16)

Using Cauchy–Schwarz,
�

�

�

�

Z

@!r

(x � x1) · ⌧ (@⌫u", @⌧u")
�

�

�

�


Z

@!r

n r
8
|@⌧u"|2 + 2r|@⌫u"|2

o

ds,

and hence
Z

@!r

|@⌧u"|2 ds  C
Z

@!r

|@⌫u"|2 ds + 1
r"2

Z

!r

(1 � |u"|2)2

= C�2
Z

�r

|u" � g|2 ds + C"��

 C"�↵,

using Lemma 4.2 and (4.4). By the Sobolev embedding theorem (on the one-dimensional set �r ), there exists a constant
C > 0 (again, independent of x0) for which

|u"(x) � u"(y)|  C
p|x � y|"�↵/2

holds for all x, y 2 �r .
The conclusion now follows as in Proposition 3.6 of [5]. Assume there exists x2 2 �r for which |u"(x2) � g(x2)| > 1

4 . By
the same argument as in the proof of (4.2), there would exist a radius ⇢ = c"↵ , for constant c > 0 independent of x0, for
which |u"(x) � g(x)| > 1

8 when x 2 �r \ Bc"↵ (x2). In that case, we would have

C⌘ � �

Z

�r\Bc"↵
|u � g|2 ds >

Kc2

64
,

which would lead to a contradiction for ⌘ chosen sufficiently small. By reducing the value of ⌘ required for the proof of (4.2)
if necessary, we obtain (4.3). This completes the proof of Proposition 4.1. ⌅

Next we estimate the energy contribution near a vortex. For x0 2 ⌦ , denote by

Ar,R(x0) = wR(x0) \ wr(x0).

In case x0 2 � , for R sufficiently small the piece of the boundary @Ar,R(x0) \ @⌦ consists of exactly two arcs along
�R = � \ BR(x0), which we will denote by � ±

r,R. (See Fig. 4.)
We now define a degree for nonvanishing maps u on Ar,R(x0). Assume that |u| � 1

2 on Ar,R and |u � g|  1
4 on � ±

r,R. If
Ar,R \ � = ;, we may define the degree deg( u

|u| ; @Ar,R(x0)) = d in the usual way. For x0 2 � , we define it as follows. Since
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|u�g|  1
4 on� ±

r,R and g is smooth, wemay extend u to ũ on all of�R in such away that u is smooth and satisfies |ũ�g|  1
2

on all of �R. Setting ũ = u on @BR(x0) \⌦ , we obtain a map ũ/|ũ| : @!R(x0) ! S1, and define the degree of u in Ar,R(x0) by

D = deg
✓

ũ
|ũ| ; @!R

◆

. (4.17)

Note that by the continuity of g , for R small the complex phase difference of ũ along �R is small (on the order of R). Thus,
the winding of the phase around a boundary vortex occurs principally around the half-circle @BR(x0) \⌦ . Let g = ei� , and
�0 := � (x0). If we represent u in polar coordinates (⇢, ✓), centered at x0 with ⇢ = |x � x0| and ✓ measured with respect to
the positively oriented tangent line to � at x0,

u = f (⇢, ✓)ei (⇢,✓), with  = 2D✓ + �0 + �(⇢, ✓), (4.18)
and� a smooth single-valued function in the annulusAr,R(x0). This is an essential difference betweenour boundary condition
and the one studied in ferromagnetism [6,5]. Here, the phase must make a complete cycle around a boundary vortex, while
in the ferromagnetic models it is only required to make a half-turn at each defect.

The difference in cost between bulk and boundary vortices is contained in the following lower bound:

Proposition 4.3. Suppose x0 2 ⌦ , 0 < r < R < r0, and assume that 1
2  |u|  1 in Ar,R(x0), |u � g|  1

4 on � ±
R , and there

exist constants C1, C2 with E"(u)  C1| ln "|, and
1

2"2

Z

!"�

(|u|2 � 1)2 dx + �

Z

�"�

|u � g|2 ds  C2. (4.19)

Then there exists a constant C such that:
(a) if BR(x0) \ � = ;, and d = deg

⇣

u
|u| ; @BR(x0)

⌘

, then:

1
2

Z

Ar,R(x0)
|ru|2 dx � ⇡d2 ln

R
r

+ C;
(b) if x0 2 � , and D is the degree of u in Ar,R(x0) (defined as in (4.17)), then

1
2

Z

Ar,R(x0)
|ru|2 dx � 2⇡D2 ln

R
r

+ C .

Proof. Conclusion (a) is proven in [2,19], so we may assume x0 2 � . Write u in the polar form (4.18) in Ar,R(x0). We first
claim that there exists a constant C3 for which

|�|  C3 (|u � g| + ⇢) , on � ±
r,R. (4.20)

Indeed, writing g = ei� and using the representation (4.18) for u, we have

|u � g|2 = f 2 + 1 � 2f cos(2D✓ + �0 � � + �)

= (f � 1)2 + 2f (1 � cos(2D✓ + �0 � � + �))

� 2f (1 � cos(2D✓ + �0 � � + �))

� 1 � cos� cos(2D✓ + �0 � � ) + sin� sin(2D✓ + �0 � � ),

on � ±
r,R. For all sufficiently small R, since � is smooth, the arcs composing � ±

r,R lie nearly along the tangent to � at x0, and
hence |1 � cos(2D✓ + �0 � � )|  C⇢ and | sin(2D✓ + �0 � � )|  C⇢ for constant C . Thus, we have the estimate

|u � g|2 � 1 � cos� � C⇢ sin� � 1
2
�2 � C⇢|�| � 1

4
�2 � C2⇢2,

which holds on � ±
r,R. It follows that

|�|  2
p

|u � g|2 + C2⇢2  C3(|u � g| + ⇢),

on � ±
r,R, as claimed.

The rest of the proof follows as in Proposition 5.6 of [6], except our representation (4.18) differs from (5.31) of [6] in the
factor 2D appearing in the phase. In this way, (5.32) of [6] is modified to

|ru|2 � f 2 |2Dr✓ + r�|2

� 4
D2

⇢2 +


4D2

⇢2 (f 2 � 1) + 4D
⇢2

@�

@✓
+ f 2|r�|2

�

.

The first termon the right-hand side gives the desired lower bound, and the remaining termsmay be estimated using exactly
the computations in (5.34)–(5.39) in [6], replacing his |f · ⌫| by |u � g| throughout. ⌅



14 S. Alama et al. / Nonlinear Analysis ( ) –

5. Locating the vortices

We define the family of sets

S" =
⇢

x 2 ⌦ : |u"(x)| <
1
2
or |u"(x) � g(x)| >

1
4

�

.

The following is a modification of Lemmas 3.1 and 3.2 of [2]:

Lemma 5.1. There exists N0 depending only on⌦ , g, and h, and points p",1, . . . , p",I" 2 S" \⌦ , q",1, . . . , q",J" 2 S" \ � such
that
(i) I" + J"  N0;
(ii) {B"(p",i), B"↵ (q",j)}1iI" ,1jJ" are mutually disjoint, and

S" ⇢
I"
[

i=1

B5"(p",i) [
J"
[

j=1

B5"↵ (q",j). (5.1)

Proof. This is essentially the same as in [2], who considered the case of Dirichlet boundary conditions, for which all of the
‘‘bad balls’’ have the same radius ". We provide a sketch for completeness. Let y 2 S" . By Proposition 4.1, E"(u"; B"� (y)) >
⌘| ln "|. ApplyingVitali’s lemma to the collection (B"� (y))y2S" , there is a finite choice y1, . . . , yN 2 S forwhich (B"� (yi))i=1,...,N
are disjoint, and (B5"� (yi))i=1,...,N cover S" . Thus, by the upper bound (3.1)

N⌘| ln "| 
N
X

i=1

E"(u"; B"� (yi))  E"(u")  K | ln "|.

In particular, N is uniformly bounded independently of ".
Next, using the same argument as in (4.15), there exists r" 2 ("� , "�) such that

F(r")  E(u";!"�\"� )/(� � �),

so by Lemma 4.2 we obtain the uniform estimate

1
2"2

Z

!r" (yi)
(|u"|2 � 1)2 dx + �

Z

�r" (yi)
|u" � g|2 ds  C7,

for constant C7 independent of ", i = 1, . . . ,N .
On the other hand, by the arguments employed in the proof of Proposition 4.1, there exists a constant C6 (independent

of ") such that if B"(yi) 2 ⌦ ,

1
2"2

Z

!"(yi)
(|u"|2 � 1)2 dx � C6,

while if B"↵ (yi) \ � 6= ;,
1

2"2

Z

!"↵ (yi)
(|u"|2 � 1)2 dx + �

Z

�"↵ (yi)
|u" � g|2 ds � C6.

The conclusion then follows as in Lemma 3.2 of [2]: by Vitali’s lemma, there exist finite collections of points (p",i)i=1,...,I" in
⌦ , (q",j)j=1,...,J" on � , satisfying (ii). Finally, the cardinality of the sets is uniformly bounded, since

(I" + J")C6 
I"
X

i

1
2"2

Z

!"(pi)
(|u"|2 � 1)2 dx +

J"
X

j

"

1
2"2

Z

!"↵ (qj)
(|u"|2 � 1)2 dx + �

Z

�r" (qj)
|u" � g|2 ds

#


N
X

i=1

1
2"2

Z

!r" (yi)
(|u"|2 � 1)2 dx + �

Z

�r" (yi)
|u" � g|2 ds

 NC7. ⌅

Next, wewould like to follow [2,4] and prove a lower bound for the energy in small balls around the approximate vortices
p",i, q",j. This may be done in a straightforward way in case⌦ is a bounded domain, although it leads to different estimates
depending on whether the vortex is located in ⌦ or on � . A more serious complication arises when considering exterior
domains ⌦ , as we must handle the possibility that some vortices diverge to infinity as " ! 0. From Lemma 5.1 we may
nevertheless identify a finite number of balls, some fixed and some moving with ". We summarize the construction in the
following:
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Proposition 5.2. For any sequence of " ! 0, there is a subsequence "n ! 0, a constant �0 > 0, finite collections of points
{p1, . . . , pI} ⇢ ⌦ , {q1, . . . , qJ} ⇢ � , and a finite number of sequences, (zk,n)n2N ⇢ ⌦ with |zk,n| ! 1 for each fixed
k = 1, . . . , K , so that for any � 2 (0, �0) and for all n 2 N,

S� := {B� (pi)}i=1,...,I [ {B� (qj)}j=1,...,J [ {B� (zk,n)}k=1,...,K

is a collection of mutually disjoint sets which cover S"n .
Proof. In case ⌦ is bounded, the number of divergent sequences K = 0. In case ⌦ is unbounded and certain sequence
|p"n,i| ! 1, we choose z1,n to be any one of those p"n,i. If there is a different sequence p"n,j with |p"n,j| ! 1 but
|z1,n � p"n,j| 6! 0, we let z2,n = p"n,j for that j. As the number of sequences is finite, this process will end with the definition
of a finite number of sequences (zk,n)n, and for any i = 1, . . . , I , either the sequence p"n,i remains bounded or there exists
k 2 {1, . . . , K} for which |zk,n � p"n,i| ! 0. By passing to a further subsequence, each of the bounded sequences converge
to the pi 2 ⌦ or qj 2 � . The constant �0 may be chosen smaller than half the distance between any pair of the pi, qj, and
smaller than 1

2 lim infn!1 |zk,n � z`,n| > 0, for any k 6= `. As � is fixed, S� will eventually contain S"n for n large enough. ⌅

Since S� covers S"n , |u"n | � 1
2 on @S� , and hence we may define degrees associated to each ball in S� .

di := deg(u"n; @B� (pi)), i = 1, . . . , I,
Dj := deg(u"n; @B� (qj)), j = 1, . . . , J,

d̃k := deg(u"n; @B� (zk,n)), k = 1, . . . , K , n 2 N.

We recall that in the case of the boundary vortices, the degree is defined in the sense of (4.17). Although the weak anchoring
condition is not a Dirichlet condition, the total degree of minimizers is still given by the degree of the boundary value.

Lemma 5.3. Let u"n , di,Dj, d̃k be as above. Then we have:
(a) For Problem I, D := deg(g;� ) = PI

i=1 di +
PJ

j=1 Dj.
(b) For Problem II, �D = PI

i=1 di +
PJ

j=1 Dj.
(c) For Problem III, �D = PI

i=1 di +
PJ

j=1 Dj +PK
k=1 d̃i.

Proof. First, consider Problem I, with⌦ simply connected and � = @⌦ . Let ⌦̃ = ⌦ \
h

SJ
j=1 !� (qj)

i

, and �̃ = @⌦̃ . Fix �
small enough that @!� (qj) \ � consists of exactly two points for each j = 1, . . . , J . We recall the definition of the degree
Dj: Since |u"n � g| < 1

4 on the two endpoints of @!� (qj) \ � , we may define a Lipschitz extension ũ"n of u"n to �� (qj) for
which both |ũ"n � g|  1

2 for each j = 1, . . . , J . (On � \ [j �� (qj), we take ũepsn = u"n .) Since |ũ"n � g|  1
2 on all of � , it

follows that deg(ũ"n;� ) = deg(g;� ) = D .
Consider now the simple closed curve �̃ := @⌦̃ . We have |u"n | � 1

2 on �̃ , and so its degree is well-defined, and

deg(u",n; �̃ ) = 1
2⇡

Z

� \[j �� (qj)

(iu"n , @⌧u"n)
|u"n |2

ds + 1
2⇡

Z

@!� (qj)\⌦
(iu"n , @⌧u"n)

|u"n |2
ds

= 1
2⇡

Z

�

(iũ"n , @⌧ ũ"n)
|u"n |2

ds � 1
2⇡

Z

@!� (qj)

(iũ"n , @⌧ ũ"n)
|u"n |2

ds

= deg(ũ"n ,� ) �
J
X

j=1

Dj

= D �
J
X

j=1

Dj,

where we have used the fact that the arcs �� (qj) are common to both integrals. Finally, the vortices pi are contained inside
�̃ , and hence deg(u",n; �̃ ) = P

i di, and the assertion (a) follows.
For Problems II and III, we make a similar construction, but now the arcs �� (qj), while common to the integrals over �

and @!� (qj) are oriented in the opposite sense. Therefore,

deg(u",n; �̃ ) = 1
2⇡

Z

�

(iũ"n , @⌧ ũ"n)
|u"n |2

ds + 1
2⇡

Z

@!� (qj)

(iũ"n , @⌧ ũ"n)
|u"n |2

ds

= deg(ũ"n ,� ) +
J
X

j=1

Dj

= D +
J
X

j=1

Dj.



16 S. Alama et al. / Nonlinear Analysis ( ) –

In Problem II, the vortices pi lie outside of �̃ , while the degree of u"n is zero on the outside boundary @⌦1. Thus,

0 = deg(u"n; �̃ ) +
I
X

i=1

di = D +
J
X

j=1

Dj +
I
X

i=1

di,

and (b) must hold. The result (c) for Problem III follows in the same way, as u"n has degree zero outside of a circle of radius
Rn which is sufficiently large to enclose the moving vortices zk,n. ⌅

Starting with the lower bound on annuli proven in Proposition 4.3, and arguing as in Proposition 3.3 of [2], (or by the
vortex-ballmethod of Jerrard [20] or Sandier [21]), wemay obtain the following lower bound on the energy inside the setS� :

Lemma 5.4. There exists a constant C, independent of "n, � such that:

E"n
�

u"n; B� (pi)
� � ⇡ |di| ln

✓

�

"n

◆

� C, i = 1, . . . , I,

E"n
�

u"n; B� (qj)
� � 2⇡ |Dj| ln

✓

�

"↵n

◆

� C, j = 1, . . . , J,

E"n
�

u"n; B� (qj)
� � ⇡ |d̃k| ln

✓

�

"n

◆

� C, k = 1, . . . , K .

As an immediate consequence, there exists a constant C1(� ) such that

E"n
�

u"n; S�
� � ⇡

"

I
X

i=1

|di| +
J
X

j=1

2↵|Dj| +
K
X

k=1

|d̃i|
#

| ln "| � C1(� ). (5.2)

Denote by

⌃ := {pi}i=1,...,I [ {qj}j=1,...,J .

Comparing with the upper bound (3.1), we obtain the following:

Theorem 5.5. For any sequence of " ! 0, there exists a subsequence "n ! 0 such that:

(a) The sets S"n are uniformly bounded; thus K = 0.
(b) For all 0 < ↵ < 1

2 , the vortices occur on � only; I = 0. Each |Dj| = 1 and has the same sign.
(c) For all 1

2 < ↵  1, all vortices lie in⌦; J = 0. Each |di| = 1 and has the same sign.
(d) For ↵ = 1

2 , both boundary and interior vortices are possible. Each |di|, |Dj| = 1 and has the same sign.
(e) For any 0 < ↵  1 and all ` � 0, u"n ! u⇤ in C`loc(⌦ \⌃), where u⇤ is a smooth harmonic map with values in S1. Moreover,

u⇤ = g on � \⌃ , and there exists �⇤ 2 R for which

u⇤(x) ! ei�⇤ as |x| ! 1. (5.3)

We note that in the case 1
2 < ↵  1, u",n ! g uniformly on � .

Proof. Comparing the lower bound (5.2) with the upper bound (3.1), we have
I
X

i=1

|di| +
J
X

j=1

2↵|Dj| +
K
X

k=1

|d̃i|  min{2↵, 1}D.

When 0 < ↵ < 1
2 , we have

2↵D + (1 � 2↵)

"

I
X

i=1

|di| +
K
X

k=1

|d̃i|
#

 2↵D,

and hence di, d̃k = 0 for all i, k. In addition,
PJ

j=1 |Dj| = D =
�

�

�

PJ
j=1 Dj

�

�

�

, and hence each Dj must have the same sign

(or vanish). In case 1
2 < ↵  1, the same argument produces the opposite result: each Dj = 0, and the nonzero Di, D̃k all

have the same sign. When ↵ = 1
2 , we may only conclude that the nonzero di,Dj, d̃k all have the same sign.

In any case, the lower bound (5.2) and upper bound (3.1) together imply that there exists a constant C2(� ) for which

E"n(u"n;⌦ \ S� )  C2(� ). (5.4)
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We next claim that, in the case that ⌦ is an exterior domain, d̃k = 0 for all k. Suppose not, so d̃ :=
�

�

�

PK
k=1 d̃k

�

�

�

=
PK

k=1 |d̃k| � 1. By Theorem 2.1, each u"n ! ei�0 , as |x| ! 1. Thus, there exists R3,n for which deg(u"n; @BR3,n) = 0. Since
each |zk,n| ! 1, there exists R2,n ! 1 so that |zk,n| > 2R2,n for each k = 1, . . . , K . Note that | deg(u"n; @BR2,n)| = d̃ 6= 0.
Finally, we may choose a fixed radius, R1 > 0 for which all the |pi|, |qj| < 1

2R1. In particular, |u"n | � 1
2 on BR2,n \ BR1 , and

thus | deg(u"n; @Br)| = d̃ 6= 0 for all r 2 [R1, R2,n], for all n. But then we obtain the lower bound,

E"n(u"n;⌦ \ S� ) � E"n(u"n; BR2,n \ BR1) � C3 ln
R2,n

R1
! 1,

which contradicts the upper bound (5.4). In conclusion, d̃k = 0 for all k = 1, . . . , K as claimed.
The remainder of the proof follows [4]. Indeed, the fact that none of the degrees di,Dj, d̃k = 0 follows Step 1 in the proof

of Theorem VI.2 of [4], and the rest of that Theorem holds as above, except that in exterior domains we expect negative
rather than positive degrees. Once we have established that d̃k = 0 is not possible, it follows that K = 0 and the set S"n must
be uniformly bounded. The convergence to a harmonic map, outside of the singular set ⌃ , is proven first in W 1,2

loc (see [2]),
and then in stronger norms using [22]. To prove (5.3), since the singular sets S"n ⇢ BR are uniformly bounded, we conclude
from (5.4) that

Z

R2\BR
|ru"n |2 dx  C2(� ).

Passing to the limit u"n * u⇤ = ei'⇤ , we obtain the bound
R

R2\BR |r'⇤|2 dx  C2(� ). Since '⇤(x) is harmonic in R2 \ BR, we
conclude that infinity is a removable singularity for '⇤ and thus '⇤(x) ! �⇤ for a constant �⇤ 2 R. ⌅

Remark 5.6. As in [4,3] the limit is described in terms of canonical harmonic maps, with the observation that the structure
of the singularity at a boundary vortex is modified as follows:

u⇤(z) =
I
Y

i=1



z � pi
|z � pi|

�di
·

J
Y

j=1



z � qi
|z � qi|

�2Di

ei⇠(z),

with degrees di,Dj = ±1, and1⇠ = 0 in⌦ .

We note that, thanks to Theorem 5.5, we have verified statements (a)–(c) of Theorem 1.1. The remaining parts of
Theorem 1.1, as well as the more detailed conclusions of Theorem 1.2, rely on the study of the Renormalized Energies for
each problem, and will be proven in the following section.

6. Renormalized energies

To locate the vortices of energy minimizers we use the Renormalized Energy as in [4]. We proceed separately for
each of the three problems considered above, defining harmonic conjugate functions suitable for each. As we are mostly
interested in giving some qualitative interpretation to the results for weak coupling in some specific geometries, we omit
the (voluminous) details involved in connecting the Renormalized Energy to the Ginzburg–Landau minimizers; the details
follow the same lines as those in [4] or [3]. As in either of these references, one may derive a rigorous asymptotic expansion
of the energy of minimizers of the form:

E"(u") = I(⇡ | ln "| + Q⌦) + J(2⇡ ln �+ Q� ) + W (p1, . . . , pI , q1, . . . , qJ) + o(1), (6.1)
where Q⌦ , Q� are constants (representing the energy of vortex cores inside ⌦ or on � ). Here W : ⌦D ⇥ � D ! R is the
Renormalized Energy, whose definition and properties we will discuss in more detail below.

Problem I. We begin with Problem I in the bounded simply connected domain⌦ with � = @⌦ . This is the case which is
most like the familiar Dirichlet case studied in [4]. We assume the total degree D > 0, and thus each vortex has degree +1.
Let�I(x) =  I(x; {pi}, {qj}) solve

1�I = 2⇡
I
X

i=1

�pi(x), in⌦ ,

@�I

@⌫
= g ⇥ g⌧ � 2⇡

J
X

j=1

�qj(x), on � .

9

>

>

>

>

=

>

>

>

>

;

(6.2)

We note that either one of the collections {pi} or {qj} may be empty: indeed, by Theorem 5.5, the former will occur for
↵ 2 (0, 1

2 ) and the latter for ↵ > 1
2 , and the two collections may only coexist in evaluating the energy of minimizers of E"

when ↵ = 1
2 .
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The Renormalized Energy corresponding to Problem I is (see [3]),

WI({pi, di}, {qj,Dj}) := lim
⇢!0

 

1
2

Z

⌦\S⇢

|r�I(x; {pi}, {qj})|2 dx � ⇡ [I + 2J] ln
1
⇢

!

. (6.3)

By proving sharp upper and lower bounds as in [4], it may be shown that the limiting singularities of the sequence of
minimizers u"n minimize W ({pi, di}, {qj,Dj}) within the topological and energy constraints given by the weak anchoring
condition g and the choice of ↵ 2 (0, 1]. Namely, if 0 < ↵ < 1

2 , by Theorem 5.5, I = 0 and J = D , and W depends only
on {q1, . . . , qD} ⇢ � , with each degree Dj = ±1 the same and determined as in Lemma 5.3, according to the problem
under consideration. On the other hand, if ↵ > 1

2 , then I = D , J = 0, and W depends only on {p1, . . . , pD} ⇢ ⌦ , with
degrees di = ±1 all identical, again determined by Lemma 5.3. When ↵ = 1

2 , I + J = D and the minimization ofW must be
performed among all combinations ofD vortices on� and inside⌦ . However,we note that in that case ln � = 1

2 | ln "|+ln K ,
the energy expansion (6.1) takes the form

E"(u") = ⇡(I + J)| ln "| + �

IQ⌦ + J(Q� + ln K) + W (p1, . . . , pI , q1, . . . , qJ)
 + o(1).

At highest order, boundary and interior vortices have the same unit cost, but by making K > 0 very small or very large the
choice of boundary or interior vortices may become more favorable, by either favoring or penalizing the coefficient of J in
the energy expansion, nullifying any advantage one has over the other in either the core cost Q⌦ ,Q� or in the minimum
value of the Renormalized Energy W . Thus, by taking K > 0 very small, we may ensure that all vortices reside on � , while
for K > 0 sufficiently large they must be found inside⌦ . This completes the proof of Theorem 1.1 for Problem I.

Problem II. As pointed out in I.2 of [4], the evaluation of the Renormalized Energy in multiply connected domains with
Dirichlet boundary values on each component of @⌦ is tricky, and our Problem II exhibits these same difficulties. It turns
out that we may still obtain an explicit representation of the Renormalized Energy in the special case

⌦ = BR(0) \ B1(0), g = u|@B1(0) = eiD✓ ,

withD 2 N.We recall that in Problems II and III, the vortices have degree�1, and begin by introducing a conjugate harmonic
problem in the bounded annular domain⌦ = ⌦1 \⌦0, in analogy with (6.2): let�II = �II(x; {pi}, {qj}) solve

1�II = �2⇡
I
X

i=1

�pi(x), in⌦ ,

@�II

@⌫
= g ⇥ g⌧ � 2⇡

J
X

j=1

�qj(x)

= D � 2⇡
J
X

j=1

�qj(x), on �

@�II

@⌫
= 0 on @⌦1.

9

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(6.4)

While �II is an ingredient in the Renormalized Energy, some adjustment must be made to match the Dirichlet boundary
conditions on both components of @⌦ .

We introduce auxiliary problems, with a single vortex located on the negative x1-axis: for an interior vortex at p =
(�t, 0), 1 < t < R, let� t solve

�1� t = 2⇡�(�t,0)(x), inside⌦,

@� t

@⌫
= 1, on � = @B1(0),

@� t

@⌫
= 0, on � = @BR(0).

9

>

>

>

>

=

>

>

>

>

;

(6.5)

For a single vortex at the point p = (�1, 0) 2 � , we define�1 as the solution of:

�1�1 = 0, inside⌦,
@�1

@⌫
= 1 � 2⇡�(�1,0), on � = @B1(0),

@�1

@⌫
= 0, on � = @BR(0).

9

>

>

>

>

=

>

>

>

>

;

(6.6)

Each is unique up to an additive constant; we choose that constant so that
R

�
� t ds = 0, for each t 2 [1, R). The basic

building blocks for the singular harmonic map come from these auxiliary problems; we begin by proving:
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Lemma 6.1. For each t 2 [1, R), there exists an S1-valued harmonic map vt 2 H1
loc(⌦ \ {(�t, 0)}) such that

(ivt , rvt) = �r?� t , in⌦ \ {(�t, 0)},
vt = 1 on @BR(0),
vt = ei✓ on @B1(0) \ {(�t, 0)}.

Note that the last condition holds on all of @B1(0) in case t 6= 1.

Proof. First, define ⌦̃⌘ = ⌦\B⌘(�t, 0).We first consider the case that t 2 (1, R), and thus B⌘(�t, 0) ⇢ ⌦ (for ⌘ sufficiently
small). Since V := r?� t is irrotational in ⌦̃⌘ for any ⌘, there exists (generally multivalued) � 2 H1

loc(⌦ \ {(�t, 0)}) for
which we may locally represent r?� t = �r� as a gradient. Since Eq. (6.5) implies that

Z

@B⌘(�t,0)
V · ⌧ ds =

Z

@B⌘(�t,0)

@� t

@⌫
ds = �2⇡ ,

Z

@B1(0)
V · ⌧ ds =

Z

@B1(0)

@� t

@⌫
ds = 2⇡ ,

we may lift � to a single-valued S1-valued map vt := ei� , with (ivt , rvt) = �r?� t in⌦ \ {(�t, 0)}. Using the boundary
condition for � t we may obtain boundary behavior for vt . On @B1(0), (ivt , @⌧vt) = @⌫�

t = 1 (with counterclockwise ori-
entation), and hence we may choose the constant of integration when defining vt such that vt = ei✓ on @B1(0). Similarly,
on @BR(0), we have (ivt , @⌧vt) = 0, and we conclude that vt is a constant of modulus one on @BR(0).

In the case t = 1, the vortex lies on the inner boundary � , so the inner component of the boundary @⌦̃⌘ is composed
of two circular arcs. By Eq. (6.5), it follows that

R

@⌦̃⌘
V · ⌧ ds = 0, and in this case the above argument actually yields a

single-valued � 2 H1(⌦̃⌘) for each ⌘, and thus lifts to the S1-valued map vt := ei� in⌦ \ {(�1, 0)}. Furthermore, arguing
as in the previous case, we obtain the boundary value vt |@BR(0) is constant, while vt = ei✓ on @BR(0) \ {(�1, 0)}.

It remains to identify the constant value v|@BR(0). Let ⌘ > 0, N⌘ an ⌘-neighborhood of the negative x1-axis, and
⌦̂⌘ = ⌦ \N⌘ , which is symmetric with respect to the x1-axis and simply connected for all ⌘ < 1.We observe that� t is even
in x2, for any t 2 [1, R), and so @x1�

t is even in x2, while @x2�
t is odd in x2. As ⌦̂⌘ is simply connected,� is single-valued there,

and @x1� = @x2�
t is odd in x2 while @x2� = �@x1� t is even in x2. Hence, there is a choice of constant of integration forwhich

� is odd in x2. In particular, �(x1, 0) = 0 for x1 2 [1, R]. Since vt = ei� is constant on @BR(0), we conclude that vt = 1. ⌅

From Lemma 6.1 we can see exactly how the position of the vortices affects the boundary condition imposed by the
conjugate function�II. Write each of the vortices in polar coordinates (in complex notation), but measuring the angle from
⇡ , pi = |pi|ei(⇡�ai), qj = |qj|ei(⇡�bi).

Lemma 6.2. There exists an S1-valued harmonic map v 2 H1
loc(⌦ \ {p1, . . . , pI , q1, . . . , qJ}) such that

(iv, rv) = �r?�II, in⌦ \ {p1, . . . , pI , q1, . . . , qJ},
v = ei✓ on @B1(0) \ {q1, . . . , qJ},
v = e�i(a1+···+aI+b1+···+bJ ) on @BR(0).

Proof. For each i, define (using complex notation for z = x1 + ix2 2 ⌦), ṽpi(z) := e�iaiv|pi|(e
iai z), using t = |pi| in vt from

Lemma 6.1. Since rvpi(z) = (rv|pi|)(e
iai z) = �r?� |pi|(eiai z), the function �̃i(z) := � |pi|(eiai z) merely rotates problem

(6.5) by angle ai:

�1�̃i = 2⇡�pi , in⌦, @⌫�̃i|@B1(0) = 1, @⌫�̃i|@BR(0) = 0.

Similarly, for each boundary vortex qj, define v̂qj(z) := e�ibjv1(eibj z). Then, rv̂qj(z) = �r?�1(eibj z), and since �̂j(z)
:= �1(eibj z) is a rotation of problem (6.6) by angle bj, thus:

�1�̂j = 0, in⌦ , @⌫�̃i|@B1(0) = 1 � 2⇡�qj , @⌫�̃i|@BR(0) = 0.

In particular, we recover�II = PI
i=1 �̃i +PJ

j=1 �̂j. Now define

v :=
"

I
Y

i=1

ṽpi

#"

J
Y

j=1

v̂qj

#

.

Then, it is straightforward to verify that v 2 H1
loc(⌦ \ {p1, . . . , pI , q1, . . . , qj}; S1), v is a harmonic map, and (iv, rv) =

�r?�II in⌦ \ {p1, . . . , pI , q1, . . . , qj}. Moreover, v|@B1(0) = ei✓ (as each of the rotations leaves ei✓ invariant), while at the
other boundary component the constants superimpose, v|@BR(0) = ei(a1+···+aI+b1+···+bJ ). ⌅
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To obtain the correct boundary condition u|@BR(0) = 1wemust adjust the singular harmonicmap v by adding a harmonic
function to the phase. As in [4], this is where the capacity of the annular domain⌦ enters into the calculation of the energy.
Let 2 H1(⌦; R) denote the (unique)minimizer of the Dirichlet energy

R

⌦
|r |2, among functions satisfying |@B1(0) = 0

and  |@BR(0) = 1. The minimum energy
Z

⌦

|r |2 dx = capBR(B1) = 2⇡
ln R

,

gives the capacity of the hole B1(0) relative to the domain BR(0). If we then define

u(z) = v(z)ei(a1+···+aI+b1+···+bJ ) (z),

then it is easy to verify that u is an S1-valued singular harmonic map in ⌦ \ {p1, . . . , pI , q1, . . . , qj}, which satisfies the
desired boundary conditions, u|@B1(0) = ei✓ and u|@BR(0) = 1.Moreover, by the construction of v in Lemma6.2, u is a canonical
harmonic map; that is, it satisfies the structural equation given in Remark 5.6.

Let � = a1 + · · · + aI + b1 + · · · + bJ .

(iu, ru) = (iv, rv) + �r = �r?�II + �r .

Since |u| = 1 in⌦⇢ , we derive the following expansion of the Dirichlet energy,
Z

⌦⇢

|ru|2 dx =
Z

⌦⇢

⇥

(iu, @x1u)
2 + (iu, @x2u)

2⇤ dx

=
Z

⌦⇢

⇥|r?�II|2 + �2|r |2 � 2�r?�II · r ⇤ dx

=
Z

⌦⇢

|r?�II|2 + 2⇡
ln R

�2 +
Z

@⌦⇢

�IIr · ⌧ ds + (⇢2)

=
Z

⌦⇢

|r?�II|2 + 2⇡
ln R

�2 + (⇢2), (6.7)

as  is constant on @⌦ and smooth on @B⇢(pi), @B⇢(qj), while |�II|  C | ln ⇢| on @B⇢(pi), @B⇢(qj).
The energy of conjugate function�II away from the vortices may then be evaluated as in [4]. We note that, by means of

a rigid rotation by angle �� , applied to the entire system of antivortices pj, we may obtain � = 0, and that this rotation
does not change the value of

R

⌦⇢
|r�II|2. In particular, this implies that the optimal antivortex configuration is obtained

by minimizing the usual Renormalized Energy (defined as in (6.3), or expressed in terms of the regular parts of the Green’s
functions as in [4]) under the constraint � := a1 + · · · + aI + b1 + · · · + bJ = 0. This completes the proof of Theorem 1.1
for Problem II.

Problem III. For Problem III in the exterior domain⌦ = R2 \⌦0, let�III = �III(x; {pi, di}, {qj,Dj}) be any bounded solution
of (6.2) in ⌦ = R2 \ ⌦0. Here we obtain the most information, as the solution may be expressed explicitly via Green’s
functions. Indeed, for any p 2 R2, |p| � 1,

G(x, p) = � ln
 |x � p| |x � p⇤|

|x|2
�

, p⇤ := p
|p|2 ,

gives the exterior Neumann Green’s function with pole at p. If |p| > 1, then G solves

��xG(x, p) = 2⇡�p(x), in⌦ ,
@G
@⌫x

(x, p) = 1, for x 2 � , p 2 ⌦ ,

whereas if |p| = 1 (and hence p⇤ = p), then we have

��xG(x, p) = 0, in⌦ ,
@G
@⌫x

(x, p) = 1 � 2⇡�p(x), for x 2 � , p 2 ⌦ .

Note that in each case, G(x, p) is bounded outside a neighborhood of p, and G(x, p) ! 0 as |x| ! 1 for any fixed |p| � 1.

Proceeding as in Lemma 6.1, we observe that if pt = (�t, 0) for t � 1, then G(x, pt) is even in x2, and r?G(x, pt) is
irrotational in the simply connected domain obtained by deleting a neighborhood of the negative x1-axis from⌦ . In partic-
ular, we may write r?G(x, pt) = �r�t in this domain, and recover a conjugate harmonic map vt = ei�t in⌦ \ {(�t, 0)},
satisfying (ivt , rvt) = �r?G(x, pt) in⌦ \ {(�t, 0)}, vt = ei✓ on @B1(0) \ {(�t, 0)}, and vt ! 1 as |x| ! 1.

For general p, |p| � 1, we again remark that a rotation of the pole p by angle a results in an equivariant rotation on the
corresponding ṽp, that is ṽp(z) = eiav|p|(e�iaz). In particular, if the antivortex location is p = |p|ei(⇡�a), then the limiting
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value for the conjugate harmonic map will be vp(z) ! eia as |z| ! 1. We may then assemble the harmonic map with
vortices p1, . . . , pD , v = QD

j=1 ṽpj , conjugate to the function

�III(x) =
D
X

j=1

G(x, pj) =
D
Y

j=1

ln

"

|x|2
|x � pj| |x � p⇤

j |

#

,

in the sense that (iv, rv) = �r?�III(x) for x 2 ⌦ \ {p1, . . . , pD}. Writing each antivortex location in the polar form
pj = |pj|ei(⇡�aj), we obtain

v(x) ! ei(a1+···+aD ), as |x| ! 1.

Using an equivariant rotationwemay ‘‘correct’’ this asymptotic value so that v(x) ! 1 as |x| ! 1. The effect of the rotation
is to rigidly rotate all of the antivortices by the same angle �(a1 + · · · + aD), and hence we may restrict our attention to
antivortex locations for which the associated angles satisfy

a1 + · · · + aD = 0 mod 2⇡ . (6.8)
Wemaynowcalculate the energy of limiting antivortex configurations directly using theGreen’s function representation.

First, assume each pj 2 ⌦ , and denote by⌦⇢ = ⌦\SD
j=1 B⇢(pj). Fix vortex locations pj, j = 1, . . . , D , and let R be sufficiently

large so that pj 2 BR(0) for all j = 1, . . . , D . Then, we must estimate
Z

⌦⇢

|rv|2 dx =
Z

⌦⇢

|r�|2 dx =
"

Z

⌦⇢\BR(0)
+
Z

R2\BR(0)

#

|r�|2 dx

=
Z

R2\BR(0)
|r�|2 dx +

"

Z

@BR(0)
�
Z

@B1(0)
�

D
X

j=1

Z

@B⇢ (pj)

#

� @⌫� ds,

where in each case the unit normal ⌫ is chosen positively oriented with respect to each closed curve.
To evaluate the contribution of each integral, we use

rxG(x, p) = 2
x

|x|2 � x � p
|x � p|2 � x � p⇤

|x � p⇤|2 .

Then, a simple calculation shows that for 1
2 |x| > |p| > 1,

�

�

�

�

x
|x|2 � x � p

|x � p|2
�

�

�

�

 1
|x|

�

�

�

�

1 � |x|2
|x � p|2

�

�

�

�

+ |p|
|x � p|2  4

|x|3
�

�|p|2 � 2x · p��+ 4|p|
|x|2  16|p|

|x|2 .

In particular, for any " > 0 and any fixed choice of pj, j = 1, . . . , D , we may choose R0 sufficiently large so that both
Z

R2\BR(0)
|r�|2 dx,

�

�

�

�

Z

@BR(0)
�@⌫� ds

�

�

�

�

< ",

for all R � R0.
For the integral over @B1(0), we recall that |x � p⇤| = |x � p|/|p| when |x| = 1, and @⌫� = @r� = D . Hence,
Z

@B1(0)
�@⌫� ds = �

D
X

i=1

Z

@B1(0)
D ln

|x � pi|2
|pi| ds

= �2⇡D
D
X

i=1

ln |pi|,

since ln |x�pi|2
|pi| is harmonic in B1(0).

Next, fix one of the pi 2 ⌦ , and consider the integral over @B⇢(pi). On @B⇢(pi), we observe that

@⌫� = � 1
⇢

+ gi,

where gi is a smooth function in a neighborhood of pi. Thus, we may write

Z

@B⇢ (pi)
� @⌫� ds = 1

⇢

Z

@B⇢ (pi)

2

6

4

ln ⇢ +
D
X

j=1
j6=i

ln |x � pj| +
|D|
X

j=1

ln |x � p⇤
j | � 2D ln |x|

3

7

5

+ o(1)

= 2⇡

2

6

4

ln ⇢ +
D
X

j=1
j6=i

ln |pi � pj| +
D
X

j=1

ln |pi � p⇤
j | � 2D

D
X

i=1

ln |pi|
3

7

5

+ o(1).
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Putting these computations together, we obtain an expansion of the energy for fixed vortex locations pi 2 ⌦ , i =
1, . . . , D ,

1
2

Z

⌦⇢

|r�|2 dx = ⇡D ln
1
⇢

+ W (p1, . . . , pD) + o(1),

with Renormalized Energy

W (p1, . . . , pD) = ⇡

2

6

4

3D
D
X

i=1

ln |pi| �
D
X

i,j=1

ln |pi � p⇤
j | �

D
X

i,j=1
i6=j

ln |pi � pj|
3

7

5

= ⇡

2

6

4

2
D
X

i=1

ln |pi| +
D
X

i,j=1

ln
|pi|

|pi � p⇤
j |

+ 2
D
X

i,j=1
i<j

ln
|pi| |pj|
|pi � pj|

3

7

5

(6.9)

We note that
|pi|

|pi � p⇤
j |

� |pi|
|pi| + 1

� 1
2
,

and
|pi| |pj|
|pi � pj| � |pi| |pj|

2max{|pi|, |pj|} � 1
2
min{|pi|, |pj|} � 1

2
,

and hence we see thatW (p1, . . . , pD) ! +1 whenever: |pi| ! 1 for any i; or |pi| ! 1 for any i; or |pi � pj| ! 0 for any
i 6= j. In particular,W attains a minimum for (p1, . . . , pD) 2 ⌦D with pi 6= pj for all i 6= j.

For an arbitrary total degree D , the exact location of the vortices of a minimizer may be difficult to determine. However,
in the two cases D = 1, 2 relevant to the application to liquid crystals, we may obtain more information concerning vortex
location. When D = 1, the form of W is quite simple, and

W (p) = ⇡ ln
|p|3

|p � p⇤| .

Taking into account the angle constraint (6.8) needed to match the boundary condition as |x| ! 1, and writing in complex
notation, p = |p|ei⇡ = �|p| lies on the left half of the horizontal axis. Minimizing with respect to |p| yields the optimal
vortex location p = (�2, 0).

When D = 2, we write pj = tjei(⇡�aj), j = 1, 2, in complex notation. Again, to match the condition at infinity, we are
constrained to choose a2 = �a1 =: a, and hence

W (p1, p2) = ⇡

"

6(ln |p1| + ln |p2|) � 2 ln |p1 � p2| �
2
X

i,j=1

ln |pi � p⇤
j |
#

= ⇡

"

6(ln t1 + ln t2) � 2 ln |t1 � t2e�2ia| �
2
X

i,j=1

ln |ti � tje2ia|
#

.

We note that each term in W is preserved or decreased by choosing antipodal vortices, p2 = �p1, or a2 = a1 ± ⇡ . Given
the angle constraint, this implies a = ±⇡

2 , and so the vortices must lie on opposite halves of the vertical axis, p1 = (0, t1),
p2 = (0, �t2). ExpressingW for such points,

W ((0, t1), (0, �t2)) = ln


t81 t
8
2

(t21 � 1)(t22 � 1)(t1t2 + 1)2

�

=: ln[w(t1, t2)],
we may minimize explicitly and obtain the optimal anti-vortex locations, p1 = (0, 4p2) and p2 = (0, � 4p2), as claimed in
Theorem 1.2.

Next, we assume the vortices lie on the boundary component � : pj 2 � , i = 1, . . . , D . Let ⌦⇢ = ⌦ \SD
i=1 B⇢(pi) (as

before), and � ⇢ = @
�

B1(0) [SD
i=1 B⇢(pi)

�

. We also denote by �̃ ⇢ = � \ SD
i=1 B⇢(pi), and @

+B⇢(pi) = @B⇢(xi) \ ⌦ . For
vortices pi 2 � we recall that:

�(x) =
D
X

i=1

ln
|x|2

|x � pi|2 ,
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and as above, � is conjugate to the phase of the harmonic map v, with (iv, rv) = �r?� away from the vortices. In this
case, we estimate

Z

⌦⇢

|rv|2 dx =
Z

⌦⇢

|r�|2 dx = R

R2\BR(0) |r�|2 dx +


R

@BR(0) � R
�̃ ⇢

�
D
P

i=1

R

@+B⇢ (pi)

�

� @⌫� ds.

As for the case of interior vortices (above), we may choose R sufficiently large that the integrals over R2 \ BR(0) and @BR(0)
are arbitrarily small, and so it suffices to evaluate the integrals on the inner boundary � ⇢ = S

i @
+B⇢(pi) [ �̃ ⇢ .

On the circular arcs @+B⇢(pi), we then have @⌫� = � 2
⇢

+ gi(x), where gi(x) is a smooth function in B⇢(pi). As @+B⇢(pi)
differs from a semi-circle C+

⇢ (pi) by arcs of length of O(⇢2) as ⇢ ! 0, we have
Z

@+B⇢ (pi)
�@⌫� ds = � 2

⇢

Z

@+B⇢ (pi)
� ds + o(1)

= � 4
⇢

D
X

j=1

Z

C+
⇢ (pi)

�

ln |x| � ln |x � pj|
�

ds + o(1)

= 4⇡ ln ⇢ + 4⇡
D
X

j=1
j6=i

ln |pi � pj| + o(1).

On the arcs making up �̃ ⇢ ⇢ @B1(0), we have @⌫� = D . We also note that for any p 2 S1, ln |x � p|2 2 L1(� ), and
Z

�

ln |x � p|2 ds = c0

is a constant, independent of p 2 S1. Therefore, we may evaluate
Z

�̃ ⇢
� @⌫� ds = D

Z

�̃ ⇢
� ds = D

Z

�

� ds + o(1)

= �D
D
X

i=1

Z

�

ln |x � pi|2 ds + o(1) = �D2c0 + o(1).

Putting these computations together, we obtain
1
2

Z

⌦⇢

|rv|2 dx = 1
2

Z

⌦⇢

|r�|2 dx

= 2⇡D ln
1
⇢

� 2⇡
D
X

j=1
j6=i

ln |pi � pj| + D2

2
c0 + o(1).

Thus, the Renormalized Energy for vortices lying on the circle � is

W� (p1, . . . , pD) = �2⇡
D
X

j=1
j6=i

ln |pi � pj| + D2

2
c0,

and isminimized by vorticeswhich are evenly distributed over the circle� . As for the case of interior vortices, the asymptotic
condition v ! 1 as |x| ! 1 imposes the constraint (6.8) on the polar angles of the pi, which removes the degeneracy of the
minimizing configuration due to rotational invariance. In particular, in case D = 1, the single anti-vortex must be located
on the left side of the horizontal axis, p = (�1, 0), and for D = 2, the two anti-vortices lie on opposite sides of the vertical
axis, p1 = (0, 1) = �p2. This completes the proof of Theorem 1.2.
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