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Abstract. We study entire solutions of? of the elliptic system—AU +
VW(u) = 0 whereW : R? — R? is a multiple-well potential. We seek solu-
tions U (X1, X2) which are “heteroclinic,” in two senses: for each fixede R

they connect (ax; = +00) a pair of constant global minima &Y, and they con-

nect a pair of distinct one dimensional stationary wave solutions whes +oco.

These solutions describe the local structure of solutions to a reaction-diffusion
system near a smooth phase boundary curve. The existence of these heteroclinic
solutions demonstrates an unexpected difference between the scalar and vector
valued Allen—Cahn equations, namely that in the vectorial case the transition pro-
files may vary tangentially along the interface. We also consider entire stationary
solutions with a “saddle” geometry, which describe the structure of solutions
near a crossing point of smooth interfaces.

1 Introduction

In this paper we study entire solution$(x) on 22 to the semilinear elliptic
system,

(1.1) — AU +VWU) =0 X = (X1, %) € B2,

whereW : B? — R is a multiple-well potential W (¢) > 0 attains its global

minimumW(c;) = O at a finite number of vectors, . . ., ¢,. In particular, we seek

solutionsU which satisfy certain asymptotic conditions imposed |f[dr— oo.
Equation (1.1) arises in the local asymptotic analysis of the reaction-diffusion

system,

1.2) N

o " 2AV —VW(V), x € £,
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for £2 ¢ 2% a domain. Formal analysis (see Rubinstein, Sternberg & Keller [16],
Bronsard & Reitich [4]) suggests that as— 0" solutions of (1.2) tend almost
everywhere to the minima oV, introducing sharp phase boundaries separating
these regions. Equation (1.1) then appears as the first term in the inner expansion
about a point lying on the interface.

Intuitively, one might expect that the local behavior of the solution to (1.2)
near a smooth point of the interface should resemble that of the scalar Allen-Cahn
equation, since locally there are only two phases involved. To be more precise,
connecting each pair of minima @ there are one dimensional stationary waves
(heteroclinics), and these give special solutions to (1.1) which make the transi-
tion between the two phases in the direction orthogonal to the (smooth) phase
boundary. However, a more careful analysis of the one dimensional stationary
waves reveals a significant difference between the vector-valued equation (1.2)
and its scalar version, even along the smooth portion of the interfaces. Namely,
there might be several distinct stationary waves connecting a single pair of min-
ima, and in that case it might be possible that the profile of the solution vary
tangentially along the transition surface, changing gradually from one stationary
wave-form to another along the interface. Expanding such a solution in a neigh-
borhood of the interface, we would see (to first order) a solution to the elliptic
system (1.1) ink? which converges to two different one dimensional stationary
waves inx; asx, — +oo. We call these special solutions to (1Hgteroclinic
solutionsin analogy with the classical use of this term in dynamical systems, but
in one dimension higher.

We note that in the case whevé has three global minima, all three phases
may be present in some neighborhood, forcing the interfaces to join at a triple
junction. Near such a point the interfaces are no longer smooth, and the local
behavior of the solution to (1.2) should be described lilirae layered solution
to (1.1) in22, that is it should tend toward each of the three constant minima in a
sector of the plane, and towards one-dimensional stationary waves (which connect
these minima) across each sector. In [3], Bronsard, Gui & Schatzman established
rigorously the existence of such triple—layered solutiong&#nfor (1.1) with a
triple-well potentialW having the symmetry of an equilateral triangle.

To present the situation more precisely, we need to consider one-dimensional
stationary wavesolutions associated to (1.1). Fix two distinct zeroS\afvectors
a,b € 2. For vector-valued functions € [H}.(R)]? with z(t) — aast — —oo
andz(t) — b ast — +oco, define the energy

(1.3) F(z):/_ {;|z’(t)|2+W(z(t))} dt.

Standard arguments show that (under reasonable assumptitvis-osee below)
F attains its infimum in this class at a heteroclinic trajectory connedirg
b. We assume thatV is chosen so that the minimizer it unique(modulo
translations irt), but consists of a finite numbér> 2 of geometrically distinct
trajectoriesz(t), . . ., z(t). We choose any two of these elements,, and pose
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the following problem: find a two-dimensional heteroclinic solutldx;, x,) to
(1.1) with conditions imposed d8| — oo,

(1.4) U(Xg, %) —a asxg — —oo, uniformly in xp;
(1.5) U(X1,X) — b asx; — +oo, uniformly in xo;
(1.6) U (Xg, %) — z1(X1) asxp — +oo, uniformly in xy;
@a.7) U (X1, %) — 2(X1) asx, — —oo, uniformly in x;.

In order to describe our results we first introduce our hypotheses on the
potential W. First, W is smooth, withp non-degenerate global minima, and
grows rapidly to infinity ag¢| — oo:

(1.8) WeC*R?), W(G)=0, W) >0 ¢#c, i=1...p;
(1.9)  There exists\ > 0 such thaD?W(c) > M, i=1,...,p;
(1.10) VW(E)-£ >0 for [§] > Ro, someRy > 1.

We must also assume that is symmetric about the perpendicular bisector of the
segment connecting the vectash. Without loss of generality, we may assume
that the points = (b,0) = —a lie on the horizontal axis inUy, U,)-space and

b > 0. With this choice of variables, we assume:

(1.11) W((6) =W(E), wherevy(&1,82) = (—&1,&2)-

Note, however, that we dot need to impose symmetry in tife-direction. The
symmetry hypothesis (1.11) is a technical assumption which we use to eliminate
loss of compactness via translations in thedirection. Without symmetry we
cannot verify that our minimizing sequences (even after suitable translation)
attain the desired asymptotic conditions (1.4)—(1.7). Although we believe that
this restriction is only technical, we do not know if this problem presents some
new and unfamiliar kind of loss of compactness. (See the discussion in Sect. 5.)
We define an admissible set for the eneFgfz) defined in (1.3),

(L12) Y%= {z(t) = (), 221) € (HE ) : Jim z(t) =a,
Jim z(t) =b, z(-1) = (-=2'(t), 2%(1)}-

Note that symmetry ok € .%, removes the degeneracy due to the translation
invariance of the functiondf. We denote bye,, the minimum energy required
to connect wellsa andb by a symmetric heteroclinic orbit:

(1.13) e ;= Min{F(2) : z(t) € %}

We remark that the energy-minimizing connecting orlifg may be identified
with minimizing geodesics in a Riemannian metric determined by the potential
W (see [4], [18].) In this sense, our next hypothesis is a sort of strict triangle
inequality:

(1.14) € < €c + €, forany zeroc#a b of W.
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As we will see later, this condition ensures the existence of a one dimensional
stationary wave connecting the minimmaandb, and that the optimal path does
not pass by a third minimunt, Note that the right-hand side of (1.14) is always
at least as large &=, SO we are merely eliminating the possibility that the two
guantities are in fact equal.

Finally, we may state an explicit theorem in the case whéradmitsexactly
two geometrically distinct energy-minimizing heteroclinic trajectoizgs), z(t)
which connecta to b. We refer the reader to Theorem 3.3 for the more general
case wherd& > 2.

Theorem 1.1 (Casek = 2) Assume that Wa, b satisfy hypotheses (1.8)—(1.11)
and (1.14). In addition, suppose that(# attains its minimum at exactly two
curves g,z € .%p. Then there exists an entire solution(XJ, x,) of (1.1) ink?
satisfying the conditions (1.4)—(1.7).

Although there is a canonical energy associated to the equation (1.1),
fmz ;|VU |2+ W (U) dx, the solutions which we seek must necessarily have infi-
nite energy. Motivated by the work of P. Rabinowitz on heteroclinic solutions for
Hamiltonian ODE systems (see [13] and [15],) we show that the heteroclinic so-
lutions of (1.1) may be obtained as global minimizers of a “renormalized” energy
(3.1). However, this energy is not coercive on any natural space, and there is no
obvious way to obtain the heteroclinic solution via the direct method. We obtain
these solutions via approximation: solving boundary-value problems, obtaining
priori bounds, and passing to the limit, first as the rectangular regions approach
infinite strips and then as the width of the infinite strips tends to infinity. The
global variational framework provides energy estimates which are necessary to
verify that the limiting solution does indeed exhibit the desired asymptotic shape.

To compare our problem with the more familiar scalar case, consider the
typical exampleWg(u) = ;(u? — 1)%, u € R, with with global minima=+1.

The family ¢(t) = tanh(f — to] /v/2) (to € I any constant) describe heteroclinic
trajectories for the ODE
(1.15) —u” +Wj(u) =0.

In fact, these solutions minimize the associated energy functional
it l 2
Fo(u) = WO+ Wo(u(t))| dt

among functionsi € H(R) with u(t) — +1 ast — 400, and they are known

to be the only stable equilibria of the corresponding parabolic system in one
dimension (see eg. [5].) In this scalar setting, De Giorgi [7] has conjectured that
any entire solutionu : R" — R of —Au + Wy(u) = 0 which connectstl at

X1 = +oo is in fact one-dimensional: its level sets are hyperplanes, and by a
suitable rotation of" is of the formu(x) = z(x;) for some heteroclinic solution

to (1.15). Modica & Mortola [10] have shown that De Giorgi's conjecture holds
in dimensionn = 2, but only under the additional hypothesis that the solution’s
level curves be Lipshitz graphs. The higher dimensional case is entirely open,
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although some evidence of the validity of the conjecture is provided in the paper
by Caffarelli, Garofalo & Segala [5]. Our results show that this conjecture does
not generally hold for vector-valued equations of bistable type.

We remark that heteroclinic solutions to PDEs have been considered by oth-
ers, in somewhat different settings. Solutions of semilinear elliptic equations
which are homoclinic to zero were studied by Coti-Zelati & Rabinowitz [6] (for
periodic coefficients) and by Alama & Li [1] (with asymptotic periodicity.) Bates
& Ren [2] have shown the existence of heteroclinic solutions for a high order
scalar equation (1.15) in periodic strip-like domains. Rabinowitz [15] has also
considered solutions of the semilinear scalar equation,

(1.16) — Au=g(x,y,u), Xe, YyEeR,

in cylindrical domainsf? x R. Under the hypothesis tha{x,y, u) is periodic in
y, u, conditions are given in [15] which ensure the existence of solutions which
approach ay — +oo different periodic solutions of (1.16).

Finally, in Section 6 we consider “saddle solutions” of equation (1.1}3n
Given a paira, b of minima of W, we seek a solutiok which satisfies

im U (e, %) = 2(x), m U (x4, %) = 2(=xa),
0 —+00 o——00

lim U (xg,%2) = z(X), lim U (xg, %) = z(—x2),
X1—+o0 X1——00

for some one-dimensional heteroclinic trajectaryconnectinga to b. Such a
solution describes the local behavior of a solution to the reaction-diffusion system
(1.2) at a point where interfaces cross. The resulting configuration of two phases
alternating around a cross-shaped interface is believed to be highly unstable, as it
represents a singularity in the flow by curvature obtained as the limiting problem
(e — 0) for (1.2). Stationary saddle solutions were obtained by [8] for the scalar
Allen-Cahn equation, by means of a sub- and super-solution method, and their
stablility was studied by Schatzman [17]. As is well-known, such monotonicity
techniques are not effective in studying systems of equations, and hence their
result does not extend to our vector-valued equation (1.1). In Sect. 6 we derive
the existence of a saddle solution under similar hypotheses to those listed above
for the heteroclinic case. When restricted to the scalar equation case, our result
improves the existence result in [8]. On the other hand, for the vector equation
case, our result cannot permit a zerd/fto lie on the axis of symmetry between

the chosen zerog andb, and therefore the existence of saddle solutions for the
three-welled potential of [4], [3] remains an open question.

2 The one dimensional problem

We begin with a brief discussion of the associated one dimensional problem,

(2.1) —Z/)+YW@) =0,  lim z(t)=a lim 2()=b.



364 S. Alama et al.

In particular, we are interested in those solutions of (2.1) which minimize the
energyF (-) defined in (1.3) in the class of curveég, (defined in 1.12). Following
[3], we can show that under the conditions (1.8)—(1.11) and (1.14\for

ep =INf{F(2) : z € S}

is attained, and its minimizers satisfy (2.1). We sketch the proof below, and refer
the reader to more general existence results of Rabinowitz [13], [14].

First we state a basic energy estimate, which will be useful throughout this
paper:

Lemma 2.1 Suppose € [H([Ly,L,)]? and ju(£L;)| < R,i =1,2. Then,

[v(Ly) — a? + [v(L2) — bJ?)

k2 1 / 2 (
/ [v'(t)]7 + W(v)dt > e — Co ,
L 2 2

where G = 1+ 3 max{|D2W(£)| : [¢] < R+|al}.

The proof of Lemma 2.1 is similar to that of Lemma 2.6 in [3]. We only need
to construct a function
u(t), if L1 <t <Ly;
(L)t —Li+ ) +alls—t), if Ly <t <Ly
o(t) = § v(L2)(La+1—-t)+Db(t — Lp), if Lo <t<Llo+1;
a, ift<Li—1,
b, ift>Ly+1.

ThenF (?) > ey and Lemma 2.1 follows by straightforward computations.

¢

We now return to the existence of minimizing trajectories Foin .%,. Let
a, ift<-1;
p(t)={ b, if t>1,
Jib—at+b+a)] if —1<t<1.

Suppose thafu,(t)} € .%b is a minimizing sequence fd¥(z). By (1.11), (1.10)

we can assume, without loss of generality, thatt)| < Ry, Vt € R and that the
first component ofu,(t) is nonpositive fort € 2 and v, (t) — ¢(t) € (H1(R))?
(see, e.g. [3] for details). Using (1.14) and Lemma 2.1, we know that for every
minimum pointc Z a,b of W,

lon(t) —c| >6 >0, VteR
whenn is large enough, wher& is a positive constant. By (1.9), we have

(22) W(U) > I{min{"U - a|27 |U - b|2}a
(2.3) Vo € {v|jv]| < Ry, |v—c| > 6, for cZa,b a zero ofW.}

wherek is a positive constant depending only @, 6. SinceF (v,) — €y, as
n — oo, the above inequality leads to the boundedness, efy in (H1(12))? and
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consequently the weak convergencef- ¢ to v — ¢ in (H(I))?. Furthermore,
F(v) < ey andwv,(t) converges ta(t) uniformly int € [—L, L] for any fixed
L. Then|v(t) — c| > 6 > 0,Vt € R wherec Z a,b is any minimum point ofW.
By symmetry ofv, it is easy to see that € .%p,. This proves the existence of
minimizer of F () in .%p.

We note that if (1.14) isot assumed, there miglmot exist a minimizer for
F(z) in .%p. Even assuming (1.14) holds, the minimizer may not be unique. We
denote the set of minimizers &fin . %, by £ = Zap = {z, ..., %} and assume
that there is non-uniqueness:

(2.4) 2 < Card@) =k < oo.

Remark 2.2Note that solutions of (2.1) are translation invariant, but the symme-
try condition incorporated int4, fixes a representative. Generically, we expect
the set<Z to be finite (see Proposition 2.1 in [3].)

Following are some basic properties of the minimizer& &, many of
which are already established in [3].

Proposition 2.3 Assume hypotheses (1.8)—(1.11). Any £ is a C% embedded
curve inl2. In addition, the image curves corresponding to distinct elements z

(i #]) are nonintersecting. Moreover, minimizers z exhibit exponential decay:
there exists constants € 0 and i > 0 such that

(2.5) |z(t) —a| + |Z/(t)] < Cexp{—ut}, teR.

Note that fact that image curve do not intersect themselves or other curves
is a consequence of energy minimization and is not necessarily true for non-
minimizing solutions of (2.1). We remark that the results of Proposition 2.3
hold without the symmetry hypothesis (1.10), with the definitions4f and &
modified appropriately.

Proof. The regularity of minimizerg is standard. Self-intersections may be ruled
out using the fact that eachis an energy minimizer. Indeed, #{t;) = z(ty)

for t; # t, then a new admissible cun&t) € . may be constructed so that it
excises the loogz(t) : t1 <t < tp} and has strictly smaller energy. Intersections
between distinct elements e may be ruled out in a similar way. First note
that the symmetry condition(—t) = (—z(t), z?(t)) forces minimizers to cross
the vertical g = 0) axis exactly once, and with = 0, since otherwise(t)
would have a self-intersection. #,z, € Z cross, we may then assume that
z1(t1) = z(t2) with t1, t, > 0, and that the energy af on [t1, oo) is smaller than
or equal to the energy @b on [t;, 00), i.e.

/:C <;IZ{(t)IZ+W(zl(t))> dt < /:O <;|zz/(t)|2+W(zz(t))> dt.

Now we construct a new admissible curxg)™e .%, by patching:

~ _ Z]_(t -1 +t1), if t > 1
() = {zz(t), if t, >t >0;



366 S. Alama et al.

andz(—t) = (—z(t), Z3(t)) for t < 0. SinceF (z) = F(2) = e, We have

/Otl (;lzi(t)lz +W(Zl(t))> dt > /Otz (;zz'(t)|2 +W(zz(t))> dt.

Therefore we deriveF(Z) < ey, and Z(t) is a minimizer. By regularity of
minimizers,z; and z, must have the same derivatives at the cross point. By
the uniqueness of solutions to initial value problems for ordinary differential
equations, we conclude that andz, must be identical.

The exponential decay estimate (2.5) is proven in [3].
¢

Our point of view is that a candidate (x, x;) for a solution to (1.1) ink?
is, for each fixed value o%,, an element of%,, and hence may be compared
with the minimizersz € & via estimates on the one-dimensional energy values
+oo [1 ‘au

Fucoe)= [ |55

— 00

2
+ W(U (X]_, Xz))] dxq.

The following lemma shows that the one-dimensional energy is strongly co-
ercive on the set4y: if the energy of a function is close to the minimum, then
it must be close to a minimizer.

Lemma 2.4 For anye > 0 there exist$ > 0 such that ifv € .%, and F(v) <
€ + 0, then there exists,ze & such that

v = ZallHinLem) < &

It suffices to show that if, € .%p and lim,_, o, F(vn) = €qp, then there exists
a subsequence af,, which we still denote by, andz, € & such that

llon — ZaHHlmLoc(m) — 0.

First, we show the convergence lif°(R).
Claim 1. vy is bounded inL°>°(R).

Suppose not, then there exigtssuch thatjun(tn)] — co asn — oo. By the
continuity ofu,(t) in t and the fact that,(t) — a ast — —oo, for n sufficiently
large there exists, < t, such thatjv,(s,)| = Ry and|vn(t)] > Ro, Vt € (S, th).
By (1.8) and (1.11), we have

W() = mp, for [¢] > Ro.

wheremp > 0 is a constant.
Then

V

tn
Fn) = [l + Wien@)et
S

tn

Vo[ (t)[dt > /Mofun(th) — vn(sh)]
Sh
VMo(Jvn(th)| — Ro).

%

Y
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Letting n — oo we get a contradition. This proves the claim.

Let m(r) :=min{W(&) : |£¢ —a >r,|{ —b| >r} for r > 0. For any given
e > 0, if we chooselL = me?) > 0, then there exist, € [-L,—L/2] such
that either|vn(ty) — a| < €2 or |un(ty) — b| < 2 for n sufficiently large. Since
otherwise, we would have

-L/24
F(un) > /4 2|v,’1(t)|2+W(vn(t))dt > m(e?)L/2 > 2eqp.

This is a contradiction when — oo.

We may assume thatis sufficiently small, then we have indeed(t,)—al <
€2, thanks to Lemma 2.1.
Claim 2. There existdNg = No(e) such that whem > Ny, we have

|lun(t) — @ <e, Vt<-L.

Suppose otherwise, for all sufficiently large there exist, < o, < —L such
that

|’Un(S])7a‘ = 6/27 |Un(0n)| =g, and g Z "Un(t)fal Z 6/27 Vt S [Sn,O'n].

Then by Lemma 2.1 and (1.9), we have

on —tq
Fln) = 2 [ St OF * W)+ [ 1+ Wien()de
S tn
> 2 n ;\/)\|vé(t)| ~|un(t) — aldt + e — Coe*

S
> @+ Ce? — Coe?

whereC = v/A/4 > 0. Lettingn — oo, we have a contradiction when is
sufficiently small. This proves Claim 2.

Now it is easy to see that, is equicontinuous ik, and that there exists a
subsequence af,, which we still denote by,, converging uniformly ork to
z € .. Moreover, we havé-(z) < ey, and thenz = z, € Z for somea.

To show convergence iRl 1(R), let ¢ > 0 be given, and then ldt, Ny be
chosen so that

(2.6) lon(X) —a] <&, x<-L, and |uon(X)—b|<e, x>L,
(2.7) F(un) — e < 2 forn > Ny,

—L
(2.8) / ;|z’(t)|2 +W(z(t)) dt < £2.

oo

From hypothesis (1.9), (2.6), and (2.8), wheis sufficiently small we obtain:

—L
1 / 2 A 2 2
< e“.
[ lzop+ o<
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By Lemma 2.1 and hypothesis (1.9) we also have:

L2 A 2 L e 2
[ Sl®r+ Jlenfdn < [ SRR W)t < ce2

oo o0

In particular, we have:

—L
1 A
/ 2|vr’1 A 4|vn —z|?dt < Ce2.

— 0o

(By symmetry, identical estimates hold over the intental}).)
With L fixed (as above), the convergencg — z in L*° implies that for
n > Ng > No,

L
/ lon — 2[2 + |W(un) — W(z)| dt < £2.
—L

In particular, we haves, — z — 0 in L2(R). In view of (2.7) and the above
estimate, choosing sufficiently large we obtain:

L
‘/ (Jon> = 12'1%) dt‘ < &2
—L

By an integration by parts,

1/2

L L
’/ (wh—=2")-2 dt‘ < 2|(vn — 2)(L)] |z(L)| + [/ |vn — zzdt]
—L —L

L 1/2
X [/ Z”Zdt]
-L

Sincez” is integrable, we may conclude that forsufficiently large

L L L
/ fon —z|2dt:/ (12 — 12'P) dt—2/ (o —2)- 2 dt < 2.
L —L —L
In conclusion,v, —z — 0 in H(R), as desired.

¢

3 The variational formulation

We now turn to the two dimensional problem. Throughout the rest of the paper
we fix two distinct minimaa, b of W, with a = —b andb = (b,0), and we
assume that the strict triangle inequality (1.14) holds for this choice, bf
Where there is no ambiguity we write = e, in (1.13). Given two distinct
elements, z € &, we define a class of admissible functions by
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€ (H:(F2)" n (Co@3)*:
M1 = U o ~y(X) =7 ou(x),
[u(x) — p1,2(x)| — 0 as|x| — oo

where
21(x1), if xo >1;
@l,Z(X) = 22()(1)7 if X2 < _17
7() "5 + ()12, i —l<xe <1,
and (&) = (—&1,&2). Recall that all elements o are minimizers with equal
one-dimensional energy=F(z,) > 0, a = 1,... k. We define a renormalized

two-dimensional energy by subtracting eneggfrom each horizontal strip:
(3.1) #(U) :/ U ;Wu P+W(U)dx — e| dx, U €.,

(We remark that the idea of decomposing an unbounded domain into strips and
subtracting off a “base” quantity of energy on each strip has been introduced
by Rabinowitz [13] for finding trajectories of Hamiltonian systems which are
heteroclinic to periodic solutions.) By renormalizing we expect our solutions to
have finite energy?:

Proposition 3.1

0< = inf &(U) < +o0.

912 UE A, L) >
Proof. By takingU = 1, € .74, 5, itis clear thatry , < +co. To see this, note
that the outer integral ir¥s is taken over the finite intervaH1,1], and each
term is then finite due to the exponential decay (2.5) of arny Z to eithera
or b.
We will now show thato; , > 0. Fix a finite interval inxq, [-L, L], and set

p=min{|z, — Z||Lec-L 1y >0
a#

(since the curveg, do not intersect.) By Lemma 2.4 we may chodge> 0
such that whenever € . satisfiesF (v) < e+, then there existz € Z with
[0 = 2l < p/8.

Now fix U € .#41 5. SinceU (Xq, X2) — z1(X1) uniformly in x; asx; — +oo,
eventually the trajectory (-, x;) € £ must leave arL>°[—L, L]-neighborhood
of z,: there existdM; € R such that

U %) = Z2flp-Ly = Z for all xp > My and
JUCMD) =zl = -
Define also

Mo =min{x; > M1 : [[U(-,X2) — Za||Loc[—L,y < g for somez, € Z.}.



370 S. Alama et al.

Indeed,U € .74, means that eventually) (-, x;) is L>-close toz, but we
allow for the possibility that it first passes near some other elemert Z. In
particular, for anyx; € R we have (for appropriately chosen € £),

|U (2, M2) — U (x1, M1)| > |22(x) — Zo (0)| — |U (%2, M2) — 2, (X1)]
—[U (. My) = 2200)] = 5.

Furthermore, we observe that Lemma 2.4 and the definitiofy ahply that:

. &o
inf- FU(,x))>e+ _.
LI (U, %) > 5

(Note thatM1, M, may depend on the functidd .)
Now we may estimate the energy Of.

My M> +00
e 2 = | [F(U(-,xZ))—elde+/M/_ 21U c e

M1

2
M2

I} 1/t fMl Ux,| dx

20(M2—|V|1)+ / ( )

> dxg
- M
2 —L MfldXz
> 5°(|v| — My) + L min U (X, M) — U (xg, My)|?
= o 2 1 M2—M1X1€[7L,L] 1, V12 1, VI1
50 Lp2
> O(My — My) + > py/6oL/2 > 0.
>, (M2 = My) 4(M2—M1)—p\/0/ >

This inequality holds for any € . #; », hence we conclude; » > p\/éoL/Z >
0.

¢

We next show that minima of the renormalized enetgwre indeed solutions
of our PDE:

Proposition 3.2 Suppose that Ue .#4, , attains the minimum of’,

FW)= inf #(V).

Then, U e C%(RR?) satisfies (1.1) with the heteroclinic conditions (1.4)—(1.7).

Proof. Lety = (p1(X),y2(x)) € Co(R%; R?) be given, and choosk®l > 0 such
that supp C [-M,M]2. Then,U +ty € .#4;, and the functionaV(U + ty)
are continuous and uniformly bounded inj1,M]? for |t| < 1. Then,

0 < £(U +ty) — £(U)

_ /M /M [|V(U +tp))2 B |VU|? WU +w)_w(u)} dx dxg
-M J—M

2 2
M M
Ll

2
Z VU - Vy; + VW(U) ~w] dx; dx + o(t).
J=1
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In the limit, we have

2
/ > VUi - Vg + VW(U) ¢ | dx=0
B2 =1

for anyy € C§°(R?;1R?). Then, taking test functions of the form:= (1, 0) and

v = (0,97) in the above equality, we obtain each equation in the system (1.1)
in weak form. By a standard bootstrap argument we may concluddJthata
strong solution inC%.

¢

We have shown tha is bounded below on the clas#/, >, and that min-
ima yield solutions to our equation (1.1) with the desired asymptotic behavior.
Obviously, we would be finished if we could show that the minimun#ofvere
attained in_#4, ». The most obvious tool in this situation is the “direct method”,
namely to show compactness of minimizing sequences“foOne obstacle to
compactness is translation invariance: sequences4n, may have weak limits
which no longer belong toZ4; ,, and hence do not satisfy our boundary condi-
tions for U at infinity. However, a greater problem is the fact tlfatdoes not
seem to be coercive o4, », and hence the fact that minimizers have bounded
energy & does not yield an estimate sufficient for weak compactness in any
reasonable space.

Our method will be one of approximation: we will seek a minimizer as a limit
of minimizers in strips of finite length. The fact that the solution thus obtained
is a minimizer will enable us to eliminate certain pathological cases when taking
the limit.

It will be necessary for our method to choose asymptotic states which
are not only one-dimensional minimizers, but also satisfy another strict triangle
inequality for their two-dimensional enerdy,

(33) 01,2 75 O1,a t 04,2 for any o 75 1 2.

Note thatz, z, satisfy (3.3) if, for example, their two-dimensional enekgy.
is minimal among all pairs of distinct elements.@. Our general theorem then
reads:

Theorem 3.3 Suppose Wa, b satisfy the hypotheses (1.8)—(1.11), (1.14), and
(2.4). If z # z € £ and (3.3) holds, ther attains its minimum value in the
class. 7., at U € .#4; 5. Furthermore, U€ C2%(R?) for 0 < a < 1 and U
satisfies (1.1) if? together with the asymptotic conditions (1.4)—(1.7).

Of course, ifk = 2 (i.e., the one-dimensional problem admits exactly two min-
imizing trajectories), then Theorem 3.3 reduces to Theorem 1.1 stated in the
introduction.
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4 Infinite strips

In this section we consider solutions to equation (1.1) in semi-infinite strips,
To={x=(X,%): [X| <L},

satisfying boundary conditions given by distinct elementsz, € & on the

edgesx; = +L.

To solve the problem in strips, we approximate the strips by b&kas =
[-M,M] x [—L, L], where we may easily solve the boundary value problem for
(1.1). First, we truncate the one-dimensional solutipns = 1, 2:

. z(x), if x| <M -1,
o) =4 z2(-M +D)[xg +M]+a[-M +1—xq], if —-M <x; <-M +1;
Z(M = 1)[—x +M]+b[—-M +1+x], if M —-1<x <M.
Then, we introduce a class of admissible functions incorporating the desired
boundary conditions oR_ : let

X2+ L —Xp+L
an) = ) () +eow (T
for x = (x1,%) € R_m, and

Ay = {u LU~ B € (HERLM)®L U or(x) =70U(X)}-

. . /LM
Finally, we introduce an energy oz,

@y EwW)= [ SVURswUd U el
L,M

It follows from standard arguments thBt  attains its minimum at some
Uom € 27 andU y € C?%(R.w) satisfies the equation (1.1) R u.
Moreover, hypothesis (1.10) and the maximum principle (appliedt8) yield
an a priori bound||U ||.~ < C with constantC independent of, M. Elliptic
regularity then provides the stronger estimate,

(4.2) U HCZ’D‘(RL‘M) <C

for any fixeda € (0, 1), with C; = Cy(«) independent of., M. Finally, we may
obtain an upper bound on the energy of the minimizer,

ELmUim) < ELm(@m)
2 Xo+ L 2+ 8(,062 —Xo+ L 2
2L 1541 2L

L3

M
1
+W(¢L,M)dx+/ 4L\<P%/| (x2) — iy (x2)[> dxa
-M

Doy
8X1

IN

L M

/ / C exp{—2ulx|}dxdx +C
-LJ-m

(4.3) < Gl forL > 1,
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with constantC, independent ol., M. (We have used (2.5) in estimating the
second line.)

From estimate (4.2) we may pass to the limihs— oo along a subsequence
to obtainU, y — Uy in C%%(K) for any compacK C T,.

Theorem 4.1 U_ satisfies (1.1) in [, ||UL||CZ,Q(TL) < C4, and
1
(4.4) EL(U) = [ SITULP+W(U)dx < G
T

where G, C; are as in (4.2), (4.3). Moreover, U, L) = z1(X1), UL(X1, —L) =
2(X1), yoUL =U_ o7, and

(4.5) UL (X1, %) — a uniformly in % as x — —oo.

Proof. We only need to prove (4.5), as the other assertions follow easily from
estimates (4.2) and (4.3). Suppose there wefe>a0 and a sequence of points
{x" = (x{,x])} C T, suchthak] — —co and|U_(x")—a| > 6. SinceU (X, L) =
z1(x1) — a asx; — —oo, we know that we may choosé' such thatU, (x") —

c| > 6 as well, wherec is any other zero ofN. By estimate (4.2) we may
conclude thatJ, remains away from the minima & on a sequence of disks:
there exists, p > 0 such that

(4.6) WU (X)) >e forall x —x"|<p,n=12,...

Without loss, we may assume that these diBk&") are disjoint, and hence

EL(U) > Z W (Up) dx = +oo,
n=1 BP(X”)

which contradicts (4.4).
¢

We now introduce a variational framework for the problenijnin analogy
to our renormalized energ¥ introduced in the previous section. For

U € (HL(TV)"n (Com)*:
U o7(x) =70 U(x),
U (X) — aasx; — —oo, uniformly in xo,
U, L) =2z(x), U, —L)=2(x)

Ue. ., =

define .
4.7) %L(U)=/ [/ LITU R+ W(U) b — e de

—L —00
ThenU_ € ./}, by Theorem 4.1, and for any e .#f,, 0 < # (U) =
E.(U) — 2eL
Defineot, := inf{#L(U) : U € ./ ,}. Since.Z;, C ./, we clearly
haveaiz > o012 > 0.
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Lemma 4.2 £ (UL) = 0T ,.

Proof. Suppose not, and there exislse .///;tz such that% (U) < & (U,) (or
equivalently,E (U) < E_(UL).) Let « = min{E_(U.) — E_(U), 1}. Then, there
existsM > 0 sufficiently large such that:

(4.8) ELm(Uim) —EL(U) > 3»
(4.9) ELmU)-E m—1(U) < g»
1
(4.10) U(—M +1,%)—a < 4\/(1+)\)L\/a’
L 1ou 2 o
(4.11) [L ax2(—M +1%)| dx < 8"

Statements (4.8)—(4.10) follow trivially from the definition of the cla%'l-yz.
We derive (4.11) from Fubini’s Theorem and the fact that

2

U
/ 0 (X1, %) dx < E (U) < +cc.
T | 9%
Let
5 U(X), if |X1‘ <M-1,xeT,
U= UM+1Lx)[x+M]+a—-M +1—x], if =M <x3 <—-M +1,
Uovy=v0U, ifM—-1<x <M.

ThenU €./}, and
E.m(U) — ELm(U)| < [ELm(U) — ELp—1(V)]
L —-M au
+/ / |U(—M +17x2)—a|2+ (=M + 1, %)[x1 + M]
—LJ-M+1 19)0)

+2\|U (=M + 1, %) — a?[x1 + M ]2 dx dx;

)

o 1
<Y s@L+20L <
S @2 S

In conclusion,
~ «
E.mU) <E mU)+ 5 < ELm(ULm),

which contradicts the fact thdl, y minimizesE_ y in //6'1'2" This concludes
the proof of Lemma 4.2.

¢

SinceU_ may be trivially extended t@®? as an element of#2, », (and at the
same time an element 076'1‘2 for all L’ > L,) we may immediately conclude
thatof, is decreasing i andof, > o1, for all L.
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Lemma 4.3

lim U]ITZ =012
L—oo ?

Proof. We show that ifU € .#;, is chosen close to the infimum &f, then
we can construct a test functiah € . Z; , for L large with essentially the same
energyé, .

To this end, given any > 0 there exist¥) € .#4; > suchthat;, < & (U) <
o12+5. In particular, since the integradU (-, x2))—e > 0 there exist sequences
LE — +o0 such thatF (U (-, LF)) — e — 0. SetvF (%) = U (xq, L¥) € .%p. By
Lemma 2.4 we have:

vn =z, vy —2Z inHINL®(R).

Choosen sufficiently large such that:

4.12 suplvr —z| <1, suplv, —z| <1,
Plvn Plvn
X1 €l X1 €R
(4.13) / (Jop)? = |z|?) dx| < Z
(4.14) ’/ (Jon |7 = |2/?) dx| < Z
g g

4.15 r_ - _

(4.15) v — zall 2wy < 45 lvn — 22 < 45

where we denote

Bo = [[VW (212, | VW () |2 + B + 1,
1= sup{[D2W(Q)| : £ € B2, [¢] < ||z1|oo + [|2Z2]| o0 + 1}

By translatingU in the x,-coordinate we may assume thgt= —L, = L.
Now defineV e .t via:

21(X1), if X0 >L+1;
(%)% — L]+ of(x)[L+1—x], ifL<x<L+1;
V(x) = { U (X, %), if —L<x <L
(x)[—% — L]+ vy (xp)[L+1+%x], if -L—1<x < —L;
Zz(Xj_), if o< —L—1.

We will compare the value o&.1(V) = & (V) with that of & (U). First, we
estimate from above:

1 [e’e} L+1 .
=, [ [ ke - U+ el + 1l - 200 de b
—oo JL

1 L+1 oo .
@16) < 5 [ [ Iriod (i) - a6 dude < g
L —00

where we have used convexity and (4.13). From (4.16) we immediately have:
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| -—1/°O/L+lz(x) )2 dxodxy <
2-—2 o 1\AL Un\ X1 2 U 16.

Expanding in Taylor’s series,

) L+1
I3 = / W(V) — W(z1) dx dxq

—oo JL

IN

e’} L+1
/ / (IVW(@)| |V — z2| + B1]V — 21|2) dxe dxg
—o0 JL

IN

&
IVW(21)||2]|vp — 1|2 + Ballvg — za]l5 < 4

Taking into account that

L+1 e’}
ly:= / (/ ;|Z1'(X1)|2 +W(z) dxq — e) dx =0,
L

— 00
we have:

L+1
| Ve e =i <
L
Analogous computations ovet € [-L — 1, —L] together with the fact that
V =U for x; € [~L,L] then yield Z+1(V) — £ (U) < ZLa(V) — 4L(U) < 3,
and hence we have:

ofS < (V) S Z(U)+, Sorate.

Sincee > 0 is arbitrary, the lemma is proven.

¢

5 Passing to the limit

Before presenting the proof of Theorem 3.3, we address the important role of
the symmetry assumptiod o v = v o U imposed on solutions (and on the
potentialW). In particular, the symmetry allows us to fix a horizontal center for
the strip solutions, which will allow us to show that the limit function satisfies the
asymptotic conditions (1.4) and (1.5). Here we drop the symmetry assumption
and give an example of a minimizing sequence in which the “sliding” of an
interior layer leads us to a trivial limit. We ldf; be the minimizer of#, in
A% ,, as derived in the previous section, and set

z1(x), if o >L+L3;
pal (X1*L+LE?X2), if L<x <L+L%
V|_ = UL(X]_ — L,Xz), if |X2‘ < L;

L2
Zz(Xl), if Xp < —L— LS.

Z (xl - L+L3+X2) . if—L—L3<x < —L;



Stationary layered solutions iR? for an Allen—Cahn system 377

Then,V, € [HL.NCO(R?)]?, and satisfies the desired asymptotic conditions (1.5)—
(1.7). (Except for the fact that it is not symmetrigsV # V| o+, V. would belong

to .7/, ,.) Moreover, an easy computation coupled with Lemma 4.3 shows that
& (VL) — o012 asL — oo. Neverthelessy, — a uniformly on compact subsets

of R.

Note that such minimizing sequences can still be “normalized” by a horizon-
tal translation, and/, (x) = V_(x1 + L, %) will converge to a nontrivial solution
satisfying the correct asymptotic conditions. We conjecture that the above exam-
ple gives the only possible way in which the sequeblgecan fail to converge,
and hence horizontal translation of tbie will yield a solution with heteroclinic
conditions agx| — oo. However, this remains an open question.

We may now prove Theorem 3.3. First, by the symmetry,ofve have
v 0 z1(0) =2z 0 (0) =2(0).

Writing z = (z 1,z 2), i = 1,2 in components, we conclude that the first com-
ponent,z ; = 0,1 = 1,2. Furthermore, since the curves do not intersect, (see
Proposition 2.3,) we also know that »(0) # 2 »(0). Hence we may choose

& € R so thaté € (z1,2(0), 2,2(0)) but the point (0¢) does not lie on any of the
trajectoriesz,, a = 1,...,k. Then, for anyL, there existd, € R with |t | <L

and

(5.1) UL(0,t) = (0,6).

Next, we define
V(X1 X2) = UL (X1, X2 + 1), XeT -1,

whereT, —t. = {x € R?: (x4,X +1) € T.}. By the local uniform Schauder
estimate (see (4.2)), we may extract a sequénce> oo such that

VL, (X) — V(X) in C2¥(K),

for any compact seK C .72, where the set2 is the limit.22 = lim,_, [T, —
t.,]. Clearly V satisfies (1.1) in#2, and

(5.2) V(0) =(0,9).

We now consider the three cases which are possible: .¢2)= R?; (2)
S =12 =X % > —rx}, with somex finite; (3) .22 =12 ={x: x < s},
with somex finite.

5.1 Case (1),22 = R?

Note first that for anyM > O fixed, Ty C T., — t., for all n large enough.
Writing L = L,,, we have:
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L —M -+t
(63) Ew(V) < EL(UL) - / F (UL (- x2) dbte — / F(UL( %) do
M+t —L
< of,+2eL—2e(L — M) =07, +2eM.

LettingL = L, — o0,
(5.4) Em(V) <012+ 2eM,

and lettingM — oo we have
(5.5) & (V) < o1
It remains to prove thaV € .Z; ».

Lemma 5.1 V(X3,%) — aas x — —oo and V(X3,x) — b as x — +oo,
uniformly in %.

Proof. First, we claim thatW(V (x1,%2)) — 0 as|x;| — oo for each fixedxs.
Indeed, if this were not the case, there would exist 0 and a sequence of
points x" = (xJ!,x9), with x| — oo andx{ fixed, such thatW(V (x")) > 6.
SinceV satisfies the uniform Schauder estimate (4.2) we may in fact conclude
thatW(V (x)) > ¢/2 for allx € B,(x,), n = 1,2, ..., for some fixedp > 0. From

(5.4) we then obtain the contradiction:

oo
012 +2eM > Ey(V) > Y / WV (1)) = +oc.
n=1 /Bp(x")

Consequently, the values(xs, xo) accumulate at the (finite set of) zeros of
W asx; — —oo. Consider two sequenced = (xI',xJ), y" = (y,y9), with
XMyl — —oco and x?,y9 fixed, andV (x") — c1, V(Y") — ¢z, W(cy) = 0 =
W(cp). Supposer; # cz. By the uniform continuity ofV and hypothesis (1.9),
on each line segment connecting the poitsandy" there must exists a point
&N = (&7, 85) with W(V (&) > ¢ for some fixeds > 0. Clearly¢] — —o0, and
the argument of the above paragraph again leads to a contradiction of the energy
bound (5.4). Henceg; = ¢, and the limit setV (xg, X2) asx; — —oo IS unique
there existsc with W(c) = 0 such tha¥ (x3, X)) — ¢ asx; — —oo for all fixed
Xo.

Next, we show that necessariy= a. By hypothesis (1.14) there exisfs > 0
such that
(5.6) €ab + o < €ac + €cp

holds for every zera@ of W different froma or b. Fix § < 6%’0 with Cy as in
Lemma 2.1. By a diagonal procedure, there exists a sequéred—x;', n) with
X — +oo and |V (x") —c| < 6/4. Using the Schauder estimate (4.2) there exists

p > 0 so that:
6
V) —el <, X EURQy(x"),

with cubesQ,(x") = [-X{' — p, —X{ + p] x [n — p,n + p]. Choose an integeX
with
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N > 301,/Bop, (015=0%, L=1)

and fix a compact sé€ with UN_,Q,(x") C K. ForL > 1 sufficiently large we
haveK c T, and (by the uniform convergendg — V on compact sets)

(5.7) IVL(X) —¢| < 6, X € UN-1Q,(xM).

By Theorem 4.1V, (X, X2) — aasx; — —oo uniformly in x;, so there exists
R > 0 such that
VL(x) —a] < 6 for all x; < —R,

and by symmetry
M(xX)—bl <6  forallx; >R.

Take first the case where# b. Applying Lemma 2.1 to the intervals{R, —x{']
and [-x{, R] we obtain the following lower bounds holding in horizontal strips,
X2 € UN, [N — p,n +p]:

X oV, 2 1
+W(VL(X1, X)) dX > €ac — Cod > €ac — . Fo,
R OX1 6
+R 2
oV, 1
/ HlH WL, X)) A > ey — Cod > €ac — - Do
—xn 8x1 6

In particular, this implies the following contradiction,

L o
oV,
U%’z S 0'1‘72 = /L (/ ‘ 0%
ZN: /“*P ( /R VL
n=1 vN=p -R

8x1
1 4 1
2pN |€ac +€h — €ap — 350 > 3Nﬂo > 407 5,

2
+ W (VL (X1, X2)) Xm) — epdx

v

2
+W(VL(X1, X2)) Xm) —epdx

%

by the choice ofN. Hence, the limit value o¥ asx; — —oo must be eithea
or b. If the limit were actuallyb, we note that when (5.7) holds with= b, then
we have its reflection,

IVL(X) —a] < é, X € UNL1Q,(—x").
In other words, in each strig € [n— p, n+p] we observehreetransitions inv,,

fromatobin [-R, —x{] and [x/', R] and fromb to a in [—x], X{']. Estimating
the energy as above we obtain:

N n+p R
1 L
012 ‘71,2Z§ / /
=1 /n—p \J-R

1
2pN (3eqp — ) Bo) = 2N g > 607 5,

oV,
8X1

Y

2
+ W (VL (X1, %2)) dxq — %b) dx

v
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again a contradiction. In conclusioW, — a asx; — —oo.

By symmetry we also hav¥ — b asx; — +oo, and henceV (-, X2) € %y
for eachx,.

Finally, we show that this convergence is uniformxn Suppose not: by
familiar arguments there would exist constants > 0 and a sequence” =
(X7, x3) with X' — —oo and|x3| — +oo such that

V(x)—al > 6 for all x € Q,(x").

Let Ry > 0 be defined by:
|lz(x)) — a| < g for all x; < —Ry andz € &.

Then, if n is large andx; € [x§ — p, X3 + p] we have

6
12(-) = V (-, %) |Loo(m) > o
By Lemma 2.4 there exists > 0 such thatF(V(-,x2)) > ey + ¢ for each
X2 € [x] — p, x5 + p], n sufficiently large. However this contradicts the energy
bound (5.5), and hence the proof is complete.

&

Next we show thaV attains the correct limits ag — +oo. Fory € R, let
VY =V (xg, X2 +y). SinceVY satisfies the same uniform Schauder estimate as
we may extract subsequencgs — oo with V% — v* in C2(K) for every
compactK.

Lemma 5.2 v* does not depend onpxv® = vE(xy).

Proof. For each fixedk, V (X1, %2) gives an admissible function of clasgy, in
X1, and hence:

M
(5.8) /_M F(V (-, %)) dx > 2eM.

From (5.4),

M +00
ov

o12t2eM > Ey(V =/ / ’
1,2 M( ) vt 0)(2

and hence by applying (5.8) and passing to the lihit> co we obtain:

(5.9) /m 2

We now argue as in Lemma 4.5 of [3] to conclude that

2 M
dhe o + / F(V (%) e,
M

2

V
0 dx dxe < op 2.

6xz

(5.10) sup v

X1,X2) — 0O as|xp| — +oo.
UP| o, (X1, %2) X2
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Indeed, suppose instead that there exists a sequence of REM&n 1, X%n 2) €
2 with [Xn,2| — +oo and ann > 0 such thatVy,|(Xa,1, % 2) > 7 > 0. Invoking
again the uniformC?© estimate satisfied by, we can actually conclude that
there exists > 0 (independent oh) so that

ov
’ 8x2

n

CEM

forall [x —X,| <.

But clearly this contradicts the square integrabilityg%‘, (5.9), and hence (5.10)
must hold.
Finally, if we fix x and write

+ yi

ov* 0 oV ov
o, 9= [ oy, 090 = o (L) |+ 0+ ),

OX 0

asn — oo the first term tends to zero uniformly on compact sets, while the
. +
second vanishes by (5.10), and we obt%tg (x)=0.
¢
We observe thata priori, V (X1, X2) could have different subsequential limits
asx, — Foo. This will not be the case, however, as we will show later on that
V must tend to the given functiors, z, asx, — +oo.

By Lemma 5.1p% € .%,. In fact they must beninimizers
Lemma 5.3 v* achievemin, ¢, F(v). (i.e.,v* € Z.)
Proof. Suppose the contrary; then there exist sequepges> +oo such that

sup |V (xa, yq') — 2(xa)| > 260

X1€R
for some fixedéy > 0 and for all elementg € Z. By the uniform Schauder
estimate satisfied by we may in fact obtain a constant radius- 0 (independent
of n) such that

sup |V (X1, %) — z(x1)| > 8o for all x, € R with [x, — yF| <.
X €R

By Lemma 5.3, we conclude th&(V (-, y)) > e+ <o for somesg > 0 inde-
pendent ofn. From this lower bound we would then conclude tHagV ) = +oo,
which contradicts (5.5).

¢

We next show that minimality forces the limit to tend to the “correct”
curves |X;| — oo, v* =z andv~ = z. First we eliminate the possibility
that v* = 2. Combining the fact thaV (0) = (0, £) lies away from any of the
trajectories inZ, the uniformC?® estimate oV, and Lemma 2.4, we conclude
that there exisb, p > 0 such that

(5.11) FVL(, %)) >e+4d forall [x| < p.
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Now, if indeedv* = 2, then (by the local uniform convergenceVb{xy, x, +
Yn) as the subsequengg — oo0) for anye > 0 andM > O there exists
Yo > M + 2p such that

(5.12) IV (X, % + o) — 2o(x1)| < ; for all x € [-M,M]2
Hence, ifLg is chosen sufficiently large, then we also have
IVL(X1, %2 +Yo) — 22(x1)| < e forall x € [-M,M]? andL > Lo.
By the definition ofV, we have
M +yo
[ Foacoe) - @) de < o, < o,
—M+yp

In particular, there existg; € [-M +yp, M +yp] such that

1

g
(5.13) 0<FMVL(,y))—e< 2&2.

By fixing M sufficiently large, we then have:

1) g
(5.14) F(WL(,y1) —e< 8 and [IVL(-,y1) — 2[lum) < g
Define a variant ol in [-L —t.,L —t ] by:
. VL(X), ifyr <x<L-—t;
VLX) = ¢ VL(X, yo)[xe —y1 + 1]+ (xa)[yr — x2], ify1 —1<x <y,
2(x1), if —L—t <x<y1—1,

and U (x) = VL (x1, X2 — t) € .45 ,. We will now show that the energy df,
has been reduced below the valueoéfz. Proceeding as in (4.16), we may fix
e > 0 sufficiently small such that:

Y1 .
(5.15) | ::/ (F(VL(, %)) — €) dx < pb.
y1—1
Breaking the integral into its parts and applying (5.11) we obtain:
N y1—1
A) < AU~ [ FVL) - o) detl

—L—t
p
< ok, / (F(VL(, %)) — €) o +
—p
< Ulljz — 2p0 + pb < aiz,

which contradicts the definition off, as the infimum of# over .Z,. In
conclusion, we cannot havé = z. By similar arguments, we may also conclude
thatv— # Z.
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Finally, we must eliminate the possibility that- = z, for somea # i,j.
Exactly as in deriving (5.14) above, we may conclude that for@any O there
exist valuesy, > y; + 2 such that

(5.16) O <FMVL(,Ym) —e<m,  [IVL(,Ym) = Zalleennim <n, m=1,2.

Now we split V_ into two junctions, one connecting to z, and the other
connectingz, to z: DefineV, » on the stripR x [y, —1,L —t.] by:

VL(x), if yo <X <L—1t;

v = .
L2(x) { VL, Y2)[Xe — Yo + 1] + Zo(Xa)ly2 — %], if Y2 —1 <% <VYp,

andVi; on R x [—-L —t,y; + 1] by:

U o= d eyl +ys =X+ () — il iy <xa <y + L
BT VL, %2) if —L—-t <x<y1—1

By shifting in thex,-direction, we setU m(x) = Vi m(X1, %2 — Tum), m = 1,2,
where T, , are chosen such tha&l, ,, are now defined on symmetric strips,
B % [~Lm, L], m=1,2.

Following the same reasoning as in (4.16) and (5.15), givencany0 we
may choose; > 0 sufficiently small such that:

yi+l R e
I := / (F(VLa(, %)) —e) dxe < o
Y1

Y2 R
Iy = / (F(VL72(-,X2)) — e) dx < ;

y2—1

We may then estimatei2 from below:

L - Y1 ® 1
012 = ;)(L(UL) > / [/ Z‘VVL,l

2+ W (V1) dxg — e} dx

—L—t —00
L—t o0 1
+/ {/ > [VVL22 + W (VL 2) dxy — e] dx
Y2 —00

8L1(0L1) + ng(OLz) —li—1

Ly Lo
UZ,oz a,l

Y

to—€20240t10q1— €.
Noting thate > O is arbitrary, we take the limit — oo in (5.16) to conclude:
(5.17) 012 2 020 % 0a,1-

The reverse inequality to (5.17) is elementary: Consider the respective min-
imizersU, ; and U » to & in ~//55,a and.,//égﬁ1 respeEtiver, and glue them
together along their common boundary valiieto form U, € .///Jffz. Then,

012 < 055 < #(UL) = ZL(ULy) + EL(UL2) = 05, + 05 1.

Passing to the limit — co, we then have
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012 =020 T 0q1,

which contradicts the hypothesis (3.3). In conclusiohz= z and identical argu-
ments show that~ = z. Together with Lemma 5.1 this implies thdte . 7 »
and we have finished the proof of (3.3) in case (#),= k.

5.2 Case (2),22 = R?*

From the elliptic estimate (4.2) on the strip solutidgis, we may conclude that
there exists/ * with V| — V* in C%(K) for any compacK C R%*. Moreover,
on the boundary oR?*, V *(x;, —k) = zx(X). Repeating the steps (5.3), (5.4) and
(5.5) we obtain:

/ U 2|VV+\2+W(V+)dx1—e dx < o1
Define

V+(X15X2)a if X2 Z —K;
2(x1), if Xo < —~k.

V (X1, X2) = {

Arguing exactly as in case (1) we obtaéhe . #, 5, soV attains the minimum
012 =inf 4, , & and by Proposition 3.% is a smooth solution of the equation
(1.1) in. However, if this were the case th¥, = J would satisfy the (linear)
system,
—AVy, +D2W(V)V,, =0, x € R?,
{ Vip(X1,%2) =0, X < —K.

The unique continuation result of N. Garofalo & F. H. Lin, Theorem 4.2 of [9],
then implies thatvy, = 0 in R, and hence case (2) cannot occur. The same
argument eliminates also case (3), and therefore the proof of Theorem 3.3 is
complete.

¢

6 Saddle solutions

By a saddle solution we mean a solutidrfxy, x,) of (1.1) inR? with asymptotic
conditions agx| — oo,

(6.2) Nim U (xa, %) =2(x),
(6.2) m U (x4, %) =2(—x),
(6.3) im U (xi, %) = 2(%),

(6.4) m U (%) = 2(—%),
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wherez is a (one-dimensional) heteroclinic solution of (1.1). We make the same
hypotheses (1.8)—(1.11) on the potenthalas for heteroclinic solutions, but now
require that no zero dfV may lie on the axis of symmetry:

(6.5) W(0,&) #0 forall & e R,

For any two zerop, g of W, we recall thaie,q denotes the minimum enerdy
of a heteroclinic trajectory connecting the wellsandq, and Zpq the collection
of minimizing paths (normalized by symmetg(—t) =~ o z(t)) which connect
p tog. Let

e:=min{ey : p,q zeros ofW with q = —p.}

We prove the following:

Theorem 6.1 Supposen, b = —a are zeros of W with g = e, and thatZ,,
has only finitely many elements. Then there exists a solution of (1.1) satisfying the
asymptotic saddle conditions (6.1)—(6.4) for some Z ;.

As the proof of Theorem 6.1 is very similar to the proofs of Theorem 3.3 above
and Theorem 1.1 of [3] we only provide a brief sketch of the essential elements,
and leave certain details to the interested reader.

As for the heteroclinic solutions studied earlier we will impose symmetries
on our admissible functions in order to avoid the losses of compactness due to
translation invariance. First, define the following symmetries of the square:

Y€1, &) = (€1, =€), V(€1 &) = (&1, &), 7'(61.&) = (&, &)

Then, define the class of admissible functions

i U € (Hgo(r2)" N (Coe2)°
AC=1 Uoy(x)=yoU(x), Uor/(x)=yoU(x), Uory”(x)=U(x),
andU satisfies (6.1)—(6.4) dg| — oc.

The saddle solutions we seek necessarily have infinite energg?pmand
unlike the heteroclinic solutions (which connect zerodhdfon each horizontal
slice) we see no obvious way to “renormalize” the energy to make it finite.
Nevertheless, we will proceed as in the proof of Theorem 3.3, solving boundary-
value problems for (1.1) in squares, and then passing to a limit as the length of
the sides tends to infinity. To this end, we denoteQyy= [—L, L]? the centered
square, and

i = U e (HAQU) : Uon()=y0U(), Uoy(x)=yoUX),
) U ov"(x) =U(x), andU (x,L) =z (x1), U(L,%2) = z.(x2)

wherez (t) = z(t)n(t/L) with smooth cut-offy(t) satisfyingn(t) = 1 for |t| < 3
andn(t) = 0 for |t| > 1. By symmetry, it suffices to do all computations in the
upper triangle ofQ., defined by:

Te={(x1,%2) 1 0<% <L, X <X <X}
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Consider first the minimization problem in the squ&ie

(6.6) min E_(u), E._(u)=/ (1|Vu|2+W(u)) dxg dx.
ue. o \2
The existence of a minimizad,, satisfying equation (1.1) i@_ and the given
boundary conditions 08Q, is standard. In fact, by the uniforepriori estimate
(4.2) satisfied by all solution&), of these boundary-value problems we may
extract a convergent subsequengie— U in C%*(K) for any compact region
K. U will solve (1.1) inIk?; the difficulty is to verify the asymptotic conditions
(6.1)—(6.4). As in the heteroclinic case, this will be accomplished by means of
energy estimates.

We obtain a simple but powerful estimate on the minimum en&dy, ) as
follows:

Lemma 6.2 There exists a constant;Gndependent of L such that &), ) <
del+ C,.

This follows from a direct calculation of the energy of a test functiorDefine
p first on T\ T1 by p(X) = 2-5,(%1) if X2 > 1 andx; € [—Xg,X%2]. Then we
obtain its values orQ_ \ Qi by reflections,p(I"(x)) = yp(x) for I' = ~,7/,
and (" (x)) = ¢(x). Theny may be extended as a smooth symmetric function
inside the squar€;. The computation is nearly identical to Lemma 4.1 of [3],
and hence is omitted here.

In order to compare the solutiot$ for different values oL, we must fix a
squareQy and estimate the enerdgy (UL) with M fixed. To do this we require
a lower bound on the energy as well. For the heteroclinic problem above, we
were able to obtain such a lower bound in Proposition 3.1, by using the fact that
each horizontal restrictiob (-, x2) is an admissible function for the minimization
problem onRR, and hence has its one-dimensional endfgipounded below by
e. The difference in the saddle geometry is that the horizontal lines making up
the triangleT. now have their endpoints on the diagonals of the sq@reand
hence we cannot control the boundary values on these (finite) intervals. In order
to overcome this geometrical problem we derive a lower bound on the energy
based on solutions of Neumann boundary-value problems (see [3].) Define

L1
N = min{/_L [2|z’(t)2+W(z)} dt: ze HY([-L,L]), z(-t) :ron(t)}.

Standard arguments show ttety is attained by one-dimensional solutions of
(1.1) on F-L, L] with Neumann boundary conditions ar= +L. Clearlye_ y < e,
and it follows from Corollary 3.4 of [3] (and the fact that no zeroWwflies on
the axis of symmetry) that

e—ea N < Cexp{—vL},

for positive constant€, v. From this estimate we may obtain a lower bound on
the energy in the annular regid \ Qu, 0 <M < L:
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L X2
/ ﬁvu |2+W(U)} dx > 4/ / 1’8U
QL\Qm 2 M J—x 2{0x

M
4/ (e — Cexp{—vxz}) dx
L
de(L — M) — Gy,

2

+W(U)| dxg dx

%

(6.7)

V

for a constantC, independent of., M.
Thanks to the lower bound (6.7), we may now obtain a sharper upper bound
on the minimizerdJ,, in terms of the energiy with M < L:

Em (UL) < 4eM +Cy,

with constantC, independent of, M, and passing to the limit ds — oo, we
have:

From the bound (6.8) we may now argue as in Lemma 5.2 above (or Lemma 4.6
of [3]) to show thatU (x;, Xo) — v*(X1) asx, — +oc. Indeed, by the lower bound

(6.7) we have
/ 1 ‘6U
Qum 2 8X1

On the other hand, the full energy @\ is bounded abovegy (U) < 4eM +C;,
by Lemma 6.2. Hence,
A

with C3 independent oM. Passing to the limit abl — oo,

J.

Now we may follow the steps of Lemma 5.2 to conclude that

2
+W(U )] dx > 4eM — C,.

2
dx < C3

ou
8X2

2

ou dx < C3 < .

8X2

lim sup =0.

Xp—+00 X1

aXZ

(See also Lemma 4.6 of [3].) La#iY(x) = U (X, %2 +¥y). Then for any given
sequencey, tn With y, — oo, there is a subsequence, which we still denote by
{Yn}n, such thaty¥ converges uniformly in any compact setR4 to a function
v(X1) asyn — oo.

Following the argument in the first paragraph of the proof of Lemma 5.1 we
may conclude that must connect zeros O asx; — +oo. Since no zero ofV
lies on the axis of symmetry betweanandb, and sincev is itself symmetric,
it must join a symmetric pair of minima, sgyandq = —p. By hypothesisgy
is minimal over all such symmetric pairs, sg, > €ap. If the strict inequality
F(v) > eap were to hold, then let = ;(F(v) — €a) and chooséM; with
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g
Co’
and constan€y as in Lemma 2.1. For any constawit > 0, there existyy such
that

[006) U] < 40
Then, from Lemma 2.1 we obtain the following lower bound:

U
C > / < 0
D TYM +M \TyM

8X1
> M(F(v) — e —ep) > Me.

SinceM > 0 is arbitrary, this contradicts the upper bound obtained in The-
orem 6.2. Henceyp is a minimizer of F among curves connecting, q with
F(v) = €yq = €ap.

To show thatv must in fact connech, b, we use an argument similar to the
lower bound of Proposition 3.1 or Lemma 4.5 of [3]. L&t> 0 be fixed with
6 < §||v—z||oo for all z € Z,p,. By the convergenct, — U, for everyM > 0
there existd. such that

lu(=My) — pf* < 8

VX € [-M1,Mq] X [ym,ym +M] C Ty 4m-

2
+W(U )) dx — exxM

1)
[UL(X1, ym) — 0| < 8

for all [x;] < M and someyy € (M,L). On the other handJ, (x;,L) = z(xy)

at x, = L, soU_(-,x2) must eventually exit a neighborhood of then enter a
neighborhood of some € Z,,. As in the proof of Proposition 3.1, there exist
y& andyg with M <yl <vyg <L,z € Zap, andy > 0 (independent of, M)
such that:

5 5
1y 2y
(6.9) \Iﬂgﬁ [UL(X1, Y1) — v(X)| < 4 \XT% |UL(X1, ym) — 2(¥)| < 4

X2 1
(6.10)
2

oU,
8X1

2
+W(UL)> dxg > e+, VX2 € (Y, Yir)-

(The inequality (6.10) rests on a finite-interval version of Lemma 2.4. See Propo-
sition 3.9 of [3].)
We may now estimate the energy from below:

U, |2
C > / <’ 5 - +W(UL)> dxi — €an(Yi — Yin)
T Ty S
1]0U.|?
>y fy&ﬂ)+/ 2’8xL dx; dx
KA T
M1 au|?
> 2 1 L
> (Y yM)+/_M /ygﬂ 2‘8)(2 dxo dxg
5 2M
>y — Ym) +
MM ayE v
> 6/2uM.
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[Note that the integral o[f%ﬁfzL |? is estimated as in (3.2).] Sindé is arbitrary, we
obtain a contradiction with Theorem 6.2. We conclude that .%,, and since
F (v) = eap moreovery € Zyp.

It remains to show that the limit functiomis unique (and hence independent
of the choice of a subsequenge — co.) By hypothesis, the set of minimizers
Zap has only finitely many elements, ..., zy, and hence we may conclude
that

§=infz — 3] > O.
i

ChooseM > 0 large enough such that jif |z —z [|Le(—m,m) > 6/2. If U (X1, X2)
were to have distinct limitz,Z € &5, along subsequences , X2 n — +oo,
then we could find another subsequeyge— +oo (yn lying betweenx, ,, %2 n)
with ||U (-, ¥n) — Z [|Le(—m,m) > 6/4 for eachi = 1,...,N. But, repeating the
above arguments with the sequengewould then yield a contradiction, as a
further subsequencH (x4, yn) would then converge to an element &, in
L>e(—=M,M).

In conclusion, lin, .+~ U (X1, X2) = z(x1). Finally, by repeating the analysis
of Theorem 4.7 of [3] we may prove that the above limitusiform in x;.
By symmetry of the solutiodd we may conclude that the corresponding limit
conditions (6.2)—(6.4) are also satisfied, ands the desired saddle solution.

Remark 6.3Note that if Z,, consists of a single trajector(t) the above con-
struction may be made without imposing symmetry with respect to the diagonal
of the squarey”. Generally, ify”-invariance is not imposed on the admissible
class.7¢ it is possible thatU tends to distinct minimizing curves in differ-
ent directions:U (X1, %) — z3(£X1) asxo — £oo but U (X1, X)) — z(+X) as

X1 — oo With 7, 2z, € Ly different minimizing curves foF in .%p.
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