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Abstract. We study entire solutions onR2 of the elliptic system−∆U +
∇W(u) = 0 whereW : R2 → R

2 is a multiple-well potential. We seek solu-
tions U (x1, x2) which are “heteroclinic,” in two senses: for each fixedx2 ∈ R
they connect (atx1 = ±∞) a pair of constant global minima ofW, and they con-
nect a pair of distinct one dimensional stationary wave solutions whenx2 → ±∞.
These solutions describe the local structure of solutions to a reaction-diffusion
system near a smooth phase boundary curve. The existence of these heteroclinic
solutions demonstrates an unexpected difference between the scalar and vector
valued Allen–Cahn equations, namely that in the vectorial case the transition pro-
files may vary tangentially along the interface. We also consider entire stationary
solutions with a “saddle” geometry, which describe the structure of solutions
near a crossing point of smooth interfaces.

1 Introduction

In this paper we study entire solutionsU (x) on R2 to the semilinear elliptic
system,

−∆U +∇W(U ) = 0 x = (x1, x2) ∈ R2,(1.1)

where W : R2 → R is a multiple-well potential:W(ξ) ≥ 0 attains its global
minimumW(ci ) = 0 at a finite number of vectorsc1, . . . , cp. In particular, we seek
solutionsU which satisfy certain asymptotic conditions imposed for|x| → ∞.

Equation (1.1) arises in the local asymptotic analysis of the reaction-diffusion
system,

∂V
∂t

= ε2∆V −∇W(V ), x ∈ Ω,(1.2)

? Supported by an NSERC (Canada) Research grant.



360 S. Alama et al.

for Ω ⊂ R2 a domain. Formal analysis (see Rubinstein, Sternberg & Keller [16],
Bronsard & Reitich [4]) suggests that asε → 0+ solutions of (1.2) tend almost
everywhere to the minima ofW, introducing sharp phase boundaries separating
these regions. Equation (1.1) then appears as the first term in the inner expansion
about a point lying on the interface.

Intuitively, one might expect that the local behavior of the solution to (1.2)
near a smooth point of the interface should resemble that of the scalar Allen-Cahn
equation, since locally there are only two phases involved. To be more precise,
connecting each pair of minima ofW there are one dimensional stationary waves
(heteroclinics), and these give special solutions to (1.1) which make the transi-
tion between the two phases in the direction orthogonal to the (smooth) phase
boundary. However, a more careful analysis of the one dimensional stationary
waves reveals a significant difference between the vector-valued equation (1.2)
and its scalar version, even along the smooth portion of the interfaces. Namely,
there might be several distinct stationary waves connecting a single pair of min-
ima, and in that case it might be possible that the profile of the solution vary
tangentially along the transition surface, changing gradually from one stationary
wave-form to another along the interface. Expanding such a solution in a neigh-
borhood of the interface, we would see (to first order) a solution to the elliptic
system (1.1) inR2 which converges to two different one dimensional stationary
waves inx1 as x2 → ±∞. We call these special solutions to (1.1)heteroclinic
solutionsin analogy with the classical use of this term in dynamical systems, but
in one dimension higher.

We note that in the case whereW has three global minima, all three phases
may be present in some neighborhood, forcing the interfaces to join at a triple
junction. Near such a point the interfaces are no longer smooth, and the local
behavior of the solution to (1.2) should be described by athree layered solution
to (1.1) inR2, that is it should tend toward each of the three constant minima in a
sector of the plane, and towards one-dimensional stationary waves (which connect
these minima) across each sector. In [3], Bronsard, Gui & Schatzman established
rigorously the existence of such triple–layered solutions inR

2 for (1.1) with a
triple-well potentialW having the symmetry of an equilateral triangle.

To present the situation more precisely, we need to consider one-dimensional
stationary wavesolutions associated to (1.1). Fix two distinct zeros ofW, vectors
a, b ∈ R2. For vector-valued functionsz ∈ [H 1

loc(R)]2 with z(t) → a ast → −∞
andz(t) → b as t → +∞, define the energy

F (z) =
∫ ∞

−∞

{
1
2
|z′(t)|2 + W(z(t))

}
dt.(1.3)

Standard arguments show that (under reasonable assumptions onW— see below)
F attains its infimum in this class at a heteroclinic trajectory connectinga to
b. We assume thatW is chosen so that the minimizer isnot unique(modulo
translations int), but consists of a finite numberk ≥ 2 of geometrically distinct
trajectories,z1(t), . . . , zk(t). We choose any two of these elementsz1, z2, and pose
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the following problem: find a two-dimensional heteroclinic solutionU (x1, x2) to
(1.1) with conditions imposed as|x| → ∞,

U (x1, x2) → a asx1 → −∞, uniformly in x2;(1.4)

U (x1, x2) → b asx1 → +∞, uniformly in x2;(1.5)

U (x1, x2) → z1(x1) asx2 → +∞, uniformly in x1;(1.6)

U (x1, x2) → z2(x1) asx2 → −∞, uniformly in x1.(1.7)

In order to describe our results we first introduce our hypotheses on the
potential W. First, W is smooth, withp non-degenerate global minima, and
grows rapidly to infinity as|ξ| → ∞:

W ∈ C2(R2), W(ci ) = 0, W(ξ) > 0, ξ /= ci , i = 1, . . . , p;(1.8)

There existsλ > 0 such thatD2W(ci ) ≥ λI , i = 1, . . . , p;(1.9)

∇W(ξ) · ξ ≥ 0 for |ξ| ≥ R0, someR0 > 1.(1.10)

We must also assume thatW is symmetric about the perpendicular bisector of the
segment connecting the vectorsa, b. Without loss of generality, we may assume
that the pointsb = (b, 0) = −a lie on the horizontal axis in (U1,U2)-space and
b > 0. With this choice of variables, we assume:

W(γ(ξ)) = W(ξ), whereγ(ξ1, ξ2) = (−ξ1, ξ2).(1.11)

Note, however, that we donot need to impose symmetry in theξ2-direction. The
symmetry hypothesis (1.11) is a technical assumption which we use to eliminate
loss of compactness via translations in thex1-direction. Without symmetry we
cannot verify that our minimizing sequences (even after suitable translation)
attain the desired asymptotic conditions (1.4)–(1.7). Although we believe that
this restriction is only technical, we do not know if this problem presents some
new and unfamiliar kind of loss of compactness. (See the discussion in Sect. 5.)

We define an admissible set for the energyF (z) defined in (1.3),

Sab := {z(t) = (z1(t), z2(t)) ∈ (H 1
loc(R)

)2
: lim

t→−∞ z(t) = a,(1.12)

lim
t→+∞ z(t) = b, z(−t) = (−z1(t), z2(t))}.

Note that symmetry ofz ∈ Sab removes the degeneracy due to the translation
invariance of the functionalF . We denote byeab the minimum energy required
to connect wellsa andb by a symmetric heteroclinic orbit:

eab := min{F (z) : z(t) ∈ Sab}.(1.13)

We remark that the energy-minimizing connecting orbitsz(t) may be identified
with minimizing geodesics in a Riemannian metric determined by the potential
W (see [4], [18].) In this sense, our next hypothesis is a sort of strict triangle
inequality:

eab < eac + ecb, for any zeroc /= a, b of W.(1.14)
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As we will see later, this condition ensures the existence of a one dimensional
stationary wave connecting the minimaa andb, and that the optimal path does
not pass by a third minimum,c. Note that the right-hand side of (1.14) is always
at least as large aseab, so we are merely eliminating the possibility that the two
quantities are in fact equal.

Finally, we may state an explicit theorem in the case whereW admitsexactly
two geometrically distinct energy-minimizing heteroclinic trajectoriesz1(t), z2(t)
which connecta to b. We refer the reader to Theorem 3.3 for the more general
case wherek ≥ 2.

Theorem 1.1 (Casek = 2) Assume that W ,a, b satisfy hypotheses (1.8)–(1.11)
and (1.14). In addition, suppose that F(z) attains its minimum at exactly two
curves z1, z2 ∈ Sab. Then there exists an entire solution U(x1, x2) of (1.1) inR2

satisfying the conditions (1.4)–(1.7).

Although there is a canonical energy associated to the equation (1.1),∫
R2

1
2|∇U |2 + W(U ) dx, the solutions which we seek must necessarily have infi-

nite energy. Motivated by the work of P. Rabinowitz on heteroclinic solutions for
Hamiltonian ODE systems (see [13] and [15],) we show that the heteroclinic so-
lutions of (1.1) may be obtained as global minimizers of a “renormalized” energy
(3.1). However, this energy is not coercive on any natural space, and there is no
obvious way to obtain the heteroclinic solution via the direct method. We obtain
these solutions via approximation: solving boundary-value problems, obtaininga
priori bounds, and passing to the limit, first as the rectangular regions approach
infinite strips and then as the width of the infinite strips tends to infinity. The
global variational framework provides energy estimates which are necessary to
verify that the limiting solution does indeed exhibit the desired asymptotic shape.

To compare our problem with the more familiar scalar case, consider the
typical exampleW0(u) = 1

4(u2 − 1)2, u ∈ R, with with global minima±1.
The family ζ(t) = tanh([t − t0]/

√
2) (t0 ∈ R any constant) describe heteroclinic

trajectories for the ODE
− u′′ + W ′

0(u) = 0.(1.15)

In fact, these solutions minimize the associated energy functional

F0(u) =
∫ ∞

−∞

[
1
2
|u′(t)|2 + W0(u(t))

]
dt

among functionsu ∈ H 1(R) with u(t) → ±1 ast → ±∞, and they are known
to be the only stable equilibria of the corresponding parabolic system in one
dimension (see eg. [5].) In this scalar setting, De Giorgi [7] has conjectured that
any entire solutionu : Rn → R of −∆u + W ′

0(u) = 0 which connects±1 at
x1 = ±∞ is in fact one-dimensional: its level sets are hyperplanes, and by a
suitable rotation ofRn is of the formu(x) = z(x1) for some heteroclinic solution
to (1.15). Modica & Mortola [10] have shown that De Giorgi’s conjecture holds
in dimensionn = 2, but only under the additional hypothesis that the solution’s
level curves be Lipshitz graphs. The higher dimensional case is entirely open,
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although some evidence of the validity of the conjecture is provided in the paper
by Caffarelli, Garofalo & Segala [5]. Our results show that this conjecture does
not generally hold for vector-valued equations of bistable type.

We remark that heteroclinic solutions to PDEs have been considered by oth-
ers, in somewhat different settings. Solutions of semilinear elliptic equations
which are homoclinic to zero were studied by Coti-Zelati & Rabinowitz [6] (for
periodic coefficients) and by Alama & Li [1] (with asymptotic periodicity.) Bates
& Ren [2] have shown the existence of heteroclinic solutions for a high order
scalar equation (1.15) in periodic strip-like domains. Rabinowitz [15] has also
considered solutions of the semilinear scalar equation,

−∆u = g(x, y, u), x ∈ Ω, y ∈ R,(1.16)

in cylindrical domainsΩ×R. Under the hypothesis thatg(x, y, u) is periodic in
y, u, conditions are given in [15] which ensure the existence of solutions which
approach asy → ±∞ different periodic solutions of (1.16).

Finally, in Section 6 we consider “saddle solutions” of equation (1.1) inR
2.

Given a paira, b of minima of W, we seek a solutionU which satisfies

lim
x2→+∞U (x1, x2) = z(x1), lim

x2→−∞
U (x1, x2) = z(−x1),

lim
x1→+∞U (x1, x2) = z(x2), lim

x1→−∞
U (x1, x2) = z(−x2),

for some one-dimensional heteroclinic trajectoryz connectinga to b. Such a
solution describes the local behavior of a solution to the reaction-diffusion system
(1.2) at a point where interfaces cross. The resulting configuration of two phases
alternating around a cross-shaped interface is believed to be highly unstable, as it
represents a singularity in the flow by curvature obtained as the limiting problem
(ε→ 0) for (1.2). Stationary saddle solutions were obtained by [8] for the scalar
Allen-Cahn equation, by means of a sub- and super-solution method, and their
stablility was studied by Schatzman [17]. As is well-known, such monotonicity
techniques are not effective in studying systems of equations, and hence their
result does not extend to our vector-valued equation (1.1). In Sect. 6 we derive
the existence of a saddle solution under similar hypotheses to those listed above
for the heteroclinic case. When restricted to the scalar equation case, our result
improves the existence result in [8]. On the other hand, for the vector equation
case, our result cannot permit a zero ofW to lie on the axis of symmetry between
the chosen zerosa andb, and therefore the existence of saddle solutions for the
three-welled potential of [4], [3] remains an open question.

2 The one dimensional problem

We begin with a brief discussion of the associated one dimensional problem,

− z′′(t) +∇W(z) = 0, lim
t→−∞ z(t) = a, lim

t→+∞ z(t) = b.(2.1)
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In particular, we are interested in those solutions of (2.1) which minimize the
energyF (·) defined in (1.3) in the class of curvesSab (defined in 1.12). Following
[3], we can show that under the conditions (1.8)–(1.11) and (1.14) forW,

eab = inf{F (z) : z ∈ Sab}
is attained, and its minimizers satisfy (2.1). We sketch the proof below, and refer
the reader to more general existence results of Rabinowitz [13], [14].

First we state a basic energy estimate, which will be useful throughout this
paper:

Lemma 2.1 Supposev ∈ [H 1([L1, L2)]2 and |v(±Li )| ≤ R, i = 1, 2. Then,∫ L2

L1

1
2
|v′(t)|2 + W(v) dt ≥ eab − C0

(|v(L1)− a|2 + |v(L2)− b|2)
2

,

where C0 = 1 + 1
3 max{|D2W(ξ)| : |ξ| ≤ R + |a|}.

The proof of Lemma 2.1 is similar to that of Lemma 2.6 in [3]. We only need
to construct a function

ṽ(t) =


v(t), if L1 ≤ t ≤ L2;
v(L1)(t − L1 + 1) + a(L1 − t), if L1 ≤ t ≤ L1;
v(L2)(L2 + 1− t) + b(t − L2), if L2 ≤ t ≤ L2 + 1;
a, if t < L1 − 1;
b, if t > L2 + 1.

ThenF (ṽ) ≥ eab and Lemma 2.1 follows by straightforward computations.
♦

We now return to the existence of minimizing trajectories forF in Sab. Let

ϕ(t) =


a, if t < −1;
b, if t > 1;
1
2[(b− a)t + (b + a)] if −1≤ t ≤ 1.

Suppose that{vn(t)} ∈ Sab is a minimizing sequence forF (z). By (1.11), (1.10)
we can assume, without loss of generality, that|vn(t)| < R0, ∀t ∈ R and that the
first component ofvn(t) is nonpositive fort ∈ R and vn(t) − ϕ(t) ∈ (H 1(R))2

(see, e.g. [3] for details). Using (1.14) and Lemma 2.1, we know that for every
minimum pointc 6= a, b of W,

|vn(t)− c| ≥ δ > 0, ∀t ∈ R
whenn is large enough, whereδ is a positive constant. By (1.9), we have

W(v) ≥ κmin{|v − a|2, |v − b|2},(2.2)

∀v ∈ {v||v| ≤ R0, |v − c| ≥ δ, for c 6= a, b a zero ofW.}(2.3)

whereκ is a positive constant depending only onW, δ. SinceF (vn) → eab, as
n →∞, the above inequality leads to the boundedness ofvn−ϕ in (H 1(R))2 and
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consequently the weak convergence ofvn−ϕ to v−ϕ in (H 1(R))2. Furthermore,
F (v) ≤ eab and vn(t) converges tov(t) uniformly in t ∈ [−L, L] for any fixed
L. Then |v(t)− c| ≥ δ > 0, ∀t ∈ R wherec 6= a, b is any minimum point ofW.
By symmetry ofv, it is easy to see thatv ∈ Sab. This proves the existence of
minimizer of F (z) in Sab.

We note that if (1.14) isnot assumed, there mightnot exist a minimizer for
F (z) in Sab. Even assuming (1.14) holds, the minimizer may not be unique. We
denote the set of minimizers ofF in Sab by Z = Zab = {z1, . . . , zk} and assume
that there is non-uniqueness:

2≤ Card(Z) = k <∞.(2.4)

Remark 2.2Note that solutions of (2.1) are translation invariant, but the symme-
try condition incorporated inSab fixes a representative. Generically, we expect
the setZ to be finite (see Proposition 2.1 in [3].)

Following are some basic properties of the minimizersz ∈ Z, many of
which are already established in [3].

Proposition 2.3 Assume hypotheses (1.8)–(1.11). Any z∈ Z is a C3 embedded
curve inR2. In addition, the image curves corresponding to distinct elements zi , zj

(i /= j ) are nonintersecting. Moreover, minimizers z exhibit exponential decay:
there exists constants C> 0 andµ > 0 such that

|z(t)− a| + |z′(t)| ≤ C exp{−µt}, t ∈ R.(2.5)

Note that fact that image curve do not intersect themselves or other curves
is a consequence of energy minimization and is not necessarily true for non-
minimizing solutions of (2.1). We remark that the results of Proposition 2.3
hold without the symmetry hypothesis (1.10), with the definitions ofSab andZ
modified appropriately.
Proof. The regularity of minimizersz is standard. Self-intersections may be ruled
out using the fact that eachz is an energy minimizer. Indeed, ifz(t1) = z(t2)
for t1 /= t2 then a new admissible curve ˜z(t) ∈ S may be constructed so that it
excises the loop{z(t) : t1 < t < t2} and has strictly smaller energy. Intersections
between distinct elements ofZ may be ruled out in a similar way. First note
that the symmetry conditionz(−t) = (−z1(t), z2(t)) forces minimizers to cross
the vertical (z1 = 0) axis exactly once, and witht = 0, since otherwisez(t)
would have a self-intersection. Ifz1, z2 ∈ Z cross, we may then assume that
z1(t1) = z2(t2) with t1, t2 ≥ 0, and that the energy ofz1 on [t1,∞) is smaller than
or equal to the energy ofz2 on [t2,∞), i.e.∫ ∞

t1

(
1
2
|z′1(t)|2 + W(z1(t))

)
dt ≤

∫ ∞

t2

(
1
2
|z′2(t)|2 + W(z2(t))

)
dt.

Now we construct a new admissible curve ˜z(t) ∈ Sab by patching:

z̃(t) =

{
z1(t − t2 + t1), if t ≥ t2;
z2(t), if t2 > t ≥ 0;
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andz(−t) = (−z1(t), z2(t)) for t < 0. SinceF (z1) = F (z2) = eab, we have∫ t1

0

(
1
2
|z′1(t)|2 + W(z1(t))

)
dt ≥

∫ t2

0

(
1
2
|z′2(t)|2 + W(z2(t))

)
dt.

Therefore we deriveF (z̃) ≤ eab, and z̃(t) is a minimizer. By regularity of
minimizers, z1 and z2 must have the same derivatives at the cross point. By
the uniqueness of solutions to initial value problems for ordinary differential
equations, we conclude thatz1 andz2 must be identical.

The exponential decay estimate (2.5) is proven in [3].
♦

Our point of view is that a candidateU (x1, x2) for a solution to (1.1) inR2

is, for each fixed value ofx2, an element ofSab, and hence may be compared
with the minimizersz ∈ Z via estimates on the one-dimensional energy values

F (U (·, x2)) =
∫ +∞

−∞

[
1
2

∣∣∣∣∂U
∂x1

∣∣∣∣2 + W(U (x1, x2))

]
dx1.

The following lemma shows that the one-dimensional energy is strongly co-
ercive on the setSab: if the energy of a functionv is close to the minimum, then
it must be close to a minimizer.

Lemma 2.4 For any ε > 0 there existsδ > 0 such that ifv ∈ Sab and F(v) ≤
eab + δ, then there exists zα ∈ Z such that

‖v − zα‖H 1∩L∞(R) < ε.

It suffices to show that ifvn ∈ Sab and limn→∞ F (vn) = eab, then there exists
a subsequence ofvn, which we still denote byvn, andzα ∈ Z such that

‖vn − zα‖H 1∩L∞(R) → 0.

First, we show the convergence inL∞(R).
Claim 1. vn is bounded inL∞(R).

Suppose not, then there existstn such that|vn(tn)| → ∞ asn →∞. By the
continuity ofvn(t) in t and the fact thatvn(t) → a ast → −∞, for n sufficiently
large there existssn < tn such that|vn(sn)| = R0 and |vn(t)| ≥ R0, ∀t ∈ (sn, tn).
By (1.8) and (1.11), we have

W(ξ) ≥ m0, for |ξ| ≥ R0.

wherem0 > 0 is a constant.
Then

F (vn) ≥
∫ tn

sn

1
2
|v′n(t)|2 + W(vn(t))dt

≥
∫ tn

sn

√
m0|v′n(t)|dt ≥ √

m0|vn(tn)− vn(sn)|

≥ √
m0(|vn(tn)| − R0).
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Letting n →∞ we get a contradition. This proves the claim.
Let m(r ) := min{W(ξ) : |ξ − a| ≥ r , |ξ − b| ≥ r } for r > 0. For any given

ε > 0, if we chooseL = 4e
m(ε2) > 0, then there existstn ∈ [−L,−L/2] such

that either|vn(tn) − a| ≤ ε2 or |vn(tn) − b| ≤ ε2 for n sufficiently large. Since
otherwise, we would have

F (vn) ≥
∫ −L/2

−L

1
2
|v′n(t)|2 + W(vn(t))dt ≥ m(ε2)L/2≥ 2eab.

This is a contradiction whenn →∞.
We may assume thatε is sufficiently small, then we have indeed|vn(tn)−a| ≤

ε2, thanks to Lemma 2.1.
Claim 2. There existsN0 = N0(ε) such that whenn > N0, we have

|vn(t)− a| ≤ ε, ∀t ≤ −L.

Suppose otherwise, for alln sufficiently large there existsn < σn ≤ −L such
that

|vn(sn)−a| = ε/2, |vn(σn)| = ε, and ε ≥ |vn(t)−a| ≥ ε/2, ∀t ∈ [sn, σn].

Then by Lemma 2.1 and (1.9), we have

F (vn) ≥ 2
∫ σn

sn

1
2
|v′n(t)|2 + W(vn(t))dt +

∫ −tn

tn

1
2
|v′n(t)|2 + W(vn(t))dt

≥ 2
∫ σn

sn

1
2

√
λ|v′n(t)| · |vn(t)− a|dt + eab − C0ε

4

≥ eab + Cε2 − C0ε
4

where C =
√
λ/4 > 0. Letting n → ∞, we have a contradiction whenε is

sufficiently small. This proves Claim 2.
Now it is easy to see thatvn is equicontinuous inR, and that there exists a

subsequence ofvn, which we still denote byvn, converging uniformly onR to
z ∈ S . Moreover, we haveF (z) ≤ eab and thenz = zα ∈ Z for someα.

To show convergence inH 1(R), let ε > 0 be given, and then letL,N0 be
chosen so that

|vn(x)− a| < ε, x < −L, and |vn(x)− b| < ε, x > L,(2.6)

F (vn)− eab < ε2 for n ≥ N0,(2.7) ∫ −L

−∞

1
2
|z′(t)|2 + W(z(t)) dt ≤ ε2.(2.8)

From hypothesis (1.9), (2.6), and (2.8), whenε is sufficiently small we obtain:∫ −L

−∞

1
2
|z′(t)|2 +

λ

4
|z(t)|2 dt ≤ ε2.
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By Lemma 2.1 and hypothesis (1.9) we also have:∫ −L

−∞

1
2
|v′n(t)|2 +

λ

4
|vn(t)|2 dx1 ≤

∫ −L

−∞

1
2
|v′n(t)|2 + W(vn(t)) dt ≤ Cε2.

In particular, we have:∫ −L

−∞

1
2
|v′n − z′|2 +

λ

4
|vn − z|2 dt < Cε2.

(By symmetry, identical estimates hold over the interval [L,∞).)
With L fixed (as above), the convergencevn → z in L∞ implies that for

n ≥ N1 ≥ N0, ∫ L

−L
|vn − z|2 + |W(vn)−W(z)| dt < ε2.

In particular, we havevn − z → 0 in L2(R). In view of (2.7) and the above
estimate, choosingn sufficiently large we obtain:∣∣∣∣∫ L

−L

(|v′n|2 − |z′|2) dt

∣∣∣∣ < ε2.

By an integration by parts,∣∣∣∣∫ L

−L
(v′n − z′) · z′ dt

∣∣∣∣ ≤ 2|(vn − z)(L)| |z(L)| +

[∫ L

−L
|vn − z|2 dt

]1/2

×
[∫ L

−L
|z′′|2 dt

]1/2

.

Sincez′′ is integrable, we may conclude that forn sufficiently large∫ L

−L
|vn − z|2 dt =

∫ L

−L

(|v′n|2 − |z′|2) dt − 2
∫ L

−L
(v′n − z′) · z′ dt < ε2.

In conclusion,vn − z → 0 in H 1(R), as desired.
♦

3 The variational formulation

We now turn to the two dimensional problem. Throughout the rest of the paper
we fix two distinct minimaa, b of W, with a = −b and b = (b, 0), and we
assume that the strict triangle inequality (1.14) holds for this choice ofa, b.
Where there is no ambiguity we writee = eab in (1.13). Given two distinct
elementsz1, z2 ∈ Z, we define a class of admissible functions by
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M1,2 =

 u ∈ (H 1
loc(R2)

)2 ∩ (C0(R2)
)2

:
u ◦ γ(x) = γ ◦ u(x),

|u(x)− ϕ1,2(x)| → 0 as|x| → ∞


where

ϕ1,2(x) =


z1(x1), if x2 ≥ 1;
z2(x1), if x2 ≤ −1,
z1(x1) 1+x2

2 + z2(x1) 1−x2
2 , if −1 < x2 < 1,

and γ(ξ) = (−ξ1, ξ2). Recall that all elements ofZ are minimizers with equal
one-dimensional energye = F (zα) > 0, α = 1, . . . , k. We define a renormalized
two-dimensional energy by subtracting energye from each horizontal strip:

E (U ) =
∫ +∞

−∞

[∫ +∞

−∞

1
2
|∇U |2 + W(U ) dx1 − e

]
dx2, U ∈ M1,2.(3.1)

(We remark that the idea of decomposing an unbounded domain into strips and
subtracting off a “base” quantity of energy on each strip has been introduced
by Rabinowitz [13] for finding trajectories of Hamiltonian systems which are
heteroclinic to periodic solutions.) By renormalizing we expect our solutions to
have finite energyE :

Proposition 3.1
0 < σ1,2 = inf

U∈M1,2

E (U ) < +∞.

Proof. By taking U = ϕ1,2 ∈ M1,2, it is clear thatσ1,2 < +∞. To see this, note
that the outer integral inE is taken over the finite interval [−1, 1], and each
term is then finite due to the exponential decay (2.5) of anyz ∈ Z to eithera
or b.

We will now show thatσ1,2 > 0. Fix a finite interval inx1, [−L, L], and set

ρ = min
α/=β

‖zα − zβ‖L∞([−L,L]) > 0

(since the curveszα do not intersect.) By Lemma 2.4 we may chooseδ0 > 0
such that wheneverv ∈ S satisfiesF (v) ≤ e+ δ0, then there existsz ∈ Z with
‖v − z‖L∞(R) < ρ/8.

Now fix U ∈ M1,2. SinceU (x1, x2) → z1(x1) uniformly in x1 asx2 → +∞,
eventually the trajectoryU (·, x2) ∈ Z must leave anL∞[−L, L]-neighborhood
of z2: there existsM1 ∈ R such that

‖U (·, x2)− z2‖L∞[−L,L] ≥ ρ

4
for all x2 ≥ M1 and

‖U (·,M1)− z2‖L∞[−L,L] =
ρ

4
.

Define also

M2 = min{x2 > M1 : ‖U (·, x2)− zα‖L∞[−L,L] ≤ ρ

8
for somezα ∈ Z.}.
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Indeed,U ∈ M1,2 means that eventuallyU (·, x2) is L∞-close toz1, but we
allow for the possibility that it first passes near some other elementzα ∈ Z. In
particular, for anyx1 ∈ R we have (for appropriately chosenzα ∈ Z),

|U (x1,M2)− U (x1,M1)| ≥ |z2(x1)− zα(x1)| − |U (x1,M2)− zα(x1)|
−|U (x1,M1)− z2(x1)| ≥ ρ

2
.

Furthermore, we observe that Lemma 2.4 and the definition ofδ0 imply that:

inf
x2∈(M1,M2)

F (U (·, x2)) ≥ e +
δ0

2
.

(Note thatM1,M2 may depend on the functionU .)
Now we may estimate the energy ofU :

E (U ) ≥
∫ M2

M1

[F (U (·, x2))− e] dx2 +
∫ M2

M1

∫ +∞

−∞

1
2
|Ux2|2 dx1 dx2(3.2)

≥ δ0

2
(M2 −M1) +

1
2

∫ L

−L


(∫ M2

M1
|Ux2| dx2

)2

∫ M2

M1
1dx2

 dx1

≥ δ0

2
(M2 −M1) +

L
M2 −M1

min
x1∈[−L,L]

|U (x1,M2)− U (x1,M1)|2

≥ δ0

2
(M2 −M1) +

Lρ2

4(M2 −M1)
≥ ρ
√
δ0L/2 > 0.

This inequality holds for anyU ∈ M1,2, hence we concludeσ1,2 ≥ ρ
√
δ0L/2 >

0.
♦

We next show that minima of the renormalized energyE are indeed solutions
of our PDE:

Proposition 3.2 Suppose that U∈ M1,2 attains the minimum ofE ,

E (U ) = inf
V∈M1,2

E (V ).

Then, U∈ C2,α(R2) satisfies (1.1) with the heteroclinic conditions (1.4)–(1.7).

Proof. Let /υ = (/υ1(x), /υ2(x)) ∈ C0(R2;R2) be given, and chooseM > 0 such
that supp/υ ⊂ [−M ,M ]2. Then,U + t/υ ∈ M1,2 and the functionsW(U + t/υ)
are continuous and uniformly bounded in [−M ,M ]2 for |t | < 1. Then,

0 ≤ E (U + t/υ)− E (U )

=
∫ M

−M

∫ M

−M

[ |∇(U + t/υ)|2
2

− |∇U |2
2

+ W(U + t/υ)−W(U )

]
dx2 dx1

=
∫ M

−M

∫ M

−M

 2∑
i ,j =1

∇Ui · ∇/υj +∇W(U ) · /υ
 dx1 dx2 + o(t).
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In the limit, we have

∫
R2

 2∑
i ,j =1

∇Ui · ∇/υj +∇W(U ) · /υ
 dx = 0

for any /υ ∈ C∞
0 (R2;R2). Then, taking test functions of the form:/υ = (/υ1, 0) and

/υ = (0, /υ2) in the above equality, we obtain each equation in the system (1.1)
in weak form. By a standard bootstrap argument we may conclude thatU is a
strong solution inC2,α.
♦

We have shown thatE is bounded below on the classM1,2, and that min-
ima yield solutions to our equation (1.1) with the desired asymptotic behavior.
Obviously, we would be finished if we could show that the minimum ofE were
attained inM1,2. The most obvious tool in this situation is the “direct method”,
namely to show compactness of minimizing sequences forE . One obstacle to
compactness is translation invariance: sequences inM1,2 may have weak limits
which no longer belong toM1,2, and hence do not satisfy our boundary condi-
tions for U at infinity. However, a greater problem is the fact thatE does not
seem to be coercive onM1,2, and hence the fact that minimizers have bounded
energyE does not yield an estimate sufficient for weak compactness in any
reasonable space.

Our method will be one of approximation: we will seek a minimizer as a limit
of minimizers in strips of finite length. The fact that the solution thus obtained
is a minimizer will enable us to eliminate certain pathological cases when taking
the limit.

It will be necessary for our method to choose asymptotic statesz1, z2 which
are not only one-dimensional minimizers, but also satisfy another strict triangle
inequality for their two-dimensional energyE ,

σ1,2 /= σ1,α + σα,2 for anyα /= 1, 2.(3.3)

Note thatz1, z2 satisfy (3.3) if, for example, their two-dimensional energyσ1,2

is minimal among all pairs of distinct elements ofZ. Our general theorem then
reads:

Theorem 3.3 Suppose W ,a, b satisfy the hypotheses (1.8)–(1.11), (1.14), and
(2.4). If z1 /= z2 ∈ Z and (3.3) holds, thenE attains its minimum value in the
classM1,2 at U ∈ M1,2. Furthermore, U∈ C2,α(R2) for 0 < α < 1 and U
satisfies (1.1) inR2 together with the asymptotic conditions (1.4)–(1.7).

Of course, ifk = 2 (i.e., the one-dimensional problem admits exactly two min-
imizing trajectories), then Theorem 3.3 reduces to Theorem 1.1 stated in the
introduction.
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4 Infinite strips

In this section we consider solutions to equation (1.1) in semi-infinite strips,

TL = {x = (x1, x2) : |x2| ≤ L},
satisfying boundary conditions given by distinct elementsz1, z2 ∈ Z on the
edgesx2 = ±L.

To solve the problem in strips, we approximate the strips by boxesRL,M =
[−M ,M ]× [−L, L], where we may easily solve the boundary value problem for
(1.1). First, we truncate the one-dimensional solutionszi , i = 1, 2:

ϕi
M (x1) =

 zi (x1), if |x1| ≤ M − 1;
zi (−M + 1)[x1 + M ] + a[−M + 1− x1], if −M ≤ x1 ≤ −M + 1;
zi (M − 1)[−x1 + M ] + b[−M + 1 + x1], if M − 1≤ x1 ≤ M .

Then, we introduce a class of admissible functions incorporating the desired
boundary conditions onRL,M : let

ΦL,M (x) = ϕ1
M (x1)

(
x2 + L

2L

)
+ ϕ2

M (x1)

(−x2 + L
2L

)
for x = (x1, x2) ∈ RL,M , and

ML,M
1,2 =

{
U : U − ΦL,M ∈ (H 1

0 (RL,M )
)2
, U ◦ γ(x) = γ ◦ U (x)

}
.

Finally, we introduce an energy onML,M
1,2 ,

EL,M (U ) =
∫

TL,M

1
2
|∇U |2 + W(U ) dx, U ∈ ML,M

1,2 .(4.1)

It follows from standard arguments thatEL,M attains its minimum at some
UL,M ∈ ML,M

1,2 and UL,M ∈ C2,α(RL,M ) satisfies the equation (1.1) inRL,M .
Moreover, hypothesis (1.10) and the maximum principle (applied to|U |2) yield
an a priori bound‖U ‖L∞ ≤ C with constantC independent ofL,M . Elliptic
regularity then provides the stronger estimate,

‖U ‖C2,α(RL,M ) ≤ C1(4.2)

for any fixedα ∈ (0, 1), with C1 = C1(α) independent ofL,M . Finally, we may
obtain an upper bound on the energy of the minimizer,

EL,M (UL,M ) ≤ EL,M (ΦL,M )

≤
∫

RL,M

1
2

[∣∣∣∣∂ϕ1
M

∂x1

∣∣∣∣2(x2 + L
2L

)2

+

∣∣∣∣∂ϕ2
M

∂x1

∣∣∣∣2(−x2 + L
2L

)2
]

+W(ΦL,M ) dx +
∫ M

−M

1
4L
|ϕ1

M (x1)− ϕ2
M (x1)|2 dx1

≤
∫ L

−L

∫ M

−M
C exp{−2µ|x1|}dx1 dx2 + C

≤ C2L, for L > 1,(4.3)
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with constantC2 independent ofL,M . (We have used (2.5) in estimating the
second line.)

From estimate (4.2) we may pass to the limit asM →∞ along a subsequence
to obtainUL,M → UL in C2,α(K ) for any compactK ⊂ TL.

Theorem 4.1 UL satisfies (1.1) in TL, ‖UL‖C2,α(TL) ≤ C1, and

EL(UL) :=
∫

TL

1
2
|∇UL|2 + W(UL) dx ≤ C2L(4.4)

where C1, C2 are as in (4.2), (4.3). Moreover, UL(x1, L) = z1(x1), UL(x1,−L) =
z2(x1), γ ◦ UL = UL ◦ γ, and

UL(x1, x2) → a uniformly in x2 as x1 → −∞.(4.5)

Proof. We only need to prove (4.5), as the other assertions follow easily from
estimates (4.2) and (4.3). Suppose there were aδ > 0 and a sequence of points
{xn = (xn

1 , x
n
2 )} ⊂ TL such thatxn

1 → −∞ and|UL(xn)−a| > δ. SinceUL(x1, L) =
z1(x1) → a asx1 → −∞, we know that we may choosexn such that|UL(xn)−
c| > δ as well, wherec is any other zero ofW. By estimate (4.2) we may
conclude thatUL remains away from the minima ofW on a sequence of disks:
there existε, ρ > 0 such that

W(UL(x)) ≥ ε for all |x − xn| ≤ ρ, n = 1, 2, . . .(4.6)

Without loss, we may assume that these disksBρ(xn) are disjoint, and hence

EL(UL) ≥
∞∑

n=1

∫
Bρ(xn)

W(UL) dx = +∞,

which contradicts (4.4).
♦

We now introduce a variational framework for the problem inTL in analogy
to our renormalized energyE introduced in the previous section. For

U ∈ ML
1,2 :=


U ∈ (H 1

loc(TL)
)2 ∩ (C0(TL)

)2
:

U ◦ γ(x) = γ ◦ U (x),
U (x) → a asx1 → −∞, uniformly in x2,

U (x1, L) = z1(x1), U (x1,−L) = z2(x1)

 ,

define

EL(U ) =
∫ L

−L

[∫ ∞

−∞

1
2
|∇U |2 + W(U ) dx1 − e

]
dx2.(4.7)

Then UL ∈ ML
1,2 by Theorem 4.1, and for anyU ∈ ML

1,2, 0 < EL(U ) =
EL(U )− 2eL.

DefineσL
1,2 := inf{EL(U ) : U ∈ ML

1,2}. SinceML
1,2 ⊂ M1,2 we clearly

haveσL
1,2 ≥ σ1,2 > 0.
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Lemma 4.2 EL(UL) = σL
1,2.

Proof. Suppose not, and there existsU ∈ ML
1,2 such thatEL(U ) < EL(UL) (or

equivalently,EL(U ) < EL(UL).) Let α = min{EL(UL) − EL(U ), 1}. Then, there
existsM > 0 sufficiently large such that:

EL,M (UL,M )− EL(U ) >
α

2
,(4.8)

EL,M (U )− EL,M−1(U ) <
α

8
,(4.9)

|U (−M + 1, x2)− a| < 1

4
√

(1 +λ)L

√
α,(4.10) ∫ L

−L

∣∣∣∣∂U
∂x2

(−M + 1, x2)

∣∣∣∣2 dx2 <
α

8
.(4.11)

Statements (4.8)–(4.10) follow trivially from the definition of the classML
1,2.

We derive (4.11) from Fubini’s Theorem and the fact that∫
TL

∣∣∣∣∂U
∂x2

(x1, x2)

∣∣∣∣2 dx < EL(U ) < +∞.

Let

Ũ =

U (x), if |x1| ≤ M − 1, x ∈ TL,
U (−M + 1, x2)[x1 + M ] + a[−M + 1− x1], if −M ≤ x1 ≤ −M + 1,
U ◦ γ = γ ◦ U , if M − 1≤ x1 ≤ M .

Then Ũ ∈ ML
1,2 and

|EL,M (Ũ )− EL,M (U )| ≤ |EL,M (U )− EL,M−1(U )|

+
∫ L

−L

∫ −M

−M +1

(
|U (−M + 1, x2)− a|2 +

∣∣∣∣∂U
∂x2

(−M + 1, x2)[x1 + M ]

∣∣∣∣2
)

+2λ|U (−M + 1, x2)− a|2[x1 + M ]2 dx1 dx2

≤ α

4
+ (2L + 2λL)

1
16(1 +λ)L

α ≤ α

2
.

In conclusion,

EL,M (Ũ ) ≤ EL,M (U ) +
α

2
< EL,M (UL,M ),

which contradicts the fact thatUL,M minimizesEL,M in ML,M
1,2 . This concludes

the proof of Lemma 4.2.
♦

SinceUL may be trivially extended toR2 as an element ofM1,2, (and at the
same time an element ofML′

1,2 for all L′ > L,) we may immediately conclude
thatσL

1,2 is decreasing inL andσL
1,2 ≥ σ1,2 for all L.
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Lemma 4.3
lim

L→∞
σL

1,2 = σ1,2.

Proof. We show that ifU ∈ M1,2 is chosen close to the infimum ofE , then
we can construct a test functionV ∈ ML

1,2 for L large with essentially the same
energyEL.

To this end, given anyε > 0 there existsU ∈ M1,2 such thatσ1,2 ≤ E (U ) <
σ1,2+ ε

2. In particular, since the integrandF (U (·, x2))−e≥ 0 there exist sequences
L±n → ±∞ such thatF (U (·, L±n )) − e → 0. Setv±n (x1) = U (x1, L±n ) ∈ Sab. By
Lemma 2.4 we have:

v+
n → z1, v−n → z2 in H 1 ∩ L∞(R).

Choosen sufficiently large such that:

sup
x1∈R

|v+
n − z1| ≤ 1, sup

x1∈R
|v−n − z2| ≤ 1,(4.12) ∣∣∣∣∫ ∞

−∞

(|v+
n |2 − |z1|2

)
dx1

∣∣∣∣ < ε

2
(4.13) ∣∣∣∣∫ ∞

−∞

(|v−n |2 − |z2|2
)

dx1

∣∣∣∣ < ε

2
(4.14)

‖v+
n − z1‖L2(R) <

ε

4β0
, ‖v−n − z2‖L2(R) <

ε

4β0
,(4.15)

where we denote

β0 := ‖∇W(z1)‖2,+‖∇W(z2)‖2 + β1 + 1,

β1 := sup{|D2W(ξ)| : ξ ∈ R2, |ξ| ≤ ‖z1‖∞ + ‖z2‖∞ + 1}.

By translatingU in the x2-coordinate we may assume thatL+
n = −L−n := L.

Now defineV ∈ ML+1
1,2 via:

V (x) =


z1(x1), if x2 > L + 1;
z1(x1)[x2 − L] + v+

n(x1)[L + 1− x2], if L < x2 ≤ L + 1;
U (x1, x2), if −L ≤ x2 ≤ L;
z2(x1)[−x2 − L] + v−n (x1)[L + 1 + x2], if −L− 1≤ x2 < −L;
z2(x1), if x2 < −L− 1.

We will compare the value ofEL+1(V ) = E (V ) with that of EL(U ). First, we
estimate from above:

I1 :=
1
2

∫ ∞

−∞

∫ L+1

L
|z′1(x1)[x2 − L] + v+

n(x1)[L + 1− x2]|2 − |z′1(x1)|2 dx2 dx1

≤ 1
2

∫ L+1

L

∫ ∞

−∞
[L + 1− x2]

(|v+
n(x1)|2 − |z′1(x1)|2) dx1 dx2 ≤ ε

8
,(4.16)

where we have used convexity and (4.13). From (4.16) we immediately have:
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I2 :=
1
2

∫ ∞

−∞

∫ L+1

L
|z1(x1)− v+

n(x1)|2 dx2 dx1 <
ε

16
.

Expanding in Taylor’s series,

I3 :=
∫ ∞

−∞

∫ L+1

L
W(V )−W(z1) dx2 dx1

≤
∫ ∞

−∞

∫ L+1

L

(|∇W(z1)| |V − z1| + β1|V − z1|2
)

dx2 dx1

≤ ‖∇W(z1)‖2‖v+
n − z1‖2 + β1‖v+

n − z1‖2
2 ≤

ε

4
.

Taking into account that

I4 :=
∫ L+1

L

(∫ ∞

−∞

1
2
|z′1(x1)|2 + W(z1) dx1 − e

)
dx2 = 0,

we have: ∫ L+1

L
[F (V (·, x2))− e] dx2 = I1 + I2 + I3 + I4 <

ε

2
.

Analogous computations overx2 ∈ [−L − 1,−L] together with the fact that
V = U for x2 ∈ [−L, L] then yieldEL+1(V ) − E (U ) ≤ EL+1(V ) − EL(U ) < ε

2 ,
and hence we have:

σL+1
1,2 ≤ EL+1(V ) ≤ E (U ) +

ε

2
≤ σ1,2 + ε.

Sinceε > 0 is arbitrary, the lemma is proven.
♦

5 Passing to the limit

Before presenting the proof of Theorem 3.3, we address the important role of
the symmetry assumptionU ◦ γ = γ ◦ U imposed on solutions (and on the
potentialW). In particular, the symmetry allows us to fix a horizontal center for
the strip solutions, which will allow us to show that the limit function satisfies the
asymptotic conditions (1.4) and (1.5). Here we drop the symmetry assumption
and give an example of a minimizing sequence in which the “sliding” of an
interior layer leads us to a trivial limit. We letUL be the minimizer ofEL in
ML

1,2, as derived in the previous section, and set

VL =



z1(x1), if x2 ≥ L + L3;

z1

(
x1 − L+L3−x2

L2

)
, if L ≤ x2 ≤ L + L3;

UL(x1 − L, x2), if |x2| ≤ L;

z2

(
x1 − L+L3+x2

L2

)
, if −L− L3 ≤ x2 ≤ −L;

z2(x1), if x2 < −L− L3.
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Then,VL ∈ [H 1
loc∩C0(R2)]2, and satisfies the desired asymptotic conditions (1.5)–

(1.7). (Except for the fact that it is not symmetric,γ◦VL /= VL◦γ, VL would belong
to M1,2.) Moreover, an easy computation coupled with Lemma 4.3 shows that
E (VL) → σ1,2 as L → ∞. Nevertheless,VL → a uniformly on compact subsets
of R.

Note that such minimizing sequences can still be “normalized” by a horizon-
tal translation, and̃VL(x) = VL(x1 + L, x2) will converge to a nontrivial solution
satisfying the correct asymptotic conditions. We conjecture that the above exam-
ple gives the only possible way in which the sequenceUL can fail to converge,
and hence horizontal translation of theUL will yield a solution with heteroclinic
conditions as|x| → ∞. However, this remains an open question.

We may now prove Theorem 3.3. First, by the symmetry ofz1, we have

γ ◦ z1(0) = z1 ◦ γ(0) = z1(0).

Writing zi = (zi ,1, zi ,2), i = 1, 2 in components, we conclude that the first com-
ponent,zi ,1 = 0, i = 1, 2. Furthermore, since the curves do not intersect, (see
Proposition 2.3,) we also know thatz1,2(0) /= z2,2(0). Hence we may choose
ξ ∈ R so thatξ ∈ (z1,2(0), z2,2(0)) but the point (0, ξ) does not lie on any of the
trajectorieszα, α = 1, . . . , k. Then, for anyL, there existstL ∈ R with |tL| < L
and

UL(0, tL) = (0, ξ).(5.1)

Next, we define

VL(x1, x2) := UL(x1, x2 + tL), x ∈ TL − tl ,

whereTL − tL = {x ∈ R2 : (x1, x2 + tL) ∈ TL}. By the local uniform Schauder
estimate (see (4.2)), we may extract a sequenceLn →∞ such that

VLn (x) → V (x) in C2,α(K ),

for any compact setK ⊂ R, where the setR is the limit R = limn→∞[TLn −
tLn ]. Clearly V satisfies (1.1) inR, and

V (0) = (0, ξ).(5.2)

We now consider the three cases which are possible: (1)R = R
2; (2)

R = R2+ = {x : x2 ≥ −κ}, with someκ finite; (3) R = R2− = {x : x2 ≤ κ},
with someκ finite.

5.1 Case (1),R = R2

Note first that for anyM > 0 fixed, TM ⊂ TLn − tLn for all n large enough.
Writing L = Ln, we have:
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EM (VL) ≤ EL(UL)−
∫ L

M +tL

F (UL(·, x2) dx2 −
∫ −M +tL

−L
F (UL(·, x2) dx2(5.3)

≤ σL
1,2 + 2eL− 2e(L−M ) = σL

1,2 + 2eM.

Letting L = Ln →∞,
EM (V ) ≤ σ1,2 + 2eM,(5.4)

and lettingM →∞ we have

E (V ) ≤ σ1,2.(5.5)

It remains to prove thatV ∈ M1,2.

Lemma 5.1 V (x1, x2) → a as x1 → −∞ and V(x1, x2) → b as x1 → +∞,
uniformly in x2.

Proof. First, we claim thatW(V (x1, x2)) → 0 as |x1| → ∞ for each fixedx2.
Indeed, if this were not the case, there would existδ > 0 and a sequence of
points xn = (xn

1 , x
0
2 ), with |xn

1 | → ∞ and x0
2 fixed, such thatW(V (xn)) > δ.

SinceV satisfies the uniform Schauder estimate (4.2) we may in fact conclude
thatW(V (x)) > δ/2 for all x ∈ Bρ(xn), n = 1, 2, . . ., for some fixedρ > 0. From
(5.4) we then obtain the contradiction:

σ1,2 + 2eM ≥ EM (V ) ≥
∞∑

n=1

∫
Bρ(xn)

W(V (x)) = +∞.

Consequently, the valuesV (x1, x2) accumulate at the (finite set of) zeros of
W as x1 → −∞. Consider two sequencesxn = (xn

1 , x
0
2 ), yn = (yn

1 , y
0
2), with

xn
1 , y

n
1 → −∞ and x0

2 , y
0
2 fixed, andV (xn) → c1, V (yn) → c2, W(c1) = 0 =

W(c2). Supposec1 /= c2. By the uniform continuity ofV and hypothesis (1.9),
on each line segment connecting the pointsxn andyn there must exists a point
ξn = (ξn

1 , ξ
n
2 ) with W(V (ξn)) > δ for some fixedδ > 0. Clearlyξn

1 → −∞, and
the argument of the above paragraph again leads to a contradiction of the energy
bound (5.4). Hence,c1 = c2 and the limit setV (x1, x2) as x1 → −∞ is unique:
there existsc with W(c) = 0 such thatV (x1, x2) → c as x1 → −∞ for all fixed
x2.

Next, we show that necessarilyc = a. By hypothesis (1.14) there existsβ0 > 0
such that

eab + β0 ≤ eac + ecb(5.6)

holds for every zeroc of W different from a or b. Fix δ < β0
6C0

with C0 as in
Lemma 2.1. By a diagonal procedure, there exists a sequencexn = (−xn

1 , n) with
xn

1 → +∞ and|V (xn)− c| < δ/4. Using the Schauder estimate (4.2) there exists
ρ > 0 so that:

|V (x)− c| < δ

2
, x ∈ ∪∞n=1Qρ(xn),

with cubesQρ(xn) = [−xn
1 − ρ,−xn

1 + ρ] × [n − ρ, n + ρ]. Choose an integerN
with
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N > 3σ1
1,2/β0ρ, (σ1

1,2 = σL
1,2, L = 1, )

and fix a compact setK with ∪N
n=1Qρ(xn) ⊂ K . For L > 1 sufficiently large we

haveK ⊂ TL and (by the uniform convergenceVL → V on compact sets)

|VL(x)− c| < δ, x ∈ ∪N
n=1Qρ(xn).(5.7)

By Theorem 4.1,VL(x1, x2) → a asx1 → −∞ uniformly in x2, so there exists
R > 0 such that

|VL(x)− a| < δ for all x1 < −R,

and by symmetry
|VL(x)− b| < δ for all x1 > R.

Take first the case wherec /= b. Applying Lemma 2.1 to the intervals [−R,−xn
1 ]

and [−xn
1 ,R] we obtain the following lower bounds holding in horizontal strips,

x2 ∈ ∪N
n=1[n − ρ, n + ρ]:∫ −xn

1

−R

∣∣∣∣∂VL

∂x1

∣∣∣∣2 + W(VL(x1, x2)) dx1 ≥ eac − C0δ ≥ eac − 1
6
β0,∫ +R

−xn
1

∣∣∣∣∂VL

∂x1

∣∣∣∣2 + W(VL(x1, x2)) dx1 ≥ ecb − C0δ ≥ eac − 1
6
β0.

In particular, this implies the following contradiction,

σ1
1,2 ≥ σL

1,2 ≥
∫ L

−L

(∫ ∞

−∞

∣∣∣∣∂VL

∂x1

∣∣∣∣2 + W(VL(x1, x2)) dx1

)
− eab dx2

≥
N∑

n=1

∫ n+ρ

n−ρ

(∫ R

−R

∣∣∣∣∂VL

∂x1

∣∣∣∣2 + W(VL(x1, x2)) dx1

)
− eab dx2

≥ 2ρN

[
eac + ecb − eab − 1

3
β0

]
≥ 4

3
Nβ0 > 4σ1

1,2,

by the choice ofN . Hence, the limit value ofV asx1 → −∞ must be eithera
or b. If the limit were actuallyb, we note that when (5.7) holds withc = b, then
we have its reflection,

|VL(x)− a| < δ, x ∈ ∪N
n=1Qρ(−xn).

In other words, in each stripx2 ∈ [n−ρ, n+ρ] we observethreetransitions inVL,
from a to b in [−R,−xn

1 ] and [xn
1 ,R] and fromb to a in [−xn

1 , x
n
1 ]. Estimating

the energy as above we obtain:

σ1
1,2 ≥ σL

1,2 ≥
N∑

n=1

∫ n+ρ

n−ρ

(∫ R

−R

∣∣∣∣∂VL

∂x1

∣∣∣∣2 + W(VL(x1, x2)) dx1 − eab

)
dx2

≥ 2ρN (3eab − 1
2
β0) ≥ 2Nβ0 > 6σ1

1,2,
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again a contradiction. In conclusion,V → a asx1 → −∞.
By symmetry we also haveV → b as x1 → +∞, and henceV (·, x2) ∈ Sab

for eachx2.
Finally, we show that this convergence is uniform inx2. Suppose not: by

familiar arguments there would exist constantsδ, ρ > 0 and a sequencexn =
(xn

1 , x
n
2 ) with xn

1 → −∞ and |xn
2 | → +∞ such that

|V (x)− a| > δ for all x ∈ Qρ(xn).

Let R0 > 0 be defined by:

|z(x1)− a| < δ

2
for all x1 < −R0 andz ∈ Z.

Then, if n is large andx2 ∈ [xn
2 − ρ, xn

2 + ρ] we have

‖z(·)− V (·, x2)‖L∞(R) >
δ

2
.

By Lemma 2.4 there existsε > 0 such thatF (V (·, x2)) ≥ eab + ε for each
x2 ∈ [xn

2 − ρ, xn
2 + ρ], n sufficiently large. However this contradicts the energy

bound (5.5), and hence the proof is complete.
♦

Next we show thatV attains the correct limits asx2 → ±∞. For y ∈ R, let
V y = V (x1, x2 + y). SinceV y satisfies the same uniform Schauder estimate asV ,
we may extract subsequencesy±n → ±∞ with V y±n → v± in C2,α(K ) for every
compactK .

Lemma 5.2 v± does not depend on x2, v± = v±(x1).

Proof. For each fixedx2, V (x1, x2) gives an admissible function of classSab in
x1, and hence: ∫ M

−M
F (V (·, x2)) dx2 ≥ 2eM.(5.8)

From (5.4),

σ1,2 + 2eM ≥ EM (V ) =
∫ M

−M

∫ +∞

−∞

∣∣∣∣∂V
∂x2

∣∣∣∣2 dx1 dx2 +
∫ M

−M
F (V (·, x2)) dx2,

and hence by applying (5.8) and passing to the limitM →∞ we obtain:∫
R2

∣∣∣∣∂V
∂x2

∣∣∣∣2 dx1 dx2 ≤ σ1,2.(5.9)

We now argue as in Lemma 4.5 of [3] to conclude that

sup
x1

∣∣∣∣∂V
∂x2

∣∣∣∣ (x1, x2) → 0 as|x2| → +∞.(5.10)
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Indeed, suppose instead that there exists a sequence of pointsxn = (xn,1, xn,2) ∈
R

2 with |xn,2| → +∞ and anη > 0 such that|Vx2|(xn,1, xn,2) ≥ η > 0. Invoking
again the uniformC2,α estimate satisfied byV , we can actually conclude that
there existsr > 0 (independent ofn) so that∣∣∣∣∂V

∂x2

∣∣∣∣ (x) ≥ η

2
for all |x − xn| < r .

But clearly this contradicts the square integrability of∂V
∂x2

, (5.9), and hence (5.10)
must hold.

Finally, if we fix x and write

∂v±

∂x2
(x) =

[
∂v±

∂x2
(x1, x2)− ∂V y±n

∂x2
(x1, x2)

]
+
∂V
∂x2

(x1, x2 + y±n ),

as n → ∞ the first term tends to zero uniformly on compact sets, while the
second vanishes by (5.10), and we obtain∂v±

∂x2
(x) = 0.

♦
We observe that,a priori, V (x1, x2) could have different subsequential limits

asx2 → ±∞. This will not be the case, however, as we will show later on that
V must tend to the given functionsz1, z2 asx2 → ±∞.

By Lemma 5.1,v± ∈ Sab. In fact they must beminimizers:

Lemma 5.3 v± achieveminv∈Sab F (v). (i.e., v± ∈ Z.)

Proof. Suppose the contrary; then there exist sequencesy±n → ±∞ such that

sup
x1∈R

|V (x1, y
±
n )− z(x1)| > 2δ0

for some fixedδ0 > 0 and for all elementsz ∈ Z. By the uniform Schauder
estimate satisfied byV we may in fact obtain a constant radiusr > 0 (independent
of n) such that

sup
x1∈R

|V (x1, x2)− z(x1)| > δ0 for all x2 ∈ R with |x2 − y±n | < r .

By Lemma 5.3, we conclude thatF (V (·, y±n )) > e + ε0 for someε0 > 0 inde-
pendent ofn. From this lower bound we would then conclude thatE (V ) = +∞,
which contradicts (5.5).
♦

We next show that minimality forces the limitV to tend to the “correct”
curves |x2| → ∞, v+ = z1 and v− = z2. First we eliminate the possibility
that v+ = z2. Combining the fact thatV (0) = (0, ξ) lies away from any of the
trajectories inZ, the uniformC2,α estimate onV , and Lemma 2.4, we conclude
that there existδ, ρ > 0 such that

F (VL(·, x2)) > e + δ for all |x2| ≤ ρ.(5.11)
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Now, if indeedv+ = z2, then (by the local uniform convergence ofV (x1, x2 +
yn) as the subsequenceyn → ∞) for any ε > 0 and M > 0 there exists
y0 > M + 2ρ such that

|V (x1, x2 + y0)− z2(x1)| < ε

2
for all x ∈ [−M ,M ]2.(5.12)

Hence, ifL0 is chosen sufficiently large, then we also have

|VL(x1, x2 + y0)− z2(x1)| < ε for all x ∈ [−M ,M ]2 andL > L0.

By the definition ofVL we have∫ M +y0

−M +y0

(F (VL(·, x2))− e) dx2 < σL
1,2 < σ1

1,2.

In particular, there existsy1 ∈ [−M + y0,M + y0] such that

0 < F (VL(·, y1))− e <
σ1

1,2

2M
.(5.13)

By fixing M sufficiently large, we then have:

F (VL(·, y1))− e <
ε

8
and ‖VL(·, y1)− z2‖H 1(R) <

ε

8
.(5.14)

Define a variant ofVL in [−L− tL, L− tL] by:

ṼL(x) :=


VL(x), if y1 ≤ x2 ≤ L− tL;
VL(x1, y1)[x2 − y1 + 1] + z2(x1)[y1 − x2], if y1 − 1 < x2 < y1;
z2(x1), if −L− tL ≤ x2 ≤ y1 − 1,

and ŨL(x) = ṼL(x1, x2 − tL) ∈ ML
1,2. We will now show that the energy of̃UL

has been reduced below the value ofσL
1,2. Proceeding as in (4.16), we may fix

ε > 0 sufficiently small such that:

I :=
∫ y1

y1−1

(
F (ṼL(·, x2))− e

)
dx2 < ρδ.(5.15)

Breaking the integral into its parts and applying (5.11) we obtain:

EL(ŨL) ≤ EL(UL)−
∫ y1−1

−L−tL

(F (VL(·, x2))− e) dx2 + I

≤ σL
1,2 −

∫ ρ

−ρ
(F (VL(·, x2))− e) dx2 + ρδ

≤ σL
1,2 − 2ρδ + ρδ < σL

1,2,

which contradicts the definition ofσL
1,2 as the infimum ofEL over ML

1,2. In
conclusion, we cannot havev+ = z2. By similar arguments, we may also conclude
that v− /= z1.
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Finally, we must eliminate the possibility thatv± = zα for someα /= i , j .
Exactly as in deriving (5.14) above, we may conclude that for anyη > 0 there
exist valuesy2 > y1 + 2 such that

0≤ F (VL(·, ym))− e < η, ‖VL(·, ym)− zα‖L∞∩H 1(R) < η, m = 1, 2.(5.16)

Now we split VL into two functions, one connectingz1 to zα and the other
connectingzα to z2: Define V̂L,2 on the stripR× [y2 − 1, L− tL] by:

V̂L,2(x) :=

{
VL(x), if y2 ≤ x2 ≤ L− tL;
VL(x1, y2)[x2 − y2 + 1] + zα(x1)[y2 − x2], if y2 − 1 < x2 < y2,

and V̂L,1 on R× [−L− tL, y1 + 1] by:

V̂L,1 :=

{
VL(x1, y1)[1 + y1 − x1] + zα(x1)[x1 − y1], if y1 < x1 < y1 + 1;
VL(x1, x2) if −L− tL ≤ x2 ≤ y1 − 1.

By shifting in thex2-direction, we setÛL,m(x) = V̂L,m(x1, x2 − TL,m), m = 1, 2,
where TL,m are chosen such thatUL,m are now defined on symmetric strips,
R× [−Lm, Lm], m = 1, 2.

Following the same reasoning as in (4.16) and (5.15), given anyε > 0 we
may chooseη > 0 sufficiently small such that:

I1 :=
∫ y1+1

y1

(
F (V̂L,1(·, x2))− e

)
dx2 <

ε

2
,

I2 :=
∫ y2

y2−1

(
F (V̂L,2(·, x2))− e

)
dx2 <

ε

2
.

We may then estimateσL
1,2 from below:

σL
1,2 = EL(UL) >

∫ y1

−L−tL

[∫ ∞

−∞

1
2
|∇VL,1|2 + W(VL,1) dx1 − e

]
dx2

+
∫ L−tL

y2

[∫ ∞

−∞

1
2
|∇VL,2|2 + W(VL,2) dx1 − e

]
dx2

= EL1(ÛL1) + EL2(ÛL2)− I1 − I2

≥ σL1
2,α + σL2

α,1 − ε ≥ σ2,α + σα,1 − ε.

Noting thatε > 0 is arbitrary, we take the limitL →∞ in (5.16) to conclude:

σ1,2 ≥ σ2,α + σα,1.(5.17)

The reverse inequality to (5.17) is elementary: Consider the respective min-
imizers UL,1 and UL,2 to EL in ML

2,α and ML
α,1 respectively, and glue them

together along their common boundary valuezα to form ŪL ∈ M2L
1,2. Then,

σ1,2 ≤ σ2L
1,2 ≤ E2L(ŪL) = EL(UL,1) + EL(UL,2) = σL

2,α + σL
α,1.

Passing to the limitL →∞, we then have
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σ1,2 = σ2,α + σα,1,

which contradicts the hypothesis (3.3). In conclusion,v+ = z1 and identical argu-
ments show thatv− = z2. Together with Lemma 5.1 this implies thatV ∈ M1,2

and we have finished the proof of (3.3) in case (1),R = R2.

5.2 Case (2),R = R2+

From the elliptic estimate (4.2) on the strip solutionsUL, we may conclude that
there existsV + with VL → V + in C2,α(K ) for any compactK ⊂ R2+. Moreover,
on the boundary ofR2+, V +(x1,−κ) = z2(x1). Repeating the steps (5.3), (5.4) and
(5.5) we obtain:∫ ∞

−κ

[∫ ∞

−∞

1
2
|∇V +|2 + W(V +) dx1 − e

]
dx2 ≤ σ1,2.

Define

V (x1, x2) :=

{
V +(x1, x2), if x2 ≥ −κ;
z2(x1), if x2 ≤ −κ.

Arguing exactly as in case (1) we obtainV ∈ M1,2, so V attains the minimum
σ1,2 = infM1,2 E and by Proposition 3.2V is a smooth solution of the equation
(1.1) inR. However, if this were the case thenVx2 = ∂V

∂x2
would satisfy the (linear)

system, { −∆Vx2 + D2W(V ) Vx2 = 0, x ∈ R2,
Vx2(x1, x2) = 0, x2 ≤ −κ.

The unique continuation result of N. Garofalo & F. H. Lin, Theorem 4.2 of [9],
then implies thatVx2 ≡ 0 in R, and hence case (2) cannot occur. The same
argument eliminates also case (3), and therefore the proof of Theorem 3.3 is
complete.
♦

6 Saddle solutions

By a saddle solution we mean a solutionU (x1, x2) of (1.1) inR2 with asymptotic
conditions as|x| → ∞,

lim
x2→+∞U (x1, x2) = z(x1),(6.1)

lim
x2→−∞

U (x1, x2) = z(−x1),(6.2)

lim
x1→+∞U (x1, x2) = z(x2),(6.3)

lim
x1→−∞

U (x1, x2) = z(−x2),(6.4)
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wherez is a (one-dimensional) heteroclinic solution of (1.1). We make the same
hypotheses (1.8)–(1.11) on the potentialW as for heteroclinic solutions, but now
require that no zero ofW may lie on the axis of symmetry:

W(0, ξ2) /= 0 for all ξ2 ∈ R.(6.5)

For any two zerosp, q of W, we recall thatepq denotes the minimum energyF
of a heteroclinic trajectory connecting the wellsp andq, andZpq the collection
of minimizing paths (normalized by symmetry,z(−t) = γ ◦ z(t)) which connect
p to q. Let

e := min{epq : p, q zeros ofW with q = −p.}
We prove the following:

Theorem 6.1 Supposea, b = −a are zeros of W with eab = e, and thatZab

has only finitely many elements. Then there exists a solution of (1.1) satisfying the
asymptotic saddle conditions (6.1)–(6.4) for some z∈ Zab.

As the proof of Theorem 6.1 is very similar to the proofs of Theorem 3.3 above
and Theorem 1.1 of [3] we only provide a brief sketch of the essential elements,
and leave certain details to the interested reader.

As for the heteroclinic solutions studied earlier we will impose symmetries
on our admissible functions in order to avoid the losses of compactness due to
translation invariance. First, define the following symmetries of the square:

γ(ξ1, ξ2) = (ξ1,−ξ2), γ′(ξ1, ξ2) = (−ξ1, ξ2), γ′′(ξ1, ξ2) = (ξ2, ξ1)

Then, define the class of admissible functions

M̃ =

 U ∈ (H 1
loc(R2)

)2 ∩ (C0(R2)
)2

:
U ◦ γ(x) = γ ◦ U (x), U ◦ γ′(x) = γ ◦ U (x), U ◦ γ′′(x) = U (x),

andU satisfies (6.1)–(6.4) as|x| → ∞.


The saddle solutions we seek necessarily have infinite energy onR

2, and
unlike the heteroclinic solutions (which connect zeros ofW on each horizontal
slice) we see no obvious way to “renormalize” the energy to make it finite.
Nevertheless, we will proceed as in the proof of Theorem 3.3, solving boundary-
value problems for (1.1) in squares, and then passing to a limit as the length of
the sides tends to infinity. To this end, we denote byQL = [−L, L]2 the centered
square, and

M̃L =

{
U ∈ (H 1(QL)

)2
: U ◦ γ(x) = γ ◦ U (x), U ◦ γ′(x) = γ ◦ U (x),

U ◦ γ′′(x) = U (x), andU (x1, L) = zL(x1), U (L, x2) = zL(x2)

}
,

wherezL(t) = z(t)η(t/L) with smooth cut-offη(t) satisfyingη(t) = 1 for |t | ≤ 1
2

andη(t) = 0 for |t | ≥ 1. By symmetry, it suffices to do all computations in the
upper triangle ofQL, defined by:

TL = {(x1, x2) : 0≤ x2 ≤ L, −x2 ≤ x1 ≤ x2}.
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Consider first the minimization problem in the squareQL,

min
u∈M̃L

EL(u), EL(u) =
∫

QL

(
1
2
|∇u|2 + W(u)

)
dx1 dx2.(6.6)

The existence of a minimizerUL, satisfying equation (1.1) inQL and the given
boundary conditions on∂QL is standard. In fact, by the uniforma priori estimate
(4.2) satisfied by all solutionsUL of these boundary-value problems we may
extract a convergent subsequenceUL → U in C2,α(K ) for any compact region
K . U will solve (1.1) inR2; the difficulty is to verify the asymptotic conditions
(6.1)–(6.4). As in the heteroclinic case, this will be accomplished by means of
energy estimates.

We obtain a simple but powerful estimate on the minimum energyEL(UL) as
follows:

Lemma 6.2 There exists a constant C1 independent of L such that EL(UL) ≤
4eL+ C1.

This follows from a direct calculation of the energy of a test functionϕ. Define
ϕ first on TL \ T1 by ϕ(x) = zL=x2(x1) if x2 > 1 and x1 ∈ [−x2, x2]. Then we
obtain its values onQL \ Q1 by reflections,ϕ(Γ (x)) = γϕ(x) for Γ = γ, γ′,
andϕ(γ′′(x)) = ϕ(x). Thenϕ may be extended as a smooth symmetric function
inside the squareQ1. The computation is nearly identical to Lemma 4.1 of [3],
and hence is omitted here.

In order to compare the solutionsUL for different values ofL, we must fix a
squareQM and estimate the energyEM (UL) with M fixed. To do this we require
a lower bound on the energy as well. For the heteroclinic problem above, we
were able to obtain such a lower bound in Proposition 3.1, by using the fact that
each horizontal restrictionU (·, x2) is an admissible function for the minimization
problem onR, and hence has its one-dimensional energyF bounded below by
e. The difference in the saddle geometry is that the horizontal lines making up
the triangleTL now have their endpoints on the diagonals of the squareQL, and
hence we cannot control the boundary values on these (finite) intervals. In order
to overcome this geometrical problem we derive a lower bound on the energy
based on solutions of Neumann boundary-value problems (see [3].) Define

eL,N = min

{∫ L

−L

[
1
2
|z′(t)|2 + W(z)

]
dt : z ∈ H 1([−L, L]), z(−t) = γ ◦ z(t)

}
.

Standard arguments show thateL,N is attained by one-dimensional solutions of
(1.1) on [−L, L] with Neumann boundary conditions onx = ±L. ClearlyeL,N ≤ e,
and it follows from Corollary 3.4 of [3] (and the fact that no zero ofW lies on
the axis of symmetry) that

e− eL,N ≤ C exp{−νL},
for positive constantsC , ν. From this estimate we may obtain a lower bound on
the energy in the annular regionQL \QM , 0≤ M < L:
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∫
QL\QM

[
1
2
|∇U |2 + W(U )

]
dx ≥ 4

∫ L

M

∫ x2

−x2

[
1
2

∣∣∣∣∂U
∂x1

∣∣∣∣2 + W(U )

]
dx1 dx2

≥ 4
∫ M

L

(
e− C exp{−νx2}

)
dx2

≥ 4e(L−M )− C2,(6.7)

for a constantC2 independent ofL,M .
Thanks to the lower bound (6.7), we may now obtain a sharper upper bound

on the minimizersUL, in terms of the energyEM with M ≤ L:

EM (UL) ≤ 4eM + C1,

with constantC0 independent ofL,M , and passing to the limit asL → ∞, we
have:

EM (U ) ≤ 4eM + C1.(6.8)

From the bound (6.8) we may now argue as in Lemma 5.2 above (or Lemma 4.6
of [3]) to show thatU (x1, x2) → v+(x1) asx2 → +∞. Indeed, by the lower bound
(6.7) we have ∫

QM

[
1
2

∣∣∣∣∂U
∂x1

∣∣∣∣2 + W(U )

]
dx ≥ 4eM − C2.

On the other hand, the full energy inQM is bounded above,EM (U ) ≤ 4eM +C1,
by Lemma 6.2. Hence, ∫

QM

∣∣∣∣∂U
∂x2

∣∣∣∣2 dx ≤ C3

with C3 independent ofM . Passing to the limit asM →∞,∫
R2

∣∣∣∣∂U
∂x2

∣∣∣∣2 dx ≤ C3 <∞.

Now we may follow the steps of Lemma 5.2 to conclude that

lim
x2→+∞ sup

x1

∣∣∣∣∂U
∂x2

∣∣∣∣ = 0.

(See also Lemma 4.6 of [3].) LetU y(x) = U (x1, x2 + y). Then for any given
sequence{yn}n with yn →∞, there is a subsequence, which we still denote by
{yn}n, such thatU yn converges uniformly in any compact set inR2 to a function
v(x1) asyn →∞.

Following the argument in the first paragraph of the proof of Lemma 5.1 we
may conclude thatv must connect zeros ofW asx1 → ±∞. Since no zero ofW
lies on the axis of symmetry betweena and b, and sincev is itself symmetric,
it must join a symmetric pair of minima, sayp andq = −p. By hypothesis,eab

is minimal over all such symmetric pairs, soepq ≥ eab. If the strict inequality
F (v) > eab were to hold, then letε = 1

2(F (v)− eab) and chooseM1 with
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|v(−M1)− p|2 < ε

8C0
,

and constantC0 as in Lemma 2.1. For any constantM > 0, there existsyM such
that

|v(x1)− U (x)| ≤ ε

4C0
, ∀x ∈ [−M1,M1] × [yM , yM + M ] ⊂ TyM +M .

Then, from Lemma 2.1 we obtain the following lower bound:

C1 ≥
∫

TyM +M \TyM

(∣∣∣∣∂U
∂x1

∣∣∣∣2 + W(U )

)
dx− eabM

≥ M (F (v)− ε− eab) > M ε.

Since M > 0 is arbitrary, this contradicts the upper bound obtained in The-
orem 6.2. Hence,v is a minimizer of F among curves connectingp, q with
F (v) = epq = eab.

To show thatv must in fact connecta, b, we use an argument similar to the
lower bound of Proposition 3.1 or Lemma 4.5 of [3]. Letδ > 0 be fixed with
δ < 1

2‖v−z‖∞ for all z ∈ Zab. By the convergenceUL → U , for everyM > 0
there existsL such that

|UL(x1, yM )− v| < δ

8
for all |x1| ≤ M and someyM ∈ (M , L). On the other hand,UL(x1, L) = z(x1)
at x2 = L, so UL(·, x2) must eventually exit a neighborhood ofv, then enter a
neighborhood of somez ∈ Zab. As in the proof of Proposition 3.1, there exist
y1

M andy2
M with M < y1

M < y2
M < L, z ∈ Zab, andµ > 0 (independent ofL,M )

such that:

max
|x1|≤M

|UL(x1, y
1
M )− v(x)| < δ

4
, max

|x1|≤M
|UL(x1, y

2
M )− z(x)| < δ

4
,(6.9) ∫ x2

−x2

1
2

(∣∣∣∣∂UL

∂x1

∣∣∣∣2 + W(UL)

)
dx1 > eab + µ, ∀x2 ∈ (y1

M , y2
M ).(6.10)

(The inequality (6.10) rests on a finite-interval version of Lemma 2.4. See Propo-
sition 3.9 of [3].)

We may now estimate the energy from below:

C1 ≥
∫

Ty2
M
\Ty1

M

(∣∣∣∣∂UL

∂x1

∣∣∣∣2 + W(UL)

)
dx1 − eab(y2

M − y1
M )

≥ µ(y2
M − y1

M ) +
∫

Ty2
M
\Ty1

M

1
2

∣∣∣∣∂UL

∂x2

∣∣∣∣2 dx2 dx1

≥ µ(y2
M − y1

M ) +
∫ M

−M

∫ y2
M

y1
M

1
2

∣∣∣∣∂UL

∂x2

∣∣∣∣2 dx2 dx1

≥ µ(y2
M − y1

M ) +
δ

4
2M

y2
M − y1

M

≥ δ
√

2µM .
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[Note that the integral of|∂UL
∂x2
|2 is estimated as in (3.2).] SinceM is arbitrary, we

obtain a contradiction with Theorem 6.2. We conclude thatv ∈ Sab, and since
F (v) = eab moreoverv ∈ Zab.

It remains to show that the limit functionv is unique (and hence independent
of the choice of a subsequenceyn → ∞.) By hypothesis, the set of minimizers
Zab has only finitely many elementsz1, . . . , zN , and hence we may conclude
that

δ = inf
i/=j
‖zi − zj ‖∞ > 0.

ChooseM > 0 large enough such that infi/=j ‖zi−zj ‖L∞(−M ,M ) > δ/2. If U (x1, x2)
were to have distinct limitsz, z̃ ∈ Zab along subsequencesx2,n, x̃2,n → +∞,
then we could find another subsequenceyn → +∞ (yn lying betweenx2,n, x̃2,n)
with ‖U (·, yn) − zi ‖L∞(−M ,M ) ≥ δ/4 for eachi = 1, . . . ,N . But, repeating the
above arguments with the sequenceyn would then yield a contradiction, as a
further subsequenceU (x1, ynk ) would then converge to an element ofZab in
L∞(−M ,M ).

In conclusion, limx2→+∞ U (x1, x2) = z(x1). Finally, by repeating the analysis
of Theorem 4.7 of [3] we may prove that the above limit isuniform in x1.
By symmetry of the solutionU we may conclude that the corresponding limit
conditions (6.2)–(6.4) are also satisfied, andU is the desired saddle solution.

Remark 6.3Note that ifZab consists of a single trajectoryz(t) the above con-
struction may be made without imposing symmetry with respect to the diagonal
of the square,γ′′. Generally, ifγ′′-invariance is not imposed on the admissible
classM̃ it is possible thatU tends to distinct minimizing curves in differ-
ent directions:U (x1, x2) → z1(±x1) as x2 → ±∞ but U (x1, x2) → z2(±x2) as
x1 → ±∞ with z1, z2 ∈ Zab different minimizing curves forF in Sab.
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