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ABSTRACT. — We present a direct PDE approach to study the behavior
as e€—-0 of the solution #* of the reaction-diffusion equation:
wi—eAur=(1/e) f(&*) in RN x (0, o0) in the case when f'is the derivative of
a bistable potential. Such singular perturbation problems arise in the
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480 G. BARLES, L. BRONSARD AND P. E. SOUGANIDIS

study of large time wavefront propagations generated by such equations
following a method introduced by M. Freidlin.

ReEsuME. — Nous présentons une méthode EDP directe pour étudier le
comportement, quand £¢—0, de la solution #* de P’équation de réaction-
diffusion : u*—eAw*=(1/e) f(u*) dans RN X (0, c0) dans le cas ou f est la
dérivée d’un potentiel bistable. De tels problémes de perturbation singuliére
interviennent dans I’étude asymptotique des fronts de propagations générés
par de telles équations, en suivant une méthode introduite par M. Freidlin.

1. INTRODUCTION

In this paper we present a direct PDE approach to study the behavior
as ¢ = 0 of the parabolic initial value problem

1 .
w=eAut+ —f(*) in R¥x(0,0),
€
0.1
W (x,0)=uy(x) in RN, ©.1
where the function ur f(u) is of “bistable type”, i.e. has two zeros A_
and A, at which f” is negative and (for simplicity) has only one other zero
between them. In the sequel, we normalize £, = +1 and we denote the
third zero by pe(—1,1). Moreover, again for simplicity, we will present
the main arguments only for the special cubic nonlinearity

f@)=2@w—p(1—-u?); 0.2)
the general case follows along the same lines.

A general motivation for considering such types of singular perturbation
problems is the study of front propagations. In general, reaction-diffusion
equations (or systems) model physical, chemical or biological phenomena
in which fronts develop naturally for large times; e. g. flame propagation
in combustion, phase transitions or evolutions of populations. To study
this question, Freidlin ([Fr1], [Fr2]) introduced a scaling of order ¢! in
both space and time. Such a scaling transforms equations like

u,=Au+f(@w) in RNx (0, c0) 0.3)

into

w=eAut+ Lra) in R (0, 00), (0.4)
€
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R. D. EQUATIONS OF BISTABLE TYPE 481

where #° (x, 1) = u ((x/€), (t/€)). The basic idea is that (0.4) should reproduce
in finite time the properties of (0.3) as t — oo, while the scaling in the x-
variable suggests that the front should remain in a bounded region in
space for bounded times. Then the initial data for (0.4) corresponds to
initializing the position of the front. Also, since the reaction rate in (0.4)
is large compared to the diffusion rate, the fronts develop quickly, given
that the solution is close to the pure reaction equation 1= (1/¢) ().

Equation (0.4) is a non conservative of “type A” Ginzburg-Landau
equation in the terminology of [GSS]. The model is thought to describe
the dynamics of phase boundaries as internal surfaces in various alloys
(see e.g. [AC]). In the case p=0, (0.4) was proposed in [AC] as a model
for the motion of antiphase boundaries in crystalline solids. There are
also a number of other situations where Ginzburg-Landau type dynamics
lead through singular limits to geometric models for phase boundary
motion (see e. g. [Ca], [CaF], [P]).

Our approach is a natural continuation of a general program initiated
by Evans and Souganidis [ES1] (see also Evans and Souganidis [ES2],
Barles, Evans and Souganidis [BES]) in order to use viscosity solution
related methods to study singular perturbation problems. To give a formal
justification of our approach as well as to explain our results, we consider
the one-dimensional problem

2w 1 .
=g + —f() in Rx(0,0), (0.5)
ox*> ¢
which is associated to the reaction-diffusion
2
U= ‘2_’2‘ +7@) in Rx(0,0). (0.6)
X

In this case, it is well known that, as r — oo, u(x, ¢) tends to either 1 or
—1, which are the two stable equilibria of the dynamical system

v=£(v), 0.7)
or, equivalently, the two local minima of the bistable potential F defined
by F'=f. The front may be seen as the set separating the regions where
ux1 and where u~x —1. Moreover, (0.6) has a traveling wave solution
[AW], i.e. a solution of the form g (x—o 1), where g is the unique (up to
translations) strictly increasing solution of

aqg +¢"+f(g)=0 in R, 0.8)
which connects the stable equilibria of (0.7), i.e. g(£o0)==x1. The

velocity « is also determined uniquely, since the potential is bistable. In
the special case of the cubic nonlinearity (0.2), an easy computation yields

q©)=1h (%) (éGR)}

=2 ©0.9)
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482 G. BARLES, L. BRONSARD AND P. E. SOUGANIDIS

We now consider (0.5) with f as in (0.2) together with the initial datum
wW(x,00=10 10" licw 0 In R,

which corresponds to initializing the front at x=0. (Here 1, denotes the
characteristic function of the set A.) In this setting, we expect that the
solution to (0.6) converges to g as t - co and therefore, as € - 0,

Ut (x, t)zq(x_at)
€

Hence,

lim 2 (x, ) =1, 4 o) (Xx— )= 1_ 4 o (x— D).
e—>0
In other words, the front propagates with constant speed a.

At this point we should remark that Fife [Fi] and Rubinstein, Sternberg
and Keller [RSK] suggested via formal expansions, that asymptotically
the speed of the front is in fact a+eK+o(g), where K is the mean
curvature of the front. Moreover, relation (0.9) shows that the case p=0,
studied by Allen and Cahn [AC], corresponds to o«=0; in this case the
speed of the front is given by €K, as expected. This was proved by
Bronsard and Kohn [BK1] in the radial case, using energy type estimates.
The general case (still with a«=0), but only for the case of classical
motion, was proved by DeMottoni and Schatzman [DS1], [DS2] by finding
appropriate error estimates on the asymptotic expansion of #* and, more
recently, by Chen [Ch] using sub- and super-solutions. (For results in one
space dimension, see [CP], [FH], [BK2].) In the case where the motion is
not classical, the result was recently obtained by Evans, Soner and Souga-
nidis [ESS] using viscosity solution techniques and the notion of general-
ized motion by mean curvature.

In this paper we will prove that, at the e=0 level, the front moves with
speed o in the sense that we will now make precise. To this end we
introduce the set

Go={xeRY|uy(x)>n}, (0.10)
and make the assumption
RY=G, U {xeR"|u, (x)<p} U IG,
and 0.11)
0G, is smooth.

With this assumption, dGo={xeRN|uy(x)=p} is the position of the
front at time 7=0. A very special case of initial datum is then
uy=1g,— lgg- We also define the signed distance to G, by

d(x)={ d(x,0G,) if xeG,, }

. 0.12)
—d(x,0G,) if xeGg.

Annales de I'Institut Henri Poincaré - Analyse non linéaire



R. D. EQUATIONS OF BISTABLE TYPE 483

Finally, throughout the paper we assume
—15u,<1 in RN (0.13)

Our result is:

THEOREM. — (1) lim u*(x, f)=1 uniformly on compact subsets of
e—>0

{(x, )RV % (0, 00) | d(x) >0t}

(i) lim u*(x, £)= — 1 uniformly on compact subsets of
e—>0

{(x,NeRY%(0,00)|d(x)<at}
(i) u* (x,)=g ((v(x,0)+0(1))/e) as € > 0, where v is the unique viscosity
solution of
v+ B (Do~ +a=0 in {d(x)>at,t>0},
v,—ﬁ_(|Dv|2—l)+a=0 in {d(x)<oct,t>()},

v(x,)=0 on {d(x)=at}, (0.14)
+oo if ug(x)=1,
v(x,0)=1{ -0 if ug(x)=-1,

0 if —l<u,(x)<1,

where B_ =(<x—\/cx2—4f’(— 1)/2) and B. =(oc+\/oc2—4f' (1)/2). More-
over, the limit above is locally uniform on compact subsets of RN x (0, c0).

The main consequence of this result is that at time ¢ the position of the
front separating the regions where »*— 1 and #* —» —1 is given by the
equation d(x)=at. The geometrical interpretation of this result is that the
front propagates with a constant normal velocity o ([B]).

A slightly less precise result has been already obtained by Gaértner [G]
using a combination of probabilistic and PDE techniques. In fact, Gartner
worked on more general parabolic equations

1 .
Uy =e(a; () Ul )y, + ~f(x, 1) in RYx (0, 00),
€

where f again comes from a bistable potential. Here we provide a simpler,
purely PDE proof which is less local in character. In addition, we give
the precise rate with which «* approaches +1 via the WKB-type approxim-
ation stated in the theorem. The general case has been recently obtained
by Barles, Soner and Souganidis [BSS].

Our methods rely on the theory of viscosity solution, which was introdu-
ced by Crandall and Lions [CrL]. One of the basic steps in this approach
is to make a change of the unknown of the form

ug(x,l)=q<zi):i)>. (0.15)

Vol. 9, n° 5-1992.



484 G. BARLES, L. BRONSARD AND P. E. SOUGANIDIS

Such a transformation is a natural extension of the logarithmic change of
variables introduced in the context of stochastic control by Fleming [FI]
and later applied in several contexts involving large deviations for diffusion
processes (cf. [EI], [FIS], etc.) or problems related to front propagation
(cf. [ES1], [ES2], [BES]). The main technical tool for our approach was
developed in a paper by Barles and Perthame ([BP]) (see also Ishii [I]).
This tool allows passage to the limit in singular perturbation problems
with almost no estimates at all; the compensating factor being the strong
uniqueness of the limiting equations. In the case at hand, however, the
WKB type change (0. 15) gives rise, at the limit, to

v,+(B.sgn* (v)+P_sgn” (v)) (|Dv[*~1)+a=0 in R¥x(0,00), (0.16)
which possesses strong non-uniqueness properties.

The paper is organized as follows: Section 1 describes a reduction
process to the “‘radial case™, i. e. when

W (x,0)=015— Ly, 0.17)

where 0(0,1) and B is some ball in RN. In section 2 we obtain all the
information needed to perform the limiting process described in Section 3.
Finally, in Section4 we identify the limit and, thus, conclude the proof of
the theorem.

SECTION 1

In this section we reduce the question of the asymptotic behavior, as
€ >0, of (0.1) to the case where the initial data are given by (0.17).

LemMma 1.1. — Assume that the theorem holds for initial data given by
(0.17). Then the theorem holds for any initial data satisfying the general
assumptions.

Proof. — The proof is based on using solutions associated with initial
data like (0.17) as subsolutions of (0. 1).

To this end, let (x,7)eRNx (0, 0) be such that d(x,dG,)<ot; there
exists x, € Int (G,) such that |x—x,|<o7 and a ball B centered at x, such
that u,=6>0 on B. Since u,= —1 in R, we have

Up=01g— 1z in RN

If #* denotes the solution of (0.1) with initial datum given by the right
hand side of the above inequality, the maximum principle yields

w=<uwr<l in R¥x (0, ).
Moreover, since B < G,
d(x,0B)<d(x,0G,) <al.

Annales de I'Institut Henri Poincaré - Analyse non linéaire
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The assumptions of the lemma together with the two observations above
imply that #* — 1 in a neighborhood of (x, 7), since the same holds for *.
To prove the second part of the theorem, we argue in the same way but
we change #* to —u%; o is then changed to —« and d to —d.

Finally, the last part of the theorem follows by an argument similar to
the above, comparing this time the functions »* defined by (0.15) with 2°
defined by u*= g ((+*/€)). Since there is an explicit formula for lim v, (which

e 0

is computed below), the conclusion follows easily. [

LEMMA 1.2. — Assume that the third part of the theorem holds for initial
data given by (0.17). Then the other two parts hold too.

Proof. — This is an immediate consequence of the transformation
(0.15), the properties of the traveling wave ¢ and the fact that the
solution v of (0. 14) is strictly positive when d(x)>a ¢ and strictly negative
when d(x) <o t. The third fact follows by computing the solution of (0. 14)

using the Lax-Oleinik formula ([L], [LSV]). This is done by first observing
that

v(x, )=ve(x,1)—at

for small ¢, where v, is the solution of (0.14) with a=0. In the case a <0,
this equality is true for all 1>0. If a>0, the equality is valid until the
region {d(x)>ot, t>0} disappears. Then one computes v, using the
classical Lax-Oleinik formula.

Another argument consists in applying the maximum principle for
viscosity solutions of (0.14). For example, if we consider the region
{d(x)>at,1>0}, then the maximum principle yields

v(x, )20 in {d(x)=ar},

since 0 is a viscosity solution in this region. On the other hand, if there
exists a point (xo, fo) € { d(x)>o 1, >0} such that v (x,, 7,) =0, then (x,, 7,)
is a minimum point of v and from the definition of viscosity solutions,
one has — B, +a =0, which is impossible. [

SECTION 2

The remainder of the paper is devoted to the proof of the theorem in
the radial case. For the sake of clarity, we will make few more reductions.
Henceforth, we will assume that the nonlinearity f is given by (0.2). This
allows us to use the explicit formula of ¢ given by (0.9). The general case
follows along the same lines but one needs to use the detailed behavior
of ¢ and its derivatives near + oo and to appropriately modify all the
arguments. Finally, we will present the whole proof only in the case where

Vol. 9, n® 5-1992.



486 G. BARLES, L. BRONSARD AND P. E. SOUGANIDIS

a=p=0 and we will indicate the minor changes needed when a#0 at the
end of Section 4.

In this section we obtain, in a somewhat non-standard way, various
estimates needed for passing to the limit. Moreover, we will deal with
resolving the non-uniqueness feature of (0. 16).

ProrosiTiON 2.1. — Let u® be the solution of (0.1) with f given by (0.2)
with w=0 and initial data as in (0.17). Then

—t< liminf elog(1—u*(y,s))< lim sup glog(1—u*(y,s))<0 (2.1)

£e—> 0 e—>0
(y,8) = (x, 1) (y,8) = (x,0)
and
-2
- lt— M§ lim inf elog(1+u°(y,s))
2 4[ e—>0
(¥,5) = (x,0)
. | d(x)"]?
< lim sup slog(1+u‘°‘(y,s))_§_§t— L(%]——, 2.2)

£—>0 t

(y,8) =2 (x, 1)

where d is the signed distance to 0B and d(x)™ = —sup (—d(x),0).

One may recognize in (2.1) and (2.2) large deviations type estimates.
We may in fact loosely interpret these two estimates as the analogue to
the probabilistic part in Gértner’s proof [G]. The proof of Proposition
2.1 is based on ideas introduced in [EI], [FIS], etc. for the treatment of
large deviation problems using PDE techniques.

Proof of Proposition 2.1. — We only prove (2.2), since (2.1) follows
along the same lines. To this end, we introduce the transformation

us=—l+exp(&>—exp<— é) (2.3)
€ €

where A >0. This exponential change comes up naturally in our context
as the tail of the traveling wave near +oo. The term exp(—(A/g)) is a
correction introduced to assure the a priori boundedness of w5. The initial
value problem by wj is

20t (1= @)
u+1+exp(—(A4/g))

2.4
810g<1+6+exp<— é)), if xeB, @49
wi(x,0)= &
’ —-A, if xeB-.

Wi —eAws— | Dwg = in BYx (0, o0). )

Annales de I'Institut Henri Poincaré - Analyse non linéaire



R. D. EQUATIONS OF BISTABLE TYPE 487

Estimating the right-hand side of the equation in (2.4), we obtain
1 1
-5 Swh, —eAw, —|Dwg |?< 5 in RN x (0, o).

We now introduce the functions

wa (x, )= lim sup w5 (3,5) and wa(x, )= lim inf w4 (y,s).
£€—>0 e—>0
(¥,8) = (x,0) (y,8) = (x, 1)
In view of the results of [BP], w, and w, satisfy in the viscosity sense the
inequalities

wa— | Dwy > < and  w, ,—|Dw,[*=— %, respectively.

N | —

Let z, be the unique viscosity solution of
Za.—|Dzo[*=0 in RYx(0, o0),
0 if xeB, (2.5)
zy(x,0)=
A (2.0 { —~A  if xeBS,
Using the comparison results of Crandall, Lions and Souganidis [CrLS],
which are based on the regularizing properties of (2. 5), we obtain

(0= S SwAn St S in B O.) (2.6
But z, is given explicitely by the Lax-Oleinik formula, i.e.

z, (x, )= sup {ZA(y,O)— Bl‘z}

yerN 4t
On the other hand, it is easy to check that
wa(x,)=sup{ —A, lim inf elog(l+u*(y,s))}

g >0
(y,8) = (x, 1)

and

wa(x,)=sup{ —A, lim sup elog(1+u*(y,9)}.
£e—>0
(y,5) = (x, 1)

We conclude by letting A — + oo in the formulae for z,, w, and w, and
by using (2.6). O

Remark. — Proposition 2.1 and, especially, its proof, are a non-
standard replacement for L™ estimates for the functions »* defined by
(0.15). Indeed, since

argth ()= %(log (t+1—log(1—1)),

Vol. 9, n® 5-1992.



488 G. BARLES, L. BRONSARD AND P. E. SOUGANIDIS

inequalities (2. 1) and (2.2) will provide the desired estimates for lim sup +*
and liminf+*.

Next we use Proposition 2.1 to obtain some information about the
limiting behavior of the #*’s as € = 0.

ProposiTiION 2.2. — Under the same hypotheses as Proposition 2.1,
lim u*=1 uniformly on compact subsets of the cone
€= 0

C={(x,neR"x(0, oo)ld(x)>2\/ﬁ}.

Proof. — Consider the function w* defined by w*=(0—u)*. Since t+>¢*

is a convex function, classical arguments yield that w* satisfies
wi—eAw* < —2uf(1—(%)?) in RNx (0, 00). 2.7
Moreover, since —1=<u#*<1 by the maximum principle, (2.7) yields
w'—eAw*<2w* in RNx (0, ),

with
0 if xeB,

£ (x,0)=
W 0) {1+9 if xeB.

We now introduce the transformation

we(x, t)=exp<z£(x’ t)>—exp<— é)
€ g

Working along the lines of the proof of Proposition 2.1 we obtain

WE(X [)Sexp(M)
— 8 >
where
z(x, )= — M +21.

41
Therefore, w* — 0 as € — 0 on compact subsets of C, or, equivalently,
u(x,t)= liminf #°(y,s)=6>0 on C.
(y,;):(zx, ]
On the other hand, taking lim sup on both sides of (0.1), we get
—2u(1-4*)=0 in RNx (0, ).
Combining the last two inequalities yields

u=1 on C.

Annales de I'Institut Henri Poincaré - Analyse non linéaire



R. D. EQUATIONS OF BISTABLE TYPE 489

Finally, since —1<#*<1 in RY x (0, c0), we have
u(x,f)= lim sup #*(y,5)<1 in R¥x(0, c0),

>0
(y,8) = (x, 1)

and, therefore,

u=u=1 on C.

In view of the definition of u and u, the last equality concludes the
proof. [J

SECTION 3

In this section we find the equation satisfied by the limit of the functions
2* (defined by (0.15)) as € » 0. Since we do not know a priori that this
limit exists (recall that we only have L* bounds on v%), we need to employ
again the limsup and liminf passage to the limit. To this end, we define
the functions

v(x,f)= lim sup +*(y,s) in RNx (0, c0) (3.1)
£§—>0
(y,8) = (x, 1)

and

v(x,)= lim inf 2,(y,s) in RYx (o, ), 3.2)
e§—>0
(¥,8) = (x,1)
and we identify the equations satisfied by them. Before stating the results,
we want to remind the reader that we are only treating the case of f as in
(0.2) with a=p=0.

ProPOSITION 3.1. — The functions v and v defined by (3.1) and (3.2)
are locally bounded in RN x (0, 00) and respectively viscosity sub- and super-
solutions of (0.16) in RN x (0, c0). Moreover, they are respectively viscosity
sub- and super-solution of

0,+2(Do|*~1)=0 in C. (3.3)

Before we proceed with the proof, we need to explain in what sense is
(0.16) satisfied when v=0, i.e. when there is a discontinuity in the
problem. The notion of viscosity solution for equations involving disconti-
nuities was first given by H. Ishii [I]. In the case of (0.16), this notion is
reduced to saying that on the set where v and v are equal to zero, they
are respectively sub- and super-solution of the relaxed problems

v,+min(|Dov[*~1,1-|Do[*)<0

Vol. 9, n® 5-1992.



490 G. BARLES, L. BRONSARD AND P. E. SOUGANIDIS

and
v,+maX(IDv|2-l, l—lelz)gO.

A final comment is that the second part of Proposition 3.1 gives better
information on the limiting equation in C. This is a very important fact,
for it will allow us to deal with the non-uniqueness of (0. 16).

Proof of Proposition 3.1. — Since
1
vP= E{slog(l +uf)—elog(1—uH) },
we have

_ 1
v(x,t)éi{ limsup elog(l+u*(y,s))— liminf elog(l—u(y,s))},

e—>0 £§—>0
(:5) > (x, 1) (3,9 > (x, 1)
which, in view of (2.1) and (2. 2), yields
-12
s n< SO e 0, 00,

4 81t

Similarly using (2.1)-(2.2) and the properties of lim inf and lim sup, we
obtain the estimates

seanz— L - MO a0, 00,

4 8t
-12

v(x,t)S2 _ [de7T in RNx (0, c0),

4 81
and

vz — L= O ey 0, o0,

4 81

We now turn to the passage to the limit. To this end, we recall that +*
solves the equation

vf—sAvs+2th(§>(|Dvs|2—1)=0 in RNx(0,00),  (3.4)
and we introduce the Hamiltonian H, defined by
H, (r, p, M) = —str(M)+2th<§)(]p]2— 1,
for reR, pe RN and M €SV, the space of N x N symmetric matrices. Here

tr (M) denotes the trace of M. Employing the results of [BP] (see also
Barles and Souganidis [BS]), using that o* solves the equation

oi+H, (v%, D, D209)=0 in RNx (0, o0)

Annales de I'Institut Henri Poincaré - Analyse non linéaire
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and that v and v are locally bounded in RN x (0, c0), we obtain that v and

v are respectively viscosity sub- and super-solutions of
2,+H(5D5,D?5)<0 in RNx (0, o)

and

2t+ﬁ@a DE,DZE)éo il’l RNX(O’ OO),

with H and H given by
He.pM)=  lminf  H,(5.q.N)

e—>0
(s, q,N) = (r, p. M)

and
H@,p,M)=  limsup H,(s,q,N).
£e—>0
(s,4,N) = (r, p. M)
Now, to conclude the proof of the first part of Proposition 3.1, we only
need to compute H and H. It is straightforward that
H(.p.M)=H(.p.M)=2sgn @) (p[*~1)  if u=0,
while, if =0,
H(O,p,M)=min(|p|*~1,1—|p[*)
and
H(0,p,M)=max (p|*—1,1—|p ).
Finally, it remains to prove the last point. To this end, observe that (3.4)
may be rewritten as
v —eA v+ 2w (|Dof P~ 1)=0 in RN x (0, c0). (3.5)
We want to pass to the limit as € -0 in (3.5) for (x,?#) in the cone C.
This time, we consider the Hamiltonian

H, (x,,p, M)= —etr M)+ 2 (x, ) (|p|*— 1)

for (x,7)eC, pe RN and M eSN. Arguing as before and using Proposition
2.2, we find that F, converges uniformly on compact subsets of
C xRN x SN to the Hamiltonian

A(x,t,p,M)=2(p|*—1) in Cx R¥xSN.

Hence, v and v are respectively viscosity sub- and super-solutions
of 3.3). O
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SECTION 4

In this section we identif the limit of the v*’s as € — 0.

PROPOSITION 4.1. — Let v end v be defined by (3.1) and (3.2) respec-
tively. Then

v=v=v in RNX(0,00), 4.1

where

2t if dx)=2t,
d(x, if —4t=d(x)<21,
[d (X))

YN o if d< -4t
8 1

v(x, )= 4.2)

Before we give the proof of Proposition 4.1, we conclude the proof of
the theorem in the radial case, when a=0.

Proof of Theorem. — It is immediate that (4.1) yields the uniform
convergence of ©° to v on compact subsets of RN x (0, o0). Therefore,

u‘(x,t)=th<M> in RN x (0, 00), 4.3)
€

where o (1) is uniform on compact subsets of RN x (0, «0). Now since v>0
in {d>0}and v<0in {d<0}, (4.3) implies the local uniform convergence
of * to —1in {d<0} and to 1 in {d>0}. Finally, the uniqueness of v
follows as in [CrLS). O

Proof of Proposition 4.1. — We begin by noting that we cannot use
any standard comparison result (based on viscosity solutions) for (0. 16).
To see this, let

H(u,p)=2sgn(w) (|p|*—1)

and observe there is no yeR such that the map u—H@u,p)t+vyu is
nondecreasing for all peRN, the latter being a necessary condition for
uniqueness. Indeed, for |p|<1, we have formally (0H/du) (0,p)= — 0.
However, when |p|=1, the map u+— H (u, p) is nondecreasing. The main
idea of the proof is to build ad hoc sub- and super-solutions of (0. 16),
with gradients having norms bigger than 1 in an as large as possible subset
of RN x (0, o). In fact, we really want this outside C, since in the cone C
we have additional information regarding the equation satisfied by v and ».

We will organize the construction of the above mentioned auxiliary
functions in a series of lemmas. We present their proofs at the end of the
section.
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LemMMA 4.2. — The function w(x, t)=d(x)— ot is a viscosity supersolution
of (0.16) in RN x (0, 00). Moreover, it is a solution of

ID,wlP=1 in R¥x(0, ). (4.3)

We stated this lemma also for the non-zero speed cases, because this
will be the only additional argument needed to treat, in particular, the
a>0 case.

LEmMA 4.3. — For all 6=0 and 0<B <2+ 0, the functions defined by

g B-=0): if dx)zB1,
d(x)—01 if —4:1=d(x)<B1,

wsCOT ep

‘( v -@2+0):r if d(x)<0,

are viscosity subsolutions of (0.16) in RN x (0, z,), where ty=(1/6) max d(x).

xe RN
The main property of the subsolution in Lemma 4.3 is that

|Dvg g|=1  if d(x)>Br.

Now we continue with the proof of the proposition. First we compare
the subsolution v with the supersolution w (with «=0). Using
v(.,00<w(.,0) in RN, the fact that w satisfies (4.3) together with the
upper bound for v obtained in Proposition 3.2 (needed here to take care of
difficulties when | x| — c0), we can apply standard comparison arguments
(cf. [CrIL]) to get _

v(x, )Sw(x,)=d(x) in RNx(0, c0). 4.4
In particular v(x, )<0 in {(x,7)eRYx(0,0)|d(x)<0}.
Next, we turn to the comparison of v and v, g for some 0, . We choose

6=1 and B=3. Using the lower bound for v obtained in Proposition 3.2,
we see that

vy, 3(60)—v(x,)=<Cr in RNx(0,1,), 4.5)

for some constant C>0. Moreover, |Dv, ;(x, t)|;1 if d(x).<3t, and,

hence,

|Dvy 3|21 in a neighborhood of C*.

Employing again standard comparison results for viscosity solutions we
obtain

v1,3(60)=0(x, ) in RNX(0,1,). (4.6)
In particular, v (x, £)>0 if d(x) >, which yields
2,+|Dy|?—120 in C,={(x,)eRNx(0,00)|d(x)>1}.
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We repeat now the above argument using C,; in place of C and v, 3, in
place of v, ;. We obtain
Vo, 32 (6 D= (x, 1) in RNx (0, 00), 4.7
which implies
v(x,))>0 in {(x,HeRYx(0,00)|d(x)>0}.
Combining (4.4), (4.6) and the inequality v <v, which holds by the very
definition of v and v, we deduce that » and v are respectively viscosity
sub- and super-solutions of (0.14) with a=0. Applying again standard
comparison results we obtain
v<v=<v in R¥x(0,c0),
since v is the solution of (0.14) computed by the Lax-Oleinik formula.
The last inequality clearly implies v=7=7v in RNx (0,00). O
Proof of Lemma 4.2. — The function w is concave in (x, r). Therefore,
for e C* (RN x (0, 0)), if (xq,%,)€RNx (0, 00) is a minimum point of
w— 0, then w is differentiable at (x,, #,). With this observation the rest of
the proof is standard and we will omit it. [
Proof of Lemma 4.3. — Let z; be the unique solution of
z,+B(Dz[*~1)=0 in Bx(0, ),
z(x,£)=0 on B X (0, o),
z(x,0)=0 in B.
It is easy to check that
zg(x, )=inf(d(x),B7) in RNx (0, 0),
hence,
v, 5 (X, )=25(x,)—0¢ in Bx(0, 00). 4.9
The claim of the lemma can be easily checked at every point of differentia-
bility of v, 4 by simply computing the derivatives. On the other hand v, 4
is positive in a neighborhood of {d(x)=B¢} and solves [by (4.9)]
v,+B(’Dv[2— 1)+6=0.
Hence
v, +2(Dv|*—1)=2—B)|Dv|*+(B—6)—2.
The right hand side of the equality above is non negative. Indeed, if f>2
this follows from the assumption B<6+2, while if <2,
- P)| Do +(B—0)—2=Q2—B)+(B—0)—2=—0<0,
since iDv ] <1. The same argument holds at the point (x,,?,), where
Xo is the center of the ball B, as long as v, 5(x,0)>0 i.e. for
t<ty=(1/0) max d(x). O

xeRN
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We conclude this section with a short discussion of the case of non-
zero speed. The proof follows along the same lines, the only difference
being that, in the case where >0, the region where u° (., ) — 1 disappears
in finite time. Indeed, if a <0, it is easy to check that

v, (x,8) = v(x,f)—at locally uniformly in RN x (0, o0),

where v is given in Proposition 4.1. Roughly speaking, this is due to the
fact that the region where the sign of v (x, f)—a ¢ is different from the sign
of v(x, 1), is included in the region where |Dv|=1.
If «>0, this result remains true only up to the time ¢,=1/0 max d(x).
xeRN
Past this time, we know by Lemma4.2, that

lim sup¢®(x,£)<0 in RNx(z,, + o0).

Y
It is then easy to check that
v* = v locally uniformly in RN X (z,, + o),
where v is the unique solution of

5, —2(|Dv|?*—1)+a=0 in R¥x(t, + )
v(x,t)=v(x,t)—at, in RN. O
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