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Abstract 

We study the limiting behavior of the solution of 

N, - c2~,.y + ZO - u = 0, u < x < b,  

with a Neumann boundary condition or an appropriate Dirichlet condition. The analysis is based on 
“energy methods”. We assume that the initial data has a “transition layer structure”, i.e., u‘ = f 1 except 
near finitely many transition points. We show that, in the limit as c + 0, the solution maintains its 
transition layer structure, and the transition points move slower than any power of e .  

1. Introduction 

We study the initial-value problem 

with either a homogeneous Neumann boundary condition, 

(1.2) u,(a, t )  = uJb, t )  = 0, t > 0, 

or else a Dirichlet condition of the form 

Our interest is in the limiting behavior of u = u‘ as c + 0. The initial data are 
assumed to have a “transition layer structure”. The precise hypotheses are given 
in Section 3; the main point is that u y x ,  0)  x +1 except near finitely many 
transition points (see Figure 1 ). It turns out that u‘ maintains its transition layer 
structure, and the transition points move very slowly as t + 0. Our main results, 
Theorems 4.1 and 4.3, assert roughly speaking that the transitions move slower 
than any power of t .  

Our work is closely related to that of Neu [ 221, Cam and Peg0 [ 5 1, [ 6 1, and 
Fusco and Hale [ 1 I], [ 121. Neu uses the method of matched asymptotic expansions 
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to predict the form of u‘( x, t ) ,  and in particular to predict the velocities of the 
transition points. The papers of Carr and Peg0 and Fusco and Hale give rigorous 
justifications of Neu’s formal analysis when u satisfies the Neumann boundary 
condition ( 1.2). According to these results the transition points move with velocities 
of order e-””‘, where C is a constant and I is the minimum distance between the 
transitions in the initial data. Our conclusion is weaker, since e-C‘ll‘ 6 eh for any k 
as t + 0. However our analysis has several advantages over those of [ 6 1 ,  [ 121 : ( 1 ) 
it is far more elementary, being based entirely on “energy-type” estimates; ( 2 )  it 
handles both boundary conditions ( 1.2) and ( 1.3) with equal ease; and (3 )  it places 
less stringent requirements on the form of the initial data. Moreover, our method 
provides a rather clear and intuitive explanation as to why the evolution should be 
so slow. 

The multidimensional analogue of ( 1 . 1  ), u, - r2Au + u3 - u = 0, has also been 
the object of recent attention. The situation is rather different in R”, n I 2, since 
then 14‘ has “transition surfaces” rather than “transition points”. As t + 0, the 
transition surface is believed to move with velocity t * ~ ,  where K is the sum of the 
principal curvatures. This was first ( to  our knowledge) observed by Allen and Cahn 
in [ I ] ,  based on a formal calculation. A much more detailed analysis, still formal 
in character, has been given by Rubinstein, Sternberg, and Keller in [ 151. We have 
proved the validity of this conjecture for certain radial solutions in [ 41, using a 
method very close to that of the present paper. .4 rigorous result without radial 
symmetry has recently been announced by De Mottoni and Schatzmann; see [ 7 ]  
and [ 251. The weaker assertion that the transition layer moves with velocity o( t )  

can be deduced from the work of Freidlin and GIrtner; see [lo], [ 131. 
There is a specific, physical motivation for studying ( 1.1 ): the multidimensional 

version was proposed in [ I ]  as a model for the motion of antiphase boundaries in 
crystalline solids. Similar equations also arise in other contexts: this is a “type A” 
Ginzburg-Landau equation, in the terminology of [ 131. 

There is also a broader and very fundamental reason to study ( 1.1 ), namely its 
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status as an example of dynamical metastability. It is well known that as t + co 
any solution of ( 1.1 ) is asymptotically stationary; for generic initial data u tends 
to a local minimum of the “energy” 

1 s : ’ [ f i i u : + i ( u 2 -  I dx; 

see for example [ I8 1, However our results show that this convergence is exceedingly 
slow: on a time scale of order c-& nothing happens! The transition layer function 
in Figure 1 is not a local minimum of ( 1.4), nor even a stationary point; however 
when c is small it may well appear stationary to a casual observer. It is common, 
especially in elasticity, to focus attention on local minimizers of energy as being 
the only observable stationary states. We learn from ( 1.1 ) that this can be dangerous: 
if small effects (such as surface energy) are present, then there may well be non- 
stationary states which persist for a very long time. 

The analyses of Carr and Peg0 and Fusco and Hale are based on the use of an 
ansatz for the form of u‘ ,  and on estimates for the linearization of ( 1.1 ) about this 
ansatz. Our method is totally different, much closer in spirit to recent studies of 
the stationary problem which make use of the notion of r-convergence ( [ 91, [ 161, 
[17],[19]-[21],[23],[24]). It isconvenient to normalize the energy so as to keep 
it positive and finite as t + 0; we therefore set 

a 1 E f [ u ] = S h [ ~ u : + ~ ( u 2 -  1 1 ) 2  dx 

for any u : (a, 6 )  + R. When specialized to one space dimension, the results of 
[ 191, [ 2 I 1, or [ 23 ] assert that the minimum energy of a transition between + 1 and 
- 1 is asymptotically 

2 d2 ( I  - s 2 ) d s = -  
3 .  

co = - 

In other words, if { u ‘ }  converges in L ’ ( ( a ,  b ) )  to a limit uo, and if uo makes N 
transitions between + 1 and - 1, then 

(1.7) lim inf E,[u‘] 2 Nco, 
r + O  

with equality if the sequence { u f }  is chosen properly. An essential step in our 
argument is an improvement of this result, what amounts to an error estimate for 
( 1.7): we shall show that for any k =- 0 

when t is sufficiently small. (See Proposition 2.1 .) 
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We now explain briefly why solutions of ( I .  1 ) with appropriately chosen initial 
data must evolve slowly. It is easy to verify that 

(1.9) E,[u'](O) - E , [ u ' ] ( T )  = E - '  lT s," (uf)' dx dt 

(see the proof of Proposition 3.1 ). Suppose that the initial data makes N transitions 
between + I and - I ,  and satisfies 

(1.10) E,[u'](O) s c& + tk. 

If we choose T = T, so that u'( 1 ,  T,) still makes N transitions, then ( 1.8) suggests 
that 

( 1 . 1 1 )  Ec[  uf](  T c )  2 c$u - C E k ,  

and substitution into ( 1.9) gives 

(1.12) 

If k is large and T, is not small then this forces u f  to be small, at least in the 
mean, as E --f 0. There are, of course, some technicalities: for example we will have 
to prove that T, B 0. Nevertheless ( 1.9)-( 1.12) show quite clearly why the evolution 
is so slow. The point is that the velocity u;  is linked to the dissipation of energy by 
( 1.9), while most of the energy is due to the mere existence of the transitions, 
regardless of their location, by ( 1.8). There is very little "excess" energy to be 
dissipated by the motion of the transitions, and so their evolution is very slow. 

A word is in order about the initial data. The analyses of Can  and Peg0 and 
Fusco and Hale assume that uf(x, 0) is close to a suitable ansatz; such uf will 
automatically satisfy ( I .  10) for every k > 0, so our hypotheses on the initial data 
are no more restrictive than theirs. Significantly, however, we still obtain a result, 
even if ( 1.10) is satisfied only up to some finite value of k :  then the transition 
points move with velocity O( ek+  I ) .  The ability to handle simultaneously this larger 
class of initial data is one of the advantages of our method. It should be emphasized, 
however, that like [6],[12] we are obliged to consider initial data which depend 
on t. Of the various methods yielding rigorous results about ( 1.1 ) as t --f 0, only 
that of Freidlin and Gartner is free from this deficiency; see [ l o ] ,  [ 131. (But see 
[ 81 for results on the Cauchy problem for ( 1.1 ) with t-independent initial data.) 

Our attention is focused on the specific equation ( 1.1 ) only for the sake of 
simplicity. In fact, our results extend quite easily to the more general equation 

ut - 2uxx  + F'( u )  = 0 
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where F is a bistable potential with both wells of equal depth. The case when u is 
vector-valued or F has more than two wells (always of equal depth) can be handled 
similarly, albeit with more effort, by using the methods of [ 241, [ 91, or [ 31. 

This work was strongly influenced by discussions with S. Luckhaus and R. Peg0 
during the fall of 1987. It is a pleasure to acknowledge their significant role in the 
development of these ideas. 

2. A Lower Bound on the Energy 

This section presents our lower bound on the energy due to the presence of N 
transitions. The result is purely variational in character: the evolution equation 
( 1.1 ) plays no role. 

We fix for the remainder of this section an integer N 2 1, and a piecewise 
constant function u : ( a ,  6 )  + { + 1, - 1 } with exactly Ndiscontinuities. The “energy” 
E, is defined by ( 1.5 ), and the constant co is given by ( 1.6 ). 

PROPOSITION 2.1. Let 1 be a positive integer. There exist constants > 0 and 
cI > 0 with the following property: i f w  is an H ’  function on ( a ,  b )  satisfying 

and 

with t S 1, then in fact 

(2.3) E,[ w ]  5 Nco - C/t‘. 

Proof: We consider first the case N = 1. The idea of the argument is this: using 
(2.1 ) and (2.2) we can select points where w is close to + 1 and - 1; applying the 
method of [ 2 13, [ 191, or [ 231 this leads to (2.3) with 1 = 1. That in turn allows us 
to select new points where w is closer to f 1, leading inductively to (2.3) for any 1. 

Let y be the point of discontinuity of u. Replacing u and w by -u and -w if 
necessary, we may assume that u = -1 on ( a ,  y). We choose 61 so that 

(2.4) (y - 216/, y + 2161) C ( a ,  b ) .  

We assert the existence of points xI E ( y - 261, y )  and y I  E (y, y + 261) such 
that 

(2.5) W ( X I )  5 -1 + cc”2, w(y1) 2 1 - ct“*. 
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(Here and throughout, C represents a constant that is independent of c, whose 
value may change from line to line.) Indeed, from (2.1 ) 

s,’ I U’ + I I dx s 6,. 

Setting 

(2.7 1 S +  = { x :  w(x)>=O}, s- = { x :  w ( x ) < O } ,  

it follows from (2.6) that meas( S+ n (a, y ) )  5 6/, and hence that 

Now, (2.2) yields 

whence there exists xI E S -  fl ( y  - 261, y )  such that 

Since w ( x I )  c 0, (2.10) entails 

w(x1) 5 - 1  + C€“2. 

The existence of y l  E S+ n (y,  y + 261) such that w(y , )  L 1 - Ct”’ is proved 
similarly . 

Next we prove that 

(2.1 I )  

as a consequence of (2.5). Since a’ + b2 B 2 la1 I bl,  the left side of (2.1 1 )  is 
bounded below by 

(2.12) 

where g’(s) = ( 1 / f i ) l s 2  - 11. Note that the constant co, defined by (1.6), is 

co = g( 1) - g(-1). 
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Using the monotonicity of g we conclude that 

(2.13) 2 co - CIE, 

establishing (2.1 1 ). Note that this implies (2.3) when 1 = 1. 
Now we argue inductively to prove the following assertions for 1 I k 5 I: 

There exist x k  E (y  - 2k&, y )  and yk E (y, y + 2k&) such that 

(2.14) w ( x k )  5 -1 + ctkI2 and w(yk)  2 1 - ctkJ2, 
with C = C( k) independent of c; 

(2.15) 

We have already completed the initial step, k = 1. Let us show that for k < I, 
( 2 . 1 q k  3 (2. 14)k+,  . Indeed, (2. l q k  and (2.2) yield 

from which it follows that 

with S- as in (2.7). By (2.1), 

(2.18) meas(S- n (xk  - 26/,  xk))  2 IS/ .  

Arguing as for (2.5) but using (2.17) and (2.18) in place of (2.9) and (2.8), we 
conclude the existence of xk+ E ( x k  - 26,, x k )  with the desired property. The 
existence of Y k +  I E ( y k ,  yk + 26/) is proved similarly. 

To complete the induction we must show that (2.14)k + =) (2.15)k + I if k < I. 
The argument is entirely parallel to (2.12)-(2.13): 
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making use of (2. 14)k+ I in the last step. Since (2.15) with k = 1 implies (2.3), we 
have completed the proof in case N = I .  

The preceding argument is fundamentally local in character, so it is readily 
adapted to handle the case N 2 2. Let v have discontinuities at points y I  < y2 < 

* * < yN; for ease of notation we set a = yo, Y N  + , = 6. The constant 61 should 
now be chosen so that 

(2.19) y, + 2/61 < y,+ I - 216, 0 5 i d N .  

We may assume without loss of generality that u 5 5  - 1 on ( a ,  y I  ). Arguing as for 
(2.5) we obtain the existence of points xi  E ( y, - 26,, y,) and y’, E (y,, y, + 26/) 
such that 

W ( X \ ) ”  ( - l ) , ,  w(y’ r )  = ( - 1 ) 1 + 1 ,  

( w ( x { ) 2  - 1)2 2 ct, ( w ( y { ) . l -  1 ) 2  5 Ct. 

The energy on each interval (xi, y’ , )  can be estimated as in (2.1 1 ) ;  adding these 
estimates gives 

which is (2.3) when I = I .  An inductive argument entirely parallel to that given 
earlier leads to (2.3) for the general case I h 2. 

Remark 2.2. Examination ofthe proofshows that the constants 6/and qdepend 
on u only through the number of its transitions and their distances from one another 
and from the endpoints of the interval. 

3. A Bound on the Time Derivative 

We now turn to the initial value problem ( 1.1 ) with boundary condition ( 1.2) 
or ( 1.3). The initial data should have a “transition layer structure”; we give this a 
precise meaning as follows. On the one hand, we suppose that 

v ( x )  = lim u f ( x ,  0)  
r - - n  

exists as a limit in the L I norm, and that v is a piecewise constant function taking 
only the values ? 1, with exactly N discontinuities. In addition, we suppose that for 
all sufficiently small t 

with co as in ( l h ) ,  and k a positive integer. The first condition fixes the number 
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of transitions in the initial data and their relative positions as t -+ 0. The second 
one demands that uf( x, 0)  make these transitions “efficiently,” i.e., with excess 
energy at most Ctk over the minimum possible (c.f. Proposition 2.1 ). Such initial 
data are easily constructed for any choice of u; indeed, by arguing as in [23] one 
can choose U‘ to satisfy (3.2) for every k > 0 provided that c < q,(k) .  To simplify 
notation we often write u instead of u‘. 

PROPOSITION 3.1. Assume that the initial data uf(  x ,  0 )  satisfy (3.1 ) and (3.2) 
for some choice of k > 0. Then there exist constants F and G such that 

(3.3) 

for all suficiently small t . The values of F and G depend on v and k ,  but not on E . 
Proof: By (3. I ) the relation 

(3.4) 
r h  1 

holds for all sufficiently small t, with &as in Proposition 2.1. We henceforth consider 
only values of e for which (3.2) and (3.4) hold. 

Multiplying ( 1.1 ) by u,, integrating, then integrating by parts using either ( I .2) 
or ( 1 3 ,  we have 

(3.5) 

for any T > 0. It follows that E,[ u ]  decreases in time, and that u: is integrable. 
We assert that if T = T(  t ) satisfies 

(3.6) 

then 

(3.7) 

Indeed, if (3.6) holds then w(x)  = uf( x, T( t ) )  satisfies 

[ ( u  - wI dx S Iu(x) - uc(x ,  0)l dx + l u f ( x ,  0 )  - w(x)l dx s : ’ *  
1 1 5 - 6 k  + - 8 k  
2 2  
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by (3 .4)  and (3 .6 ) ,  so by Proposition 2.1 

Substitution of (3 .8)  and (3 .2 )  in (3 .5)  yields 

which gives (3 .7 ) .  

Ct-(li+ 1 ) .  If 
Thus to prove (3 .3 )  we must simply show that (3 .6 )  holds with T(t) I 

then there is nothing to prove; otherwise choose TI ( t )  such that 

By (3 .7)  we have 

so 

as desired. 

4. The Transitions Move Slowly 

It remains to deduce from Proposition 3.1 an estimate for the rate at which the 
profile of u changes. The easiest conclusion is that "nothing happens on a time 
scale of order E - ~ ' ' :  

THEOREM 4.1. Assirmr that the initial dafa u'( x ,  0 )  satisfi (3 .  I ) and (3 .2)  
/ b r  some k > 0. Thenjbr uny m > 0 



SLOWNESS OF PHASE BOUNDARY MOTION 993 

Proof: Let u"'( x ,  7 )  = ut( x ,  c-%). Restated in terms of u"', Proposition 3.1 
asserts that 

Thus by Holder's inequality 

provided that t is small enough so that Ft-' 2 m. Now, 

A combination of (4.2), (4.3),  and (4.4) gives 

lu"'(x, 7 )  - u ( x ) l  dx = 0, 
c*o O S r S m  

which is equivalent to (4.1 ). 

It is natural to ask for a statement which discusses the motion of the "transition 
points" more directly. To do so we make a modest extra hypothesis on the initial 
data: 

(4.5) u f ( x ,  0) crosses 0 transversely, at exactly N distinct points. 

By [2] the same is then true of uf(  x, t )  for t > 0, until the first time when two of 
its zeros coalesce or one of them reaches an endpoint of the interval. Our goal is 
Theorem 4.3, which estimates the time it takes for one of the zeros to move a small 
but appreciable amount. However a preliminary lemma is required first concerning 
the structure of I('( a ,  t ) .  Like the results in Section 2, this lemma really has nothing 
to do with the dynamics, and so we cast it as a result about a general HI function 
u': ( a ,  6) --t R .  

LEMMA 4.2. Suppose that the graph of w crosses 0 transversely, at exactly N 
points z ,  < . * < z,. Assume moreover that EJ w ]  5 c,N + Ct . Then for 6 suflciently 
small and c 5 to( 6 )  there exist intervals ( x i ,  y i )  containing zi such that 
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ProoE The asserted profile of w is shown in Figure 2. Arguing as for (2.5) and 
(2.1 1 ) we easily obtain the existence of points x,, .v; satisfying (4.6) and 

(4.9) 1 1 1 [; w f  + 4, ( w2 - 1 ) 2  dx  2 c, - Ccf6. 

Let V = ( a ,  b)\lJ;= , ( x i ,  y ; ) .  Then by (4.9) 

1 1 
Jv [ w f  + ( w2 - 1 ) 2  dx  5 E6[ w ]  - Nc, + NCt/6 

Arguing as in ( 2.12 ) we conclude that 

Thus on each connected component of V the oscillation of g( w )  is controlled.' The 
endpoints are controlled as well, by (4.8). When t is sufficiently small these estimates 
yield (4.7). 

THEOREM 4.3. Assume that the initial data uf( x, 0 )  satisfy (3.1 ), ( 3 . 2 ~  and 
(4.5). Let 

be the zeros o fu ' ( t ) .  Given > 0 let 

T,(6,) = inf{t :  I z : ( t )  - z:(O)1 > 6 ,  forsome i } .  

I f & ,  is suficiently small then 

(4.10) TC(6,)  2 C6:c-(k+') 

for t < to( with C independent of 6, as well as c .  
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Figure 2. 

Proof: If Tf( 6 , )  = 00 then there is nothing to prove, so we shall assume that 
Tf(6,) < 0 0 .  Since z : ( t )  is continuous in t ,  

1z;(Tf(6,)) - z:(O)I = 6, for some i. 

We claim that this implies 

(4.11) luf(x, T,(6,))  - u ‘ (x ,  0)l dx L C61, 

provided that t is small enough. Indeed, by Lemma 4.2 (with 6 < 6, and w ( x )  = 
uf( x, T,( 6, ))), uf( -, Tc( 6, )) is essentially a step function with discontinuities at 
z:( T,( 6,)) .  Similarly, uf( x, 0) is essentially a step function with discontinuities at 
z:(O).  This leads easily to (4.1 1).  

Now, (4.1 1 ) implies that 

Let F be the constant introduced in Proposition 3.1. If T,(6,) h F E - ( ~ + ’ ) ,  then 
(4.10) follows trivially; otherwise, if T,(6,)  5 F c - ( ~ + ’ )  we bound the integral using 
(3.3) to get 

61 5 Ct‘k+1)/2T,(61)1/2, 

which yields (4.10). 

an appreciable change in the position of the zeros of u‘. 
Thus according to Theorem 4.3 one must wait a time of order dk+‘)  to see 
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