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We consider a variant of Gamow’s liquid drop model, with a general repulsive Riesz
kernel and a long-range attractive background potential with weight Z. The addition of
the background potential acts as a regularization for the liquid drop model in that it
restores the existence of minimizers for arbitrary mass. We consider the regime of small
Z and characterize the structure of minimizers in the limit Z → 0 by means of a sharp
asymptotic expansion of the energy. In the process of studying this limit we characterize
all minimizing sequences for the Gamow model in terms of “generalized minimizers”.
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1. Introduction

We consider the following variational problem:

eZ(M) := inf{EZ(Ω) : Ω ⊂ R
d, |Ω| = M}, (1.1)

1850022-1

http://dx.doi.org/10.1142/S0219199718500220


2nd Reading

May 15, 2018 14:58 WSPC/S0219-1997 152-CCM 1850022

S. Alama et al.

where the energy functional EZ is defined as

EZ(Ω) := Per(Ω) +
∫

Ω

∫
Ω

dxdy

|x− y|s − Z

∫
Ω

dx

|x|p (1.2)

with 0 < p < s < d and d ≥ 2. Here the first term is the perimeter of the set Ω in
the sense of Caccioppoli and is given by

Per(Ω) = sup
{∫

Ω

div φdx : φ ∈ C1
0 (Rd; Rd), ‖φ‖L∞(Rd) ≤ 1

}
.

Our main motivation for this problem and the consideration of the small Z
regime stems from Gamow’s liquid drop model [17] which successfully models the
shape of an atomic nucleus. Gamow’s model is essentially equivalent to the mini-
mization problem (1.1) with d = 3, Coulombic repulsion s = 1, and Z = 0:

minimize Per(Ω) +
∫

Ω

∫
Ω

dxdy

|x− y| over Ω ⊂ R
3 with |Ω| = M. (1.3)

This problem recently resurfaced in the context of the Ohta–Kawasaki model for
self-assembly of diblock copolymers (cf. [9, 10]), and has since attracted considerable
interest in the mathematics community. (See [6, 14, 15, 18–20, 24, 29, 30] as well as
[8] for a general overview.) One of the fundamental characteristics of the liquid drop
model is that it predicts the spherical shape of small nuclei and the non-existence of
arbitrarily large nuclei. It is precisely the competition between opposing forces (the
surface tension and Coulombic repulsion) which makes proving these predictions
non-trivial. The non-existence of minimizers for large M is associated with the
breakup of droplets tending to infinity.

From a physical point of view, though, one might expect other forces to be
present which restore existence for larger values of M , predicting a structured con-
figuration of droplets. One way to introduce such effects is to introduce an attractive
“background nucleus”, which is effected by adding to (1.3) an external attractive
potential of the form

V (x) = − Z

|x|p , (1.4)

for Z > 0 and 0 < p ≤ 1. Here we take the “background nucleus” to be centered
at the origin, and of longer range, in the sense that they have slower decay than
the Coulombic nonlocal interaction term. The physical case of p = 1 (Coulombic
attraction) was recently considered by Lu and Otto [25], and by Frank, Nam and
van den Bosch [16] where it was proved that the effect of V simply increases the
critical threshold in M for the non-existence of minimizers. On the other hand,
choosing a potential with p < 1 restores existence for all M (cf. Theorem 1.1
and [3]); we may think of the addition of the attractive long-range potential as
regularizing the generalized liquid drop model (1.2). We then focus on the structure
of minimizers in the small Z regime. In doing so, we completely describe particular
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configurations of generalized minimizers (cf. [20, Definition 1.1]) of the liquid drop
model.

Our first result confirms that the presence of the external potential (1.4) with
p < s indeed restores existence for all masses M > 0.

Theorem 1.1. For all Z > 0 and for any M > 0, the minimum eZ(M) is attained.

This result is a generalization of the result in [3], and for convenience we will
present an outline of the proof (which differs from that in [3]) in Sec. 2. Our principal
interest is in studying minimizers of EZ in the limit Z → 0. For d ≥ 2, it is well-
known that there exists m∗ = m∗(d, s) > 0 such that the Z = 0 problem

e0(M) := inf{E0(Ω) : Ω ⊂ R
d, |Ω| = M} (1.5)

does not admit minimizers for M > m∗ and s ∈ (0, 2) (see [18, Theorem 2.5; 19,
Theorem 3.3] and also [14, 24] for the case d = 3, s = 1). Thus, when M > m∗ a
sequence of minimizers ΩZ of the functional EZ must lose compactness as Z → 0.
We show this is indeed the case: for small Z > 0,ΩZ is composed of a finite number
of widely spaced disjoint compact components, separated by a distance on the order
of Z−1/(s−p). Moreover, we show that the components are arranged in a way which
(after rescaling by Z1/(s−p)) optimizes a discrete interaction energy

FN,m(y0, . . . , yN ) :=
N∑

i,j=0
i�=j

mimj

|yi − yj|s −
N∑

i=1

mi

|yi|p , (1.6)

where m = (m0, . . . ,mN ) with
∑N

i=0m
i = M , and y0, . . . , yN in the admissible

class

ΣN := {(y0, . . . , yN ) ⊂ R
3(d+1) : y0 = 0}. (1.7)

Our main result describes the structure of minimizers of EZ for small Z > 0.

Theorem 1.2. Let ΩZ be minimizers of EZ for Z > 0. Then for any sequence
Z → 0 there exists a subsequence Zn → 0 so that either

(A) there exists a set E0 with |E0| = M which minimizes e0(M), for which ΩZn →
E0 globally, i.e. χΩZn

→ χE0 in L1(Rd) as n→ ∞; or
(B) there exist:

(i) N ∈ N;
(ii) (m0, . . . ,mN ),mi > 0 with

∑N
i=0m

i = M ;
(iii) x0

n, . . . , x
N
n ∈ R

d, with x0
n = 0, and |xi

n| → ∞ for i �= 0, and |xi
n−xj

n| → ∞
for i �= j as n→ ∞;

(iv) E0, . . . , EN compact sets of finite perimeter, with |Ei| = mi �= 0 for
i = 0, . . . , N ;
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such that Ωn := ΩZn satisfies the following:

∂∗Ωn ∈ C1, 1
2 , and for fixed R > 0 such that all Ei ⊂ BR(0),

(∂∗Ωn − xi
n) ∩BR(0) → ∂∗Ei in C1,α for all α ∈

(
0,

1
2

)
; (1.8)∣∣∣∣∣Ωn


[
E0 ∪

N⋃
i=1

(Ei + xi
n)

]∣∣∣∣∣→ 0; (1.9)

Ei attains the minimum in (1.5), i.e. e0(mi) = E0(Ei), i = 0, 1, . . . , N ; (1.10)Z
1

s−p
n xi

n → yi as n→ ∞, i = 1, . . . , N,

where (0, y1, . . . , yN ) minimize FN,m over ΣN .
(1.11)

Here ∂∗ denotes the reduced boundary of a set. By regularity theory of perimeter
minimizing sets (and more generally, (ω, r)-minimizers of perimeters) the topolog-
ical boundary ∂Ei differs from the reduced boundary by a set of small Hausdorff
dimension, dimH(∂Ei\∂∗Ei) ≤ n− 8.

We note the distinction between the existence result in Theorem 1.2 of EZ

and those of the Gamow functional: for Gamow’s model, minimizers only exist
for small mass M , and must be connected. On the other hand, for Z > 0 but
small, minimizers of EZ always exist for any M but must be disconnected for mass
M > m∗.

The proof of Theorem 1.2 relies on a general concentration-compactness lemma
(Lemma 2.1) for minimizing sequences of EZ . We prove this result using a recent
compactness result for sequences of Caccioppoli sets by Frank and Lieb [15]. It
is in this lemma that we first encounter the effect of splitting of the support of
minimizers, when the total mass is large. The resulting structure (as described by
conclusions (1.9) and (1.10) of Theorem 1.2,) was formalized by Knüpfer, Muratov
and Novaga [20, Definition 4.3]); we adapt their definition to EZ .

Definition 1.1. Let Z ≥ 0 and M > 0. A generalized minimizer of EZ is a finite
collection (E0, E1, . . . , EN) of sets of finite perimeter, such that:

(i) |Ei| := mi, i = 0, 1, . . . , N , with
∑N

i=0m
i = M ;

(ii) E0 attains the minimum in eZ(m0) and Ei attains e0(mi), i = 1, . . . , N ;

(iii) eZ(M) = eZ(m0) +
∑N

i=1 e0(m
i).

In [20], the authors prove the existence of generalized minimizers for the Gamow
problem Z = 0. Here we improve their result: it follows immediately from the
concentration lemma (Lemma 6) that any minimizing sequence of EZ , for Z ≥ 0,
is completely characterized (up to sets of vanishingly small measure, and along
subsequences) by a generalized minimizer.
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Corollary 1.1. Let Z ≥ 0,M > 0, and suppose {Ωn}n∈N is any minimizing
sequence for eZ(M). Then, there is a subsequence, N ≥ 0, and a generalized mini-
mizer (E0, E1, . . . , EN ) of EZ , with∣∣∣∣∣Ωn


[
E0 ∪

N⋃
i=1

(Ei + xi
n)

]∣∣∣∣∣→ 0,

for a sequence of translations (xi
n)i=1,...,N

n∈N
.

In the context of generalized minimizers, Theorem 1.2 asserts that the family
ΩZ of minimizers of EZ makes a particular selection of a generalized minimizer (the
sets {Ei}i=1,...,N obtained in the theorem) for the generalized liquid drop problem
E0. We note that the special choice of generalized minimizer obtained this way
may not be canonical, in the sense of viscosity solutions in PDE; the sets and the
pattern they form as Z → 0 depend on the choice of external potential.

The concept of generalized minimizers is a familiar one in applications of
concentration-compactness, and is intimately related to the notion of “critical
points at infinity”, introduced by Bahri [4] in his study of existence of solutions
for Yamabe-type equations and other PDE problems with loss of compactness.
(See [31] for other contexts involving critical points or functionals “at infinity”.)

In addition to the concentration-compactness structure given in Lemma 2.1, the
proof of Theorem 1.2 requires an expansion of the energy EZ up to the third-order
term in Z (see Remark 3.1). In order to establish this, we combine the compact-
ness of a sequence of minimizers ΩZ with regularity results stemming from the
classical regularity properties of the perimeter functional improving the error esti-
mates in [15]. Similar methods were employed in a previous paper [2], concerning
concentration of droplets in a sharp interface model of diblock copolymers under
confinement.

We note that the limiting finite-dimensional energy FN,m(y0, . . . , yN ) (unlike
its counterpart in [2]) is not coercive, and so it is not clear a priori that minimizing
sequences for this energy should not split, with some number of points diverging
to infinity. However, in Proposition 3.1 we will show that this finite-dimensional
discrete variational problem attains its minimizer for all choices ofN and the masses
m, a result which we will use in studying the limit Z → 0 but which is itself of
independent interest.

In light of Theorem 1.2, it is natural to ask if the family of functionals EZ has
a second-order Γ-limit, involving generalized minimizers of the Gamow functional
and the finite-dimensional interaction energy FN,m. Such a result would imply the
existence of local minimizers for EZ , with small Z > 0. However, the method to
prove Theorem 1.2 uses regularity properties of minimizers in a fundamental way,
and does not directly extend to the more general setting of Γ-convergence.

Finally, Bonacini and Cristoferi [6, Theorem 2.11] have shown that there exists
a critical value s̄(d) of the power in the Riesz kernel such that if s ∈ (0, s̄(d)),
then the minimizers of e0(M) (when they exist) must be balls. In other words, for
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small s, the critical mass for existence exactly coincides with the critical value at
which minimizers must be balls. In this case, we have a near-complete description
of minimizers for small Z > 0, as a finite configuration of balls of equal radius.

Theorem 1.3. Assume 0 < s < s̄(d), and 0 < p < s < d. Then, the sets Ei

appearing in Theorem 1.2 are all balls with equal volume mi = M/(N + 1), i =
0, 1, . . . , N .

The idea behind the proof of Theorem 1.3 is that each diverging component of a
minimizer of EZ inherits the same Lagrange multiplier, and so each element Ei of
the generalized minimizer “at infinity” satisfies the same Euler–Lagrange equation.
When the minimizers are balls, the radius is uniquely determined by the Lagrange
multiplier. As the first part of the argument holds for any values of s, d,M , we
in fact conjecture that the equipartition of mass between the components of the
generalized minimizers is true whether the minimizers are balls or not.

The liquid drop model (1.3) was introduced to describe nuclear structure. In
fact it appears in various other contexts (mathematical and physical) to describe
systems with competition between short- and long-range effects on many scales,
from the nuclear to nanoscale (in condensed matter systems), to centimeter scale
(for fluids and autocatalytic reaction–diffusion systems,) and even on cosmological
scales. In the original quantum context for the atomic nucleus, we do not know of
any physical interpretation of such a background potential, even one of Coulombic
type (p = 1). However, in the wider context (particularly the cosmological con-
text), consideration of super-Newtonian forces appears in several theories. In fact,
the validity of Newton’s law at long distances has been a longstanding interest in
physics. As Finzi notes in [13] stability of clusters of galaxies implies stronger attrac-
tive forces at long distances than that predicted by Newton’s law. Motivated by
similar observations, in [27] Milgrom introduced the modified Newtonian dynamics
(MOND) theory which suggests that the gravitational force experienced by a star
in the outer regions of a galaxy must be stronger than Newton’s law (cf. [5, 7, 28]).

2. Concentration-Compactness and Existence

In this section, we prove the basic concentration-compactness structure of mini-
mizing sequences for EZ . While this result could be adapted, for example, from
the classical theory of Lions (see [22] or [23, Lemma 1, Appendix]), or from com-
pactness results for minimizing clusters as in [26, Chap. 29], here we use a recent
compactness result by Frank and Lieb [15] which is particularly well-suited for our
purposes.

We will say that a sequence of sets En → E globally in R
d if the measure of

the symmetric difference |En
E| → 0. We similarly say that En → E locally if
for every compact K ⊂ R

d, (K ∩ En) → (K ∩ E) globally. Global convergence is
thus equivalent to convergence of the characteristic functions χEn → χE in L1(Rd),
while local convergence is merely L1

loc convergence of the characteristic functions.

1850022-6
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Lemma 2.1. Let Z ∈ [0,∞) be fixed, and {Ωn}n∈N a minimizing sequence for
eZ(M). Then there exists a subsequence such that either

(A) there exists a set E0 with |E0| = M which minimizes eZ(M), for which Ωn →
E0 globally, i.e. χΩn → χE0 in L1(Rd) as n→ ∞; or

(B) there exist N ∈ N; {x1
n, . . . , x

N
n }n∈N ⊂ R

d, with |xi
n| → ∞ and sets of finite

perimeter {F 0
n , . . . , F

N
n ,ΩN

n }n∈N such that |xi
n − xj

n| → ∞, i �= j; with

Ωn = F 0
n ∪

[
N⋃

i=1

(F i
n + xi

n)

]
∪ ΩN

n , (2.1)

a disjoint union with components satisfying the following:

(i) ΩN
n → ∅ and F i

n → Ei, globally in R
d, with mi := |Ei| > 0 for all i =

1, . . . , N and |E0| > 0 for Z > 0;
(ii) M =

∑N
i=0 |Ei| = limn→∞(

∑N
i=0 |F i

n| + |ΩN
n |);

(iii) Ei attain the minimum for e0(mi) for each i = 1, . . . , N ;
(iv) E0 attains the minimum for eZ(m0);
(v) eZ(M) ≥ eZ(m0) +

∑N
i=1 e0(m

i).

As mentioned in the introduction (see [20, Definition 4.3]) the collection of sets
{E0, . . . , EN}n∈N are referred to as a generalized minimizer of EZ for any Z ≥ 0.
Knüpfer, Muratov and Novaga prove the existence of generalized minimizers for the
case Z = 0 by considering a truncation of the energy E0 and by obtaining density
bounds for minimizers of the truncated energy (cf. [20, Theorem 4.5]). Our approach
in proving Lemma 2.1 is more direct, and provides qualitative information about
the structure of minimizing sequences that we exploit in Theorem 1.2. In particular,
Corollary 1.1 follows, since F i

n → Ei and (2.1) then imply

lim
n→∞

∣∣∣∣∣Ωn

(
E0 ∪

N⋃
i=1

(Ei + xi
n)

)∣∣∣∣∣ = 0.

Before going back to Lemma 2.1, we need the following result to conveniently
deal with the confinement term.

Lemma 2.2. Assume An is a sequence of measurable sets with |An| = M and
An → 0 locally (that is, |An ∩K| → 0 for any compact K) Then,

lim
n→∞

∫
An

1
|x|p dx = 0.

The proof is an elementary exercise in real analysis, obtained by truncating
|x|−p both vertically and laterally.

We also require the following subadditivity condition, which follows from the
same arguments as [25, Lemma 4]: for any values 0 < m′ < m, and any Z ≥ 0,

eZ(m) ≤ eZ(m′) + e0(m−m′). (2.2)

1850022-7
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Proof of Lemma 2.1. Let Z ≥ 0 be fixed and Ωn a minimizing sequence for
eZ(M). We prove this lemma in several step.

Step 1: Passing to the limit directly. By the compact embedding of BV (Rd) in
L1

loc(R
d) (see e.g. [26, Corollary 12.27]) there exist a subsequence and a set of finite

perimeter E0 ⊂ R
d so that Ωn → E0 locally, that is, χΩn → χE0 in L1

loc(R
d). (At

this point, we admit the possibility that |E0| = 0, but in fact we will see in Step 3
that |E0| > 0.)

We claim that if the limit set |E0| = M , then case (A) holds and we are
done. Indeed, since {Ωn}n∈N is locally convergent, a subsequence converges almost
everywhere in R

d. In addition, the measures of the sets converge, that is, |Ωn| =
M = |E0|, so by the Brezis–Lieb Lemma [21, Theorem 1.9] we may then conclude
that (along a subsequence) Ωn → E0 globally. By the lower semicontinuity of the
perimeter (see [26, Proposition 4.29]) we have

PerE0 ≤ lim inf
n→∞ PerΩn.

On the other hand, [15, Lemma 2.3] implies that the nonlocal part is lower semi-
continuous, as well, that is,

D(E0, E0) ≤ lim inf
n→∞ D(Ωn,Ωn) where D(E,F ) :=

∫
E

∫
F

dxdy

|x− y|s .

To pass to the limit in the confinement term, we apply Lemma 2.2 to the sequence
(Ωn\E0) → ∅ locally, and together with the above we have

EZ(E0) ≤ lim inf
n→∞ EZ(Ωn).

Therefore, we conclude that E0 attains the minimum value of EZ , and the proof is
complete for case (A).

In the following we may thus assume that m0 := |E0| < M .
Step 2: Concentration-compactness. In case m0 = |E0| < M , by [15, Lemma 2.2]
(with no translation necessary, i.e. x0

n = 0) there exist radii r0n ∈ (0,∞) such that
for

F 0
n = Ωn ∩Br0

n
(0), G0

n = Ωn\Br0
n
(0),

where F 0
n → E0 globally, G0

n → ∅ locally as n → ∞ with m0
n := |F 0

n | → |E0| =
m0 < M, and

lim
n→∞(Per(Ωn) − Per(F 0

n) − Per(G0
n)) = 0,

lim inf
n→∞ Per(F 0

n) ≥ Per(E0).
(2.3)

In addition, again by [15, Lemma 2.3],

D(Ωn,Ωn) = D(F 0
n , F

0
n) + D(G0

n, G
0
n) + o(1)

= D(E0, E0) + D(G0
n, G

0
n) + o(1). (2.4)

1850022-8
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Finally, by Lemma 2.2, the confinement term is absent for G0
n, which tends to zero

locally. In conclusion, we have a splitting of the energy

EZ(Ωn) = EZ(E0) + E0(G0
n) + o(1). (2.5)

We define Ω0
n := G0

n, with |Ω0
n| = M − m0

n = M − m0 + o(1) > 0, and
begin an iterative process of locating escaping concentrations of mass, as in the
concentration-compactness lemma of Lions (cf. [22]). By [15, Proposition 2.1], there
is a set E1 of positive measure and a sequence of points x1

n ∈ R
d for which

Ω0
n − x1

n → E1 locally. Since Ω0
n → 0 locally, it follows that |x1

n| → ∞. In addition,
|E1| ∈ (0,M −m0] and Per(E1) ≤ lim infn→∞ Per(Ω0

n). In case of nonuniqueness
of such translates, we define

µ({Ω0
n}) := sup{|A| : there exist A ⊂ R

d and

{ξn} ⊂ R
d such that Ω0

n − ξn → A locally}.
We may thus choose {x1

n} and E1 such that |E1| > 1
2µ({Ω0

n}).
Applying [15, Lemma 2.2] as above, there exist radii r1n ∈ (0,∞) such that if we

define

F 1
n = (Ω0

n − x1
n) ∩Br1

n
(0), G1

n = (Ω0
n − x1

n)\Br1
n
(0)

then F 1
n → E1 globally, G1

n → ∅ locally as n → ∞, with m1
n := |F 1

n | → |E1| =:
m1 ∈ (0,M −m0],

0 = lim
n→∞(Per(Ω0

n) − Per(F 1
n) − Per(G1

n))

= lim
n→∞(Per(Ωn) − Per(F 0

n) − Per(F 1
n) − Per(G1

n)), (2.6)

and lim infn→∞ Per(F 1
n) ≥ Per(E1). Finally, by [15, Lemma 2.3],

D(Ωn,Ωn) = D(F 0
n , F

0
n) + D(Ω0

n,Ω
0
n)

= D(F 0
n , F

0
n) + D(F 1

n , F
1
n) + D(G1

n, G
1
n) + o(1)

= D(E0, E0) + D(E1, E1) + D(G1
n, G

1
n) + o(1). (2.7)

In particular,

EZ(Ωn) ≥ EZ(E0) + E0(E1) + E0(G1
n) + o(1). (2.8)

If |G1
n| → 0, the process terminates withN = 1. If not, we let Ω1

n := G1
n+x1

n, and
repeat the above procedure with µ({Ω1

n}) ∈ (0,M−m0−m1], iteratively generating
an at most countable collection of concentration sets F i

n → Ei and remainder sets
Ωi

n, i = 1, 2, . . . , satisfying

Ωi−1
n = [F i

n + xi
n] ∪ Ωi

n, a disjoint union, (2.9)
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Ωn = Ωk
n ∪

[
k⋃

i=0

(F i
n + xi

n)

]
, |xi

n − xj
n| → ∞, i �= j, (2.10)

M =
k∑

i=0

mi
n + lim

n→∞ |Ωk
n| =

k∑
i=0

mi + lim
n→∞ |Gk

n|, (2.11)

mk ≥ 1
2
µ({Ωk−1

n }), (2.12)

EZ(Ωn) ≥ EZ(Ωk
n) + EZ(E0) +

k∑
i=1

E0(Ei) + o(1) (2.13)

for k ∈ N. We note that the decomposition in (2.10) is disjoint, with Ωk
n → ∅ locally.

In case |ΩN
n | → 0 for some finite N ∈ N, the process terminates and the decom-

position is finite. If the number of components Ei is countable, then by (2.11) we
must have mi → 0 as i → ∞, and hence µ({Ωk

n}) → 0 as k → ∞, by (2.12). We
may then conclude that the iteration exhausts all of the mass, and

M =
∞∑

i=0

mi. (2.14)

Step 3: If Z > 0, then |E0| �= 0. Suppose the contrary, i.e. that |E0| = 0. Define
Ω̃n := Ωn − x1

n, and so by the above construction Ω̃n → E1 and Ω̃n\F 1
n = G1

n → ∅
locally. Thus, by Lemma 2.2, for any i �= 1,

lim
n→∞

∫
Ω̃n\F 1

n

1
|x|p dx = 0.

Since the perimeter and nonlocal terms in EZ are translation invariant, we arrive
at

EZ(Ω̃n) − EZ(Ωn) = −Z
∫

F 1
n

1
|x|p dx+ o(1) = −Z

∫
E1

1
|x|p dx+ o(1) < 0,

a contradiction.

Step 4: The sets Ei are minimal, and there are finitely many. By Lemma 2.2,

lim inf
n→∞ EZ(Ωk

n) = lim inf
n→∞

[
E0(Ωk

n) − Z

∫
Ωk

n

|x|−p dx

]

= lim inf
n→∞ E0(Ωk

n) ≥ 0.

Thus, as (2.13) holds for all k ∈ N, we have

EZ(Ωn) ≥ EZ(E0) +
∞∑

i=1

E0(Ei) − o(1).
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We may then conclude

eZ(M) + o(1) ≥ EZ(Ωn) ≥ EZ(E0) +
∞∑

i=1

E0(Ei) − o(1)

≥ eZ(m0) +
∞∑

i=1

e0(mi) − o(1) ≥ eZ(M) − o(1),

by the subadditivity condition (2.2) of eZ . Matching the upper and lower bounds
we have

(EZ(E0) − eZ(m0)) +
∞∑

i=1

[E0(Ei) − e0(mi)] ≤ 0.

Since each term is nonnegative, each must be zero, and so each set Ei, i = 0, 1, . . .
is minimal.

Last, as the series converges we must have e0(mi) → 0 as i→ ∞, and from this
fact we may conclude that only finitely many of mi are nonzero. This follows almost
verbatim as in [9, Lemma 4.4], so we sketch the main idea here for completeness.
Now let m∗∗ > 0 be the constant such that e0 is attained uniquely by a ball of
volume m for m ≤ m∗∗ (cf. [12, Theorem 1.3]). For the ball, the value e0(m) =
C1m

(d−1)/d+C2m
(2d−s)/d is explicitly known (with universal constants C1, C2), and

is strictly concave when m < m̂ := min{m∗∗, (C1/C2)d/(1+d−s)}. In particular, it
follows that if the masses {mi} minimize the expression e0(M−m0) =

∑∞
i=1 e0(m

i)
then there can be at most one mi ∈ (0, m̂ ). Hence, there can only be a finite number
of components Ei.

This completes the proof of the concentration lemma.

The proof of Theorem 1.1 is essentially given in [3] for the Newtonian case
s = 1 and for more general confinement terms, but we include a short proof here
for completeness.

Proof of Theorem 1.1. We apply Lemma 2.1 to any minimizing sequence {Ωn}
for eZ(M). If case (A) holds, the sequence converges to a minimizer and we are
done. So assume there is splitting as in case (B), and so there exists N ∈ N, sets
Ei ⊂ R

d with |Ei| = mi �= 0 for each i = 0, 1, . . . , N , M =
∑N

i=0m
i, satisfying the

lower bound

eZ(M) ≥ eZ(m0) +
N∑

i=1

e0(mi). (2.15)

We now construct a better upper bound, using the slow decay rate of the poten-
tial (recall that 0 < p < s). As each Ei is a minimizer, it is essentially bounded (cf.
[19, Lemma 4.1]). Hence, we may choose a representative for Ei such that, for some
R > 0, we have Ei ⊂ BR(0) for all i = 0, 1, . . . , N . For i = 1, . . . , N let bi ∈ R

d
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such that |bi| = 1, and let b0 = 0. Define

Ωt := E0 ∪
[

N⋃
i=1

(Ei + tbi)

]
.

Note that for all sufficiently large t the sets are disjoint, and so using the translation
invariance of the perimeter and the nonlocal part D, we have

eZ(M) ≤ EZ(Ωt) = EZ(E0) +
N∑

i=1

E0(Ei) + F(t) − G(t)

= eZ(m0) +
N∑

i=1

e0(mi) + F(t) − G(t), (2.16)

where

F(t) :=
N∑

i,j=0

i�=j

∫
Ei+tbi

∫
Ej+tbj

dxdy

|x− y|s and G(t) :=
N∑

i=1

∫
Ei+tbi

dx

|x|p .

We now estimate each; first, we claim there is a t0 > 0 for which F(t) ≤ Ct−s

for all t > t0. Indeed, for any i �= j, with the change of variables tξ = x, tη = y, we
have

ts
∫

Ei+tbi

∫
Ej+tbj

dxdy

|x− y|s ≤ ts
∫

BR(tbi)

∫
BR(tbj)

dxdy

|x− y|s

=
|BR|2
|BR/t|2

∫
BR/t(bi)

∫
BR/t(bj)

dξdη

|ξ − η|s → |BR|2
|bi − bj|s ,

as t→ ∞. There are only finitely many terms in F(t), and so the claim holds.
To estimate G(t) from below, we note that as t→ ∞,

t−p

∫
Ei+tbi

|x|−p dx =
∫

Ei

∣∣∣bi +
x

t

∣∣∣−p

dx→ |Ei| = mi,

by dominated convergence. Thus, F(t)−G(t) ≤ c1t
−s−MZt−p < 0 for sufficiently

large t, and thus (2.16) is in contradiction with (2.15). Thus we must have |Ω0| = M

and eZ(M) = EZ(E0), for any M > 0 and for any Z > 0.

3. The Limit Z → 0

We start this section by proving that the finite-dimensional energy functional FN,m

given by (1.6) has a minimizer. We define

µN,m := inf
ΣN

FN,m,

where the admissible set ΣN is defined in (1.7).

Prop 3.1. For anyN ∈ N andm, the functional FN,m attains its minimum µN,m <

0 on the admissible class ΣN .
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Proof. Consider any minimizing sequence {xi
n}n∈N, i = 1, . . . , N , in ΣN , that is,

µN,m = limn→∞ FN,m(0, xn
1 , . . . , x

n
N ). If all the sequences {xi

n}n∈N, i = 1, . . . , N ,
remain bounded, then we obtain convergence to a minimizer along some subse-
quence. So instead, assume that there is an integer k ∈ {0, 1, . . . , N − 1} and a
subsequence (not relabeled) so that

xi
n −→

n→∞ ai, ∀i = 0, . . . , k, but

|xi
n| −→

n→∞ ∞, ∀i = (k + 1), . . . , N.
(3.1)

We first treat the case where k ≥ 1. Decompose FN,m into pieces

FN,m(0, x1
n, . . . , x

N
n ) = Fk,(m0,...,mk)(0, x

1
n, . . . , x

k
n)

+FN−k,(mk+1,...,mN )(x
k+1
n , . . . , xN

n ) + Ik,N , (3.2)

with interaction term between the two families

Ik,N =
k∑

i=0

N∑
j=k+1

mimj

|xi
n − xj

n|s
.

Using the splitting (3.1), we have

µN,m ≥ lim inf
n→∞

Fk,(m0,...,mk)(0, x
1
n, . . . , x

k
n) +

N∑
i,j=k+1

j �=i

mimj

|xi
n − xj

n|s


≥ lim inf

n→∞ Fk,(m0,...,mk)(0, x
1
n, . . . , x

k
n)

= Fk,(m0,...,mk)(0, a1, . . . , ak). (3.3)

To obtain a contradiction to (3.3), we define a new configuration given by the
points {a1, . . . , ak, Ry1, . . . , RyN−k} with {y1, . . . , yN−k} distinct points on the unit
sphere |yj | = 1, and R > 0 to be determined. By the same decomposition as in (3.2),

FN,m(0, a1, . . . , ak, Ry1, . . . , RyN−k)

= Fk,(m0,...,mk)(0, a1, . . . , ak)

+FN−k,(mk+1,...,mN )(Ry1, . . . , RyN−k) + Ĩk,N , (3.4)

with Ĩk,N representing the interaction terms. If |ai| < R0 for some R0 > 0 and for
each i = 1, . . . , k, and if R > 2R0, the interaction terms may be estimated by

Ĩk,N ≤ C1(k,N,m)R−s.
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Similarly, since |Ryi −Ryj | ≥ C2R, i �= j, for some constant C2 > 0, we also have

FN−k,(mk+1,...,mN )(Ry1, . . . , RyN−k) ≤
N−k∑
i,j=1
i�=j

mk+imk+j

|Ryi −Ryj|s ≤ C3(k,N,m)R−s.

On the other hand,

N−k∑
i=1

mk+i|Ryi|−p = R−p
N−k∑
i=1

mk+i ≥ C4(k,N,m)R−p.

and thus (3.4) yields

µN,m ≤ FN,m(0, a1, . . . , ak, Ry1, . . . , RyN−k)

≤ Fk,(m0,...,mk)(0, a1, . . . , ak) − C4(k,N,m)R−p +O(R−s)

< Fk,(m0,...,mk)(0, a1, . . . , ak), (3.5)

for R > R0 > 0 chosen large enough, contradicting (3.3) in case k ≥ 1. For k = 0,
that is, if |xi

n| → ∞ for each i = 1, . . . , N , we note that

µN,m ≥ lim inf
n→∞

N∑
i,j=0
j �=i

mimj

|xi
n − xj

n|s
≥ 0,

while the same construction which produced (3.5) yields the contradictory estimate
µN,m < 0. In conclusion, the entire minimizing sequence must remain bounded, and
so the minimum is attained.

Next we show that the infimum of the regularized energies EZ converges to the
infimum of E0.

Lemma 3.1. limZ→0 eZ(M) = e0(M).

Proof. Let ΩZ be a minimizer of EZ which exists for any Z > 0 and M > 0 by
Theorem 1.1. Then, clearly eZ(M) ≤ e0(M) for all Z > 0, and

E0(ΩZ) = EZ(ΩZ) + Z

∫
ΩZ

dx

|x|p ≤ EZ(ΩZ) + Z

∫
B1(0)

dx

|x|p

+Z|ΩZ ∩ (Rd\B1(0))|

≤ EZ(ΩZ) +
(

ωd

(d− p)
+M

)
Z,

where ωd = |B1(0)| denotes the volume of the unit ball in R
d. Therefore, we also

have e0(M) ≤ lim infZ→0 eZ(M), which proves the claim.
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The following lemma is key in obtaining regularity properties for a family of
minimizers of the functionals EZ .

Lemma 3.2. The family of minimizers {ΩZ}Z∈(0,1] of EZ is (ω, r)-minimizers of
the perimeter functional in O := R

d\Bδ(0) for any δ > 0, with ω, r > 0 uniformly
chosen for Z ∈ (0, 1]; that is,

Per(ΩZ) ≤ Per(F ) + ω|ΩZ
F |,
for all F ⊂ R

d with ΩZ
F ⊂ Br(x0) ⊂ R
d\Bδ(0).

Proof. First we show that the constraint |ΩZ | = M may be replaced by a penaliza-
tion, following [6, Theorem 2.7] (see also [11, Sec. 2].) For λ > 0 (to be determined),
define the penalized functionals

Fλ
Z(F ) := EZ(F ) + λ||F | − |ΩZ || = EZ(F ) + λ||F | −M |.

We claim that there exists λ > 0 so that for all 0 < Z ≤ 1,

minFλ
Z = Fλ

Z(ΩZ) = EZ(ΩZ), (3.6)

i.e. the unconstrained minimizer of Fλ
Z coincides with the mass-constrained mini-

mizer of EZ . Indeed, the existence of a constant λ = λZ > 0 for each fixed Z > 0
satisfying the claim follows by a minor modification of [6, Theorem 2.7], so it suf-
fices to show that λ may be chosen independently of Z. Suppose no such λ exists,
so there are sequences Zn → 0, λn → ∞, and sets En ⊂ R

d, |En| �= M , with
Fλn

Zn
(En) < Fλn

Zn
(ΩZn). Note that λn → ∞ implies that |En| →M .

Define sets Ẽn = tnEn where tn = [M/|En|]1/d, so |Ẽn| = M . Each term in
FZn(Ẽn) may then be calculated via scaling

Fλn

Zn
(Ẽn) = EZn(Ẽn) = td−1

n Per(En) + t2d−s
n D(En, En) − td−p

n Zn

∫
En

|x|−p dx

= Fλn

Zn
(En) + (td−1

n − 1)Per(En) + (t2d−s
n − 1)D(En, En)

− (td−p
n − 1)Zn

∫
En

|x|−p dx− λn|td−1
n − 1||En|

≤ Fλn

Zn
(En) + |td−1

n − 1||En|
[
E0(En)

(td−1
n + t2d−s

n − 2)
|td−1

n − 1||En|
− λn

]
< Fλn

Zn
(En),

as λn → ∞ since the term in brackets is eventually negative. This contradicts the
definition of En as minimizers of Fλn

Zn
, and so we conclude that (3.6) must hold.

Now fix any r > 0 and assume Br(x0) ∩Bδ(0) = ∅, and F ⊂ R
d with ΩZ
F ⊂

Br(x0). Denote

V(F ) :=
∫

F

dx

|x|p .
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Then, EZ(ΩZ) = Fλ
Z(ΩZ) ≤ Fλ

Z(F ) implies that

Per(ΩZ) ≤ Per(F ) + (D(F, F ) −D(ΩZ ,ΩZ)) + (V(ΩZ) − V(F )) + λ||F | −M |
≤ Per(F ) + (C0 + δ−p + λ)|ΩZ
F |,

where the difference of the nonlocal terms is estimated in [6, Proposition 2.3], and
to estimate the confinement term we use the fact that |x|−p ∈ L∞(Rd\Bδ(0)).
Thus, ΩZ are (ω, r)-minimizers of the perimeter functional in R

d\Bδ(0) with ω =
C0 + δ−p + λ and any r > 0.

Finally, we state the following regularity results for (ω, r)-minimizers that we
will require in the proof of Theorems 1.2 and 1.3.

Lemma 3.3 (see [26, Theorems 21.8, 21.14 and 26.6]). Let O ⊂ R
d be an

open set.

(i) If E ⊂ R
d is an (ω, r)-minimizer of perimeter in O then ∂∗E ∩ O is a C1,α

hypersurface for any α ∈ (0, 1/2).
(ii) If En ⊂ R

d is a sequence of uniformly (ω, r)-minimizers of perimeter in O with
En → E∞ locally in O, then for any sequence xn ∈ ∂En with xn → x∞ we
have x∞ ∈ ∂E∞. Moreover, if xn ∈ ∂∗En, then x∞ ∈ ∂∗E∞ and the normal
vectors satisfy ν(xn) → ν(x∞).

Thus, a sequence of uniformly (ω, r)-minimizers of perimeter which converges
locally has its reduced boundary convergent in the Hausdorff metric. We remark
that a stronger form of this C1,α convergence of ∂∗En → ∂∗E is stated in [1, Theo-
rem 4.2]: under the hypothesis that En → E globally in O, in fact the convergence
of the boundaries is in C1,α for α ∈ (0, 1/2), and ∂En may be realized as a C1,α

graph over ∂E.
We remark that we only need the full force of the regularity theory for Theo-

rem 1.3. For the proof of Theorem 1.2 we only require that minimizers for EZ are
supported in compact sets and converge pointwise to the disjoint components Ei.

Now we are ready to prove our main results.

Proof of Theorem 1.2. Let {Ωn}n∈N with Ωn := ΩZn be a sequence of min-
imizers for eZn with Zn → 0. By Lemma 3.1, {Ωn} form in fact a minimizing
sequence for e0. Therefore, by Lemma 2.1 we obtain either (A) or assertions (i),
(ii), and (1.9), (1.10) in (iii) of part (B) of Theorem 1.2. The statement (1.8), on
the other hand, follows directly from Lemmas 3.2 and 3.3 (or [1, Theorem 4.2]). In
order to prove (1.11) we adopt the notations from Lemma 2.1. Our goal here is to
use the regularity of minimizing sets to improve the precision of the lower bound
defined in the concentration lemma. We prove this in several steps.
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Step 1: A more refined decomposition. We return to Step 1 in the proof of
Lemma 2.1, and use the uniform (ω, r)-minimality to show that

Ωn = F 0
n ∪

[
k⋃

i=1

(F i
n + xi

n)

]
,

splits cleanly, with no o(1) error in the perimeter, and with remainder set ΩN
n = ∅.

In particular, we claim that

Per(Ωn) =
N∑

i=0

Per(F i
n) (3.7)

holds for each sufficiently large n. For convenience, we define

F̃ i
n = F i

n + xi
n and Ω̂i

n = Ωi−1
n − xi

n, i = 0, 1, . . . , N.

To verify (3.7), we first note that Ei being minimizers of e0(mi), they are essen-
tially bounded domains with smooth ∂∗Ei (cf. [19, Proposition 2.1 and Lemma 4.1]).
Therefore, we may fix R > 0 so that a representative of each Ei ⊂ BR/2(0) for
each i = 0, 1, . . . , N . We observe that, since each Ei is bounded, when defining
F i

n = Ω̂i−1
n ∩ Brn(0) we may choose the radii rn found in [15, Lemma 2.2] so

that rn ∈ (R, 2R). As Ω̂i
n → Ei locally, it converges globally in O := B2R(0).

For i = 1, . . . , N , we invoke Lemma 3.2 which ensures that Ω̂i
n is a family of

uniformly (ω, r)-minimizers in O. By part (ii) the regularity result (Lemma 3.3),
Ω̂i

n ∩O → Ei ⊂ BR/2(0) in Hausdorff norm, so in particular Ω̂i
n ∩B2R(0) ⊂ BR(0)

for all sufficiently large n. When i = 0 there is the slightly delicate issue that
Ωn are not necessarily (ω, r)-minimizers in a neighborhood of 0. For i = 0,
define the open set Õ := B2R(0)\Bδ(0), with any δ ∈ (0, R/2), so Ωn are uni-
formly (ω, r)-minimizers in Õ. Again, by part (ii) of Lemma 3.3 we conclude that
Ωn ∩ [B2R(0)\BR(0)] = ∅ for all sufficiently large n.

Finally, suppose ΩN
n �= ∅ for all n ∈ N. Recall that by Lemma 2.1, |ΩN

n | → 0, so
ΩN

n → ∅ globally. As Ωn is an (ω, r)-minimizing sequence each ∂∗ΩN
n is a smooth

hypersurface, and there would then exist yn ∈ ∂ΩN
n for each n. The translates

Ω̂N
n := ΩN

n − yn are again smooth, with 0 ∈ ∂Ω̂N
n for each n. Invoking (ii) of

Lemma 3.3 we arrive at a contradiction, because then 0 lies on the boundary of the
limit set of the Ω̂N

n , which is empty. Therefore, we must have ΩN
n = ∅ for large n.

As |xi
n − xj

n| → ∞ for i �= j, and each Gi
n ∩BR(0) = ∅, the components are well

separated, and we obtain (3.7).
We remark that (3.7) also implies the equality of masses before and after passing

to the limit, that is,

M =
N∑

i=1

mi =
N∑

i=1

mi
n (3.8)

holds (with no error) for all n sufficiently large.
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Step 2: E0 �= ∅. Suppose the contrary. Since there are only finitely many compo-
nents, we may choose k ∈ {1, 2, . . . , N} and a subsequence (not relabeled) along
which we have |xk

n| = min{|xj
n| : j = 1, . . . , N}. Consider the sets Ω̆n := Ωn − xk

n.
The perimeter and nonlocal terms in EZ are translation invariant, hence, this mod-
ification only affects the confinement term V . By Step 3, we have a disjoint decom-
position

Ω̆n = F 0
n ∪ F k

n ∪

 N⋃
i=1
i�=k

(F i
n + yi

n)

 ∪ ΩN
n ,

where yi
n = xi

n − xk
n, with |yi

n| → ∞, i �= k. Therefore, V(F j
n + xj

n) → 0 and
V(F i

n + yi
n) → 0, for all j = 1, . . . , N and for all i �= k, while V(F k

n ) → V(Ek) > 0.
Hence,

EZn(Ω̆n) − EZn(Ωn) = −ZnV(F k
n ) − Zn

N∑
i=1
i�=k

V(F i
n + yi

n) + Zn

N∑
i=1

V(F i
n + xi

n)

= −ZnV(Ek) + o(Zn) < 0,

which contradicts the minimality of Ωn. Hence we must have |E0| �= 0.

Step 3: A more refined lower bound. As in Step 1, there exists R > 0 for which
F i

n ⊂ BR(0) for each n ∈ N and i = 0, 1, . . . , N . Since
⋃N

i=0(F
i
n + xi

n) ⊂ Ωn, we
may decompose the nonlocal term and obtain

D(Ωn,Ωn) ≥
N∑

i,j=0

D(F̃ i
n, F̃

j
n).

Let

Rn,ij := |xi
n − xj

n| and Rn,i0 := |xi
n|.

Then, for all x ∈ F̃ i
n, y ∈ F̃ j

n and sufficiently large n, we have

|x− y| ≥ Rn,ij − 2R ≥ 1
2
Rn,ij .

By the mean value theorem for f(t) = ts we then calculate

||xi
n − xj

n|s − |x− y|s| ≤ s

(
1
2
Rn,ij

)s−1

|xi
n − xj

n − x+ y|

≤ CRs−1
n,ij (|xi

n − x| + |xj
n − y|) ≤ 2CRRs−1

n,ij .

Hence, for all sufficiently large n,∣∣∣∣∣ 1
|x− y|s − 1

|xi
n − xj

n|s

∣∣∣∣∣ =
||xi

n − xj
n|s − |x− y|s|

|x− y|s |xi
n − xj

n|s
≤ C

Rs+1
n,ij
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for all 0 < s < d, and we may estimate the off-diagonal terms in the nonlocal energy
via ∣∣∣∣∣D(F̃ i

n, F̃
j
n) − mi

nm
j
n

|xi
n − xj

n|s

∣∣∣∣∣
≤
∫

F̃ i
n

∫
F̃ j

n

∣∣∣∣∣ 1
|x− y|s − 1

|xi
n − xj

n|s

∣∣∣∣∣ dxdy ≤ CR−s−1
n,ij , (3.9)

with a constant C independent of n.
The confinement term may be evaluated in a similar way, we have

||xi
n|−p − |x|−p| ≤ sup

ξ∈F̃ i
n

p|ξ|−p−1 |x− xi
n| ≤ C|xi

n|−p−1 ≤ CR−p−1
n,i0 ,

and thus ∣∣∣∣∣
∫

F̃ i
n

dx

|x|p − mi
n

|xi
n|p
∣∣∣∣∣ ≤ CR−p−1

n,i0 . (3.10)

Putting the above estimates together with the perimeter splitting (3.7), we obtain
a lower bound

EZn(Ωn) ≥
N∑

i=0

E0(F i
n) − ZnV(F 0

n) +
N∑

i,j=0
i�=j

mi
nm

j
n

|xi
n − xj

n|s
(1 −O(R−1

n,ij))

−Zn

N∑
i=1

mi
n

|xi
n|p

(1 +O(R−1
n,i0))

≥
N∑

i=0

e0(mi
n) − ZnV(F 0

n) +
N∑

i,j=0
i�=j

mi
nm

j
n

|xi
n − xj

n|s
(1 −O(R−1

n,ij))

−Zn

N∑
i=1

mi
n

|xi
n|p

(1 +O(R−1
n,i0))

≥
N∑

i=0

e0(mi
n) − ZnV(F 0

n) +
N∑

i,j=0
i�=j

mimj

|xi
n − xj

n|s
(1 − o(1))

−Zn

N∑
i=1

mi

|xi
n|p

(1 + o(1)), (3.11)

where in the last line we have used the convergence mi
n → mi.

Step 4: A more refined upper bound. In order to obtain a more refined upper
bound, let Ωt = F 0

n ∪ [
⋃N

i=1(F
i
n + tai)], with sets F i

n as in Lemma 2.1, with points
{ai}i=1,...,N ⊂ R

d with 0 < |ai| ≤ 1, and t > 0 is to be determined optimally.
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Substituting Ωt into EZ we recover an upper bound of the same general form as
(2.16) as before,

eZn(M) ≤ EZn(Ωt)

≤
N∑

i=0

e0(mi
n) − ZnV(F 0

n) +
N∑

i,j=0
i�=j

∫
F i

n+tai

∫
F j

n+taj

dxdy

|x− y|s

−Zn

N∑
i=1

∫
F i

n+tai

|x|−pdx.

By the same estimates (3.9) and (3.10) as in Step 3 above, we thus have∣∣∣∣D(F i
n, F

j
n) − mimj

ts|ai − aj |s
∣∣∣∣ ≤ Ct−s−1,

∣∣∣∣∣
∫

F̃ i
n

dx

|x|p − mi

tp|ai|p
∣∣∣∣∣ ≤ Ct−p−1,

for constant C independent of t. Choosing t = tn := Z
−1/(s−p)
n , we then obtain the

upper bound of the form

eZn(M) ≤ EZn(Ωtn) ≤
N∑

i=0

e0(mi
n) − ZnV(F 0

n)

+Zs/(s−p)
n FN,m(0, a1, . . . , aN ) +O(Z

s+1
s−p
n ).

By Proposition 3.1, we may choose (a1, . . . , aN ) to minimize FN,m, and thus obtain
the best upper bound

EZn(Ωtn) ≤
N∑

i=0

e0(mi
n) − ZnV(F 0

n) + Zs/(s−p)
n µN,m + o(Zs/(s−p)

n ). (3.12)

Step 5: The scale of xi
n = O(Z−1/(s−p)). Last, we prove (1.11). To this end, let

ξi
n = xi

nZ
1/(s−p)
n for i = 1, . . . , N. Using the upper bound (3.12) followed by the

lower bound (3.11) we find

Zs/(s−p)
n µN,m + o(Zs/(s−p)

n ) ≥ EZn(Ωn) −
N∑

i=0

e0(mi
n) + ZnV(F 0

n)

≥ Zs/(s−p)
n FN,m(0, ξ1n, . . . , ξ

N
n )(1 + o(1)).

After dividing by Zs/(s−p)
n , we conclude that {ξi

n}i=0,...,N is a minimizing sequence
for FN,m; by Proposition 3.1, the ξi

n are in fact bounded, and up to the extraction
of a subsequence for each i = 1, . . . , N, ξi

n → yi, minimizers of FN,m, as n → ∞.
We thus obtain (1.11), and the proof of Theorem 1.2 is complete.

Remark 3.1. We note that the proof of (1.11) in Step 5 above also shows that we
have an expansion of the minimizing energy accurate up to the third-order term,
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namely,

EZn(Ωn) =
N∑

i=0

e0(mi) − ZnV(F 0
n) + Z

s
s−p
n FN,m(0, y1, . . . , yN ) + o

(
Z

s
s−p
n

)
,

where F 0
n are the sets constructed in Lemma 2.1. One might be tempted to pass

to the limit F i
n → Ei and express the expansion in terms of the components of

the generalized minimizer, but it is not at all clear what the error term in such an
expansion would be.

Finally, we prove Theorem 1.3.

Proof of Theorem 1.3. By Step 1 in the proof of Theorem 1.2 and Lemma 3.3 (see
also [26, Theorem 27.5]) the reduced boundary ∂∗Ωn is a disjoint union of smooth
hypersurfaces. In fact, by [6, Theorem 2.7], ∂∗Ωn is of class C3,β for β < d− 1− s.
In particular, the Euler–Lagrange equation

(d− 1)κ(x) + 2vΩn(x) − Zn|x|−p = λn, (3.13)

is satisfied pointwise on ∂∗Ωn, where κ is the mean curvature in R
d, λn is a Lagrange

multiplier, and vΩn(x) is the Riesz potential

vΩ(x) :=
∫

Ω

dy

|x− y|s .

In addition, by the proof of Theorem 1.2, Ωn is C1,α close to the sets

Sn :=

[
E0 +

N⋃
i=1

(Ei + xi
n)

]
,

in the sense that for all fixed R > 0 with Ei � BR(0),

∂∗Ω̃i
n := (∂∗Ωn − xi

n) ∩BR(0) → ∂∗Ei in C1,α,

for all α ∈ (0, 1
2 ), and the former are expressed as graphs over the limiting sets Ei,

∂∗Ω̃i
n = {y = Ψn(x) := x+ ψn(x)νi(x) : x ∈ ∂∗Ei},

with ψn(x) → 0 in C1,α (see [1, Theorem 4.2].) As each Ei is itself a minimizer of E0,
by the above stated regularity theorem, ∂∗Ei is of class C3,β , and its normal vector
νEi ∈ C2. Finally, by [6, Proposition 2.1], the Riesz potentials veΩi

n
are bounded in

C1,β(BR(0)), so along a subsequence they converge uniformly to vEi in BR(0).
For any ζ ∈ C∞

0 (BR(0); Rd) we may integrate the Euler–Lagrange equa-
tion (3.13) by parts over ∂∗Ω̃i

n,∫
∂∗ eΩi

n

(divτnζ − (2veΩi
n
− Zn|x|−p)(ζ · νn))dHd−1 = λn

∫
∂∗ eΩi

n

ζ · νndHd−1, (3.14)
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where νn := νeΩi
n

is the normal vector, and the tangential divergence on ∂∗Ω̃i
n is

defined via

divτn ζ = div ζ − νn ·Dζ νn.

Using the parametrization Ψn we can write the above equation with integrals over
∂∗Ei, with Jacobian Jn = |detDΨn|. As νn → νEi , we have divτn ζ → divτEi ζ,
and Jn → 1, by the C1,α convergence and νEi ∈ C2. Thus, we may pass to the
limit n→ ∞ in the both integrals in (3.14) and obtain∫

∂∗ eΩi
n

(divτn ζ − (2veΩi
n
− Zn|x|−p)(ζ · νn))dHd−1

→
∫

∂∗Ei

(divτEi ζ − 2vEi(ζ · νEi))dHd−1,

and ∫
∂∗eΩi

n

ζ · νndHd−1 →
∫

∂∗Ei

ζ · νEidHd−1.

Thus, λn → λ0 for some limiting Lagrange multiplier λ0. The values of λn being
(by (3.13)) the same for each component of ∂∗Ωn, the value of λ0 is independent of
i = 0, . . . , N . Thus, the limiting curvature equation is the same for each limiting set
Ei, notably with the same Lagrange multiplier λ0. Since for s < s̄(d) the limiting
sets Ei are all balls (cf. [6, Theorem 2.11]), and the Lagrange multiplier is uniquely
determined by the mass mi for balls, they must all have the same radius.
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