Lecture 1: Introduction to functions

A function is a rule that assigns each elements in a set A to exactly one object in a set B. The set A is called the domain of a function (the set of input) and the set B is the called the range of the function (the set of output).

In this course, we will only deal with functions whose domain is a subset of real numbers. Usually we will denote it by $y=f(x)$, where x is the input and is called the independent variable and y is the output and is called the dependent variable. By convention, we will usually say the domain is the largest set for which the function can be defined (with the output are finite numbers).
Examples. (i) $f(x)=x^{2}+1$, then the domain of f is every real number. $f(1)=$ $1^{1}+1=2$ and $f(x+1)=(x+1)^{2}+1=x^{2}+2 x+2$.
(ii) If $g(x)=\frac{1}{x-2}$, then $g(x)$ is undefined at $x=2$ so the domain is every real number except 2. $g(3)=\frac{1}{3-2}=1$.
(iii) If $h(x)=(x+3)^{1 / 2}=\sqrt{x+3}$, then the domain of h is $x+3 \geq 0$ (i.e. $x \geq-3$).

We can also define the composition of functions $f \circ g(x)=f(g(x))$. For example, if f and g are in Examples (i) and (ii) above, then $f \circ g(x)=f(g(x))=\left(\frac{1}{x-2}\right)^{2}+1=$ $\frac{x^{2}-4 x+5}{(x-2)^{2}}$ and $g \circ f(x)=\frac{1}{x^{2}+1-2}=\frac{1}{x^{2}-1}$.

We can sketch the graph of function $y=f(x)$ in the coordinates system. The graph on the coordinates system is a function if and only if every vertical line cuts the graph at most one point. This is called the vertical line test.

The y-intercept of a function $f(x)$ is the point $f(0)$. The x-intercept of a function $f(x)$ is value of x in the domain such that $f(x)=0$.

Examples: We discuss the examples of functions we will encounter in this course.

1. Linear function (Straight line): $y=f(x)=m x+c$, where m is the slope and c is the y-intercept. If $m=0$, it is the constant function.
2. Parabola: $f(x)=a x^{2}+b x+c$. If $a>0$, it opens up. If $a<0$, it open downward. We can determine the vertex by completing the square.

$$
f(x)=a\left(x+\frac{b}{2 a}\right)^{2}+c-\frac{b^{2}}{4 a} .
$$

The vertex is $\left(-\frac{b}{2 a}, c-\frac{b^{2}}{4 a}\right)$.
3. Power functions $f(x)=x^{n}$, where n is any real numbers. e.g. $f(x)=x^{1 / 2}$, $f(x)=x^{-5 / 6}, f(x)=x^{\sqrt{2}}$.
4. Polynomials $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$, where n is a non-negative integers, $a_{n} \neq 0$ and a_{i} are real numbers.
5. Rational function $f(x)=\frac{p(x)}{q(x)}$, where $p(x)$ and $q(x)$ are polynomials.
6. Piecewise defined function e.g. $f(x)=\left\{\begin{array}{ll}x^{2}+1, & x<0 ; \\ 2 x+1, & x \geq 0 .\end{array}\right.$ The functions is defined piece by piece.
7. exponential function Let $a>0$. Then $f(x)=a^{x}$ is the exponential function to the base a.(Section 4.1)

Exercises

1. Suppose that $f(x)=x(x+1)$ and $g(x)=\frac{x}{x+1}$. Find
(i) $f(x+1)$, (ii) $f(x)-f(x-1)$, (iii) $f(f(x))$,
(iv) $f(g(x)),(\mathrm{v}) g(f(x)),\left(\right.$ vi) $g\left(\frac{1}{x}\right)$.
2. Identify the domain of the following functions.
(i) $f(x)=\frac{1}{(x+3)^{2}}$, (ii) $g(x)=\sqrt{t-2}$, (iii) $g(x)=\sqrt{(t-2)^{2}}$.
3. Let $f(x)=x^{3}$ and let $h \neq 0$. Simplify the expression $\frac{f(x+h)-f(x)}{h}$.
4. Paul has a fever and he is undergoing a fever-reducing medication. The temperature of his body is given by $T(t)=37+\frac{2}{t+1}$.
(i) Find the temperature after one hour.
(ii) When will his temperature become 37.5 .
5. A cylindrical can is to have a capacity (volume) of $24 \pi \mathrm{~cm}^{3}$. The cost of the material used for the top and bottom of the can is 3 cents $/ \mathrm{cm} 2$, and the cost of the material used for the curved side is 2 cents $/ \mathrm{cm}^{2}$. Express the cost of constructing the can as a function of its radius.
6. Find the x - and y-intercept and also the vertex of the quadratic function.
(i) $x^{2}+2 x-3$, (ii) $2 x^{2}-x-1$, (iii) $-x^{2}-3 x-1$,
7. Solve x in the following equations.
(i) $4^{2 x-1}=16$, (ii) $4^{x}\left(\frac{1}{2}\right)^{3 x}=8$, (iii) $10^{x^{2}-1}=10^{3}$.
