Lecture 2: Limit of functions

1. Limit. Let $f(x)$ be a function and let c be a number. We say that

$$
\lim _{x \rightarrow c} f(x)=L
$$

if $f(x)$ approaches to L whenever x approaches to c.
An easy example is that if $f(x)=x$. Then $\lim _{x \rightarrow c} x=c$ by observing directly from the graph. We consider another two functions.

$$
f(x)=\frac{x^{2}-9}{x-3}, g(x)=x+3, \quad h(x)= \begin{cases}x+3, & x \neq 3 \\ 7, & x=3\end{cases}
$$

The domain of $f(x)$ is all real numbers except 3 , so $f(x)$ is undefined at $x=3$. $f(x), g(x)$ and $h(x)$ are different functions. However,

$$
\begin{gathered}
\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 3} \frac{(x+3)(x-3)}{x-3}=\lim _{x \rightarrow 3}(x+3)=6 . \\
\lim _{x \rightarrow 3} h(x)=\lim _{x \rightarrow 3}(x+3)=6
\end{gathered}
$$

When finding the limit, we are considering the behavior of the functions around the points, not the value of $f(x)$ on that point.

Limit of functions may fail to exist. For example,

$$
\lim _{x \rightarrow 2} \frac{x+1}{x-2}
$$

As x goes to $2, x+1$ goes to 3 , but the denominator goes to 0 . Therefore, $\frac{x+1}{x-2}$ goes to $3 / 0$, not a number.
2. Two-sided limit. If the function is piecewisely defined, we will write $\lim _{x \rightarrow c^{-}} f(x)$ to be the limit of $f(x)$ when x approaches c from the left hand side of c (i.e. $x<c$) and $\lim _{x \rightarrow c^{+}} f(x)$ to be the limit of $f(x)$ when x approaches c from the right hand side of c (i.e. $x<c$).

$$
f(x)= \begin{cases}1-x^{2}, & x \leq 2 \\ 2 x+1, & x>2\end{cases}
$$

Then $\lim _{x \rightarrow 2^{-}} f(x)=1-2^{2}=-3$ and $\lim _{x \rightarrow 2^{-}} f(x)=2(2)+1=5 . \lim _{x \rightarrow 2} f(x)$ does not exist. In general, $\lim _{x \rightarrow c} f(x)$ exists if and only if $\lim _{x \rightarrow c^{-}} f(x)$ and $\lim _{x \rightarrow c^{+}} f(x)$ both exists and equal.
3. Manipulation of limits. Some basic rules: Assume that $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c} g(x)$ both exist, then
(i) $\lim _{x \rightarrow c}(f(x) \pm g(x))=\lim _{x \rightarrow c} f(x) \pm \lim _{x \rightarrow c} g(x)$.
(ii) $\lim _{x \rightarrow c}(f(x) g(x))=\lim _{x \rightarrow c} f(x) \cdot \lim _{x \rightarrow c} g(x)$.
(iii) $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}$.

Other techniques: There are many many techniques, basic two are factorization and rationalization
(Factorization) $\lim _{x \rightarrow 5} \frac{x^{2}-3 x-10}{x-5}=\lim _{x \rightarrow 5} \frac{(x-5)(x+2)}{x-5}=\lim _{x \rightarrow 5}(x+2)=7$.
(Rationalization)

$$
\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}=\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1} \cdot \frac{\sqrt{x}+1}{\sqrt{x}+1}=\lim _{x \rightarrow 1} \frac{x-1}{(x-1)(\sqrt{x}+1)}=\lim _{x \rightarrow 1} \frac{1}{\sqrt{x}+1}=\frac{1}{2} .
$$

4. Limit at infinity. We write

$$
\lim _{x \rightarrow+\infty} f(x)=L
$$

if $f(x)$ approaches L as x tends to positive infinity. Similarly,

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

if $f(x)$ approaches L as x tends to negative infinity.
This following is an important property in evaluating limits at infinity. For any $k>0$,

$$
\lim _{x \rightarrow \pm \infty} \frac{1}{x^{k}}=0
$$

For example,

$$
\lim _{x \rightarrow+\infty} \frac{x^{2}+2 x+3}{2 x^{2}-x}=\lim _{x \rightarrow+\infty} \frac{1+\frac{2}{x}+\frac{3}{x^{2}}}{2-\frac{1}{x}}=\frac{1+0+0}{2-0}=\frac{1}{2} .
$$

5. Continuous functions We say that $f(x)$ is continuous at $x=c$ if

$$
\lim _{x \rightarrow \infty} f(x)=f(c) .
$$

The function $h(x)=\left\{\begin{array}{ll}x+3, & x \neq 3 ; \\ 7, & x=3 .\end{array}\right.$ is not continuous at $x=3 . \quad f(x)=\frac{x+1}{x-2}$ is not continuous at $x=2$ since $f(x)$ is undefined at $x=2$. However, if we define

$$
F(x)= \begin{cases}\frac{x^{2}-9}{x-3}, & x \neq 3 \\ 6, & x=3\end{cases}
$$

Then $\lim _{x \rightarrow 3} F(x)=6=F(3)$, so F is continuous at $x=3$.

