Lecture 1: Differentiations

Let $f(x)$ be a function. The average rate of change of $f(x)$ from $x=a$ to $x=b$ is defined to be

$$
\text { Rateave }=\frac{f(b)-f(a)}{b-a}
$$

Our interest is to define a notion of instantaneous rate of change. Note that the average rate of change of $f(x)$ from x to $x+h$ is given by

$$
\frac{f(x+h)-f(x)}{(x+h)-h}=\frac{f(x+h)-f(x)}{h} .
$$

The derivative of $y=f(x)$ at x is defined to be

$$
f^{\prime}(x)=\frac{d}{d x} f(x)=\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

A function $f(x)$ is said to be differentiable at x if the limit above exists. The process of finding derivatives given a function $f(x)$ is called differentiation.

Two interpretations of the $f^{\prime}(x)$
(1) It is the slope of the straight line that touches the $f(x)$ at the point x. This line is called the tangent line.
(2) It is the instantaneous rate of change of $f(x)$ with respect to x. For example, if $f(t)$ is the distance traveled by a car at time $t, f^{\prime}(t)$ is the speed of the car at time t.
One can also find the higher order derivatives by applying the differentiation to $f^{\prime}(x)$. i.e.

$$
f^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}=\frac{d}{d x} f^{\prime}(x)
$$

Geometrically, if $f^{\prime}(x)>0$, then f is increasing at the point x. If $f^{\prime}(x)<0$, then $f(x)$ is decreasing at the point x.

Main important formulae:

1. $\frac{d}{d x} k=0$, for any constant k.
2. $\frac{d}{d x}(m x+c)=m$.
3. $\frac{d}{d x}(a f(x))=a \frac{d}{d x} f(x)$.
4. $\frac{d}{d x}(f(x) \pm g(x))=\frac{d}{d x} f(x) \pm \frac{d}{d x} g(x)$.
5. $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$, for any real numbers n.
6. $\frac{d}{d x}\left(e^{x}\right)=e^{x}$, where $e=2.71828 \ldots$. is the constant such that $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1$ (Section 4.2).
Examples. $\frac{d}{d x} x^{3}=3 x^{2}$,
$\frac{d}{d x} x^{-3}=-3 x^{-4}=-\frac{3}{x^{4}}$,

$$
\frac{d}{d x}(\sqrt{x})=\frac{1}{2} x^{1 / 2-1}=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 x^{1 / 2}}=\frac{1}{2 \sqrt{x}} .
$$

1. Find the equation of the tangent line for the function $f(x)=x^{3}-4 x^{2}+4$ at the point $x=1$.

Solution: $f^{\prime}(x)=3 x^{2}-8 x$. At $x=1$, slope of tangent line $=f^{\prime}(1)=3-8=-5$. Also the tangent line passes through the point $(1, f(1))=\left(1,1^{3}-41^{2}+4\right)=(1,1)$. The equation of the tangent line is

$$
y-1=-5(x-1) \Longrightarrow y=-5 x+6
$$

2. Suppose the distance traveled by a car is $f(t)=3 t+5 t^{2}$ metres. Find the average speed of the car between $t=0 \mathrm{~s}$ to $t=5 \mathrm{~s}$. Find also the (instantaneous) speed of the car. What is the acceleration (the rate of change of the speed)?

Solution: Average speed over $t=0$ to $t=5=\frac{f(5)-f(0)}{5-0}=\frac{15+125}{5}=28 \mathrm{~m} / \mathrm{s}$. The speed of the car $=f^{\prime}(t)=3+10 t \mathrm{~m} / \mathrm{s}$, the acceleration of the car $=10 \mathrm{~m} / \mathrm{s}^{2}$.

