Lecture 4: Three important rules in differentiation

In doing differentiation of more complicated functions, the following three important rules will be used repeatedly.

1. Product Rule

$$
\frac{d}{d x}(f(x) g(x))=f(x) \frac{d}{d x} g(x)+g(x) \frac{d}{d x} f(x) .
$$

2. Quotient Rule

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) \frac{d}{d x} f(x)-f(x) \frac{d}{d x} g(x)}{(g(x))^{2}}
$$

3. Chain Rule

$$
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)
$$

Several simple examples illustrating the use of these rules.
Example 1.

$$
\begin{aligned}
\frac{d}{d x}(2 x+1)(4 x+3) & =(2 x+1) \frac{d}{d x}(4 x+3)+(4 x+3) \frac{d}{d x}(2 x+1) \\
& =(2 x+1)(4)+(4 x+3)(2) \\
& =16 x+10
\end{aligned}
$$

Example 2.

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{2 x+1}{4 x+3}\right) & =\frac{(4 x+3) \frac{d}{d x}(2 x+1)-(2 x+1) \frac{d}{d x}(4 x+3)}{(4 x+3)^{2}} \\
& =\frac{(4 x+3)(2)-(2 x+1)(4)}{(4 x+3)^{2}} \\
& =\frac{2}{(4 x+3)^{2}} .
\end{aligned}
$$

Example 3.

$$
\begin{aligned}
\frac{d}{d x}(2 x+1)^{2} & =2(2 x+1) \frac{d}{d x}(2 x+1) \\
& =2(2 x+1) 2=4(2 x+1)
\end{aligned}
$$

$f(u)=u^{2}$ and $g(x)=2 x+1$.
To master the three rules, you must practise a lot.

Exercises

1. Find the derivatives for the following functions.
(a) $(3-x)\left(x^{2}-1\right)$,
(b) $\frac{1-x}{1+x}$,
(c) $\frac{1}{1+x+x^{2}}$,
(d) $\frac{2 t}{(t+2)^{2}}$,
(e) $\frac{(2 x-1)(x+3)}{x+1}$, (f) $\sqrt{s^{2}-3 s+2}$, (g) $\sqrt{\frac{1-x}{1+x}}$, (h) $(2 x+1)^{3}(x-1)^{5}$
2. Find the value of x of the following function for which the tangent line is horizontal.
(a) $\left(x^{2}+x\right)^{2}$, (b) $x^{3}\left(2 x^{2}+x-3\right)^{2}$, (c) $\frac{2 x+5}{(1-2 x)^{3}}, \quad$ (d) $(x-1)^{2}(2 x+1)^{3}$.
3. Find the equation of the tangent line at $x=1$ for the following function.
(a) $(9 x-1)^{-1 / 3}$,
(b) $\frac{1}{(2 x-1)^{6}}$,
(c) $x^{2} \sqrt{2 x+3}$.
4. Find the second derivatives for the following functions.
(a) $\frac{2}{5 t+1}$,
(b) $\left(1-2 x^{3}\right)^{4}$,
(c) $\sqrt{1+x^{2}}$
5. The bacteria growth after an introduction of a toxin is given by

$$
B(t)=\frac{24 t+10}{t^{2}+1}
$$

million t hours after the introduction.
(a) At what rate the number of bacteria is changing 1 hour after the toxin was introduced?
(b) At what time does the number of bacteria begin to decline?
(c) What happen to the number of bacteria in the long run?

