Lecture 5: Implicit differentiation

A lot of time the independent variable x and the dependent variable y are defined by a equation. For example,

$$
2 x^{3}+y^{4}-x y=1, x^{2}+y^{2}=1, x^{2}-2 x y^{2}=x^{3}+y^{2}+1 .
$$

If you plot the graph, they are not graph of function. However, these graph still have a well-defined tangent line and you can find out its slope using implicit differentiation.

The way to do this differentiation is to use chain rule. We differentiate both side with respect to x and

$$
\frac{d}{d x} f(y)=\frac{d}{d y}(f(y)) \frac{d y}{d x}
$$

Example 1. Find $\frac{d y}{d x}$ for $x^{2}+y^{2}=1$.

$$
\begin{gathered}
\frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{d}{d x}(1) . \\
2 x+\frac{d}{d x}\left(y^{2}\right)=0 . \\
2 x+\frac{d}{d y}\left(y^{2}\right) \frac{d y}{d x}=0 . \\
2 x+2 y \frac{d y}{d x}=0 . \\
\frac{d y}{d x}=\frac{-x}{y} .
\end{gathered}
$$

Example 2. Find $\frac{d y}{d x}$ for $2 x^{3}+y^{4}-x y=1$.

$$
\begin{gathered}
\frac{d}{d x}\left(2 x^{3}+y^{4}-x y\right)=\frac{d}{d x}(1) \\
6 x^{2}+4 y^{3} \frac{d y}{d x}-\frac{d}{d x}(x y)=0 \\
6 x^{2}+4 y^{3} \frac{d y}{d x}-x \frac{d y}{d x}-y=0 . \\
\left(4 y^{3}-x\right) \frac{d y}{d x}=y-6 x^{2} \\
\frac{d y}{d x}=\frac{y-6 x^{2}}{4 y^{3}-x}
\end{gathered}
$$

Exercises

1. Find $\frac{d y}{d x}$ for the following
(a) $x^{2}+y=x^{3}+y^{2}$,
(b) $\frac{1}{x}+\frac{1}{y}=1$,
(c) $\sqrt{x}+\sqrt{y}=1$,
(d) $x^{2} y^{3}=x y+1, \quad(\mathrm{e})\left(x^{2}-y\right)^{2}=x y$.
2. Find the equation of the tangent line for the following graph at the specified point.
(a) $x^{2}=y^{3}$ at $(8,4)$.
(b) $\frac{1}{x}-\frac{1}{y}=2$ at $\left(\frac{1}{4}, \frac{1}{2}\right)$.
(c) $x^{2} y^{3}-2 x y=6 x+y+1$ at $(0,-1)$
(d) $\left(x^{2}+2 y\right)^{3}=2 x y^{2}+64$ at $(0,2)$
3. Find the points on the graph so that the tangent line is horizontal or vertical. (a) $x^{2}+x y+y=3, \quad$ (b) $\frac{y}{x}-\frac{x}{y}=5, \quad$ (c) $x^{2}-x y+y^{2}=3$.
