Lecture 6: Related rate problems

In certain practical problems, x and y are related by an equation and can be regarded as functions of a third variable t, which often represents time. Then implicit differentiation can be used to relate $\frac{d x}{d t}$ and $\frac{d y}{d t}$. These problems are related as related rate problem.

Example 1. A tiny spherical balloon is inserted into a clogged artery and is inflated at a rate of $0.002 \pi \mathrm{~mm}^{3} / \mathrm{min}$. At what rate is the radius of the balloon growing when the radius is $r=0.005 \mathrm{~mm}$?

Solution: Recall that the volume of a ball is $V=\frac{4}{3} \pi r^{3}$. Hence,

$$
\frac{d V}{d t}=\frac{4}{3} \pi\left(3 r^{2}\right) \frac{d r}{d t} .
$$

We know that $\frac{d V}{d t}=0.002 \pi$ when $r=0.005$. Therefore,

$$
0.002 \pi=\frac{4}{3} \pi\left(3(0.005)^{2}\right) \frac{d r}{d t} .
$$

Thus, $\frac{d r}{d t}=20 \mathrm{~mm} / \mathrm{min}$.
Example 2. When the price of a certain commodity is p dollars per unit, consumers demand x hundred units of the commodity, where

$$
75 x^{2}+17 p^{2}=5300
$$

At what rate is the demand x changing with respect to time when the price is $\$ 7$ and decreasing at a rate of 75 cents per month?

Solution: The question tells us that $\frac{d p}{d t}=-0.75$ when $p=7$. Differentiating the given equation.

$$
150 x \frac{d x}{d t}+34 p \frac{d p}{d t}=0 .
$$

When $p=7,75 x^{2}+17(7)^{2}=5300$ gives $x^{2}=59.56$. Putting in the information,

$$
150(\sqrt{59.56}) \frac{d x}{d t}+34(7)(-0.75)=0
$$

$\frac{d x}{d t}=0.15$

Exercises:

1. A ladder of 5 metres long is leaning against a wall and is sliding down. Suppose that the top of the ladder is sliding down constantly at a rate of $0.9 \mathrm{~m} / \mathrm{s}$. How fast is the foot of the ladder moving away from the wall when the top is 3 m above the ground.
2. An ice block used in a cooler at campsite is modelled as a cube of side length s. The block currently has volume $125000 \mathrm{~cm}^{3}$ and is melting at a rate of $1000 \mathrm{~cm}^{3}$ per hour.
(a) At what rate the side length is changing currently.
(b) What is the rate of change of the total surface area?
(Volume of a cube $=s^{3}$ and surface area $=6 s^{2}$)
3. A circular oil is spreading through in water in such a way that its radius is increasing at a rate of $7 \mathrm{~m} / \mathrm{h}$. How fast is the area increasing when the radius is 50 m .
4. A 1.8 metre tall man is walking at a rate of $1.5 \mathrm{~m} / \mathrm{s}$ away from the base of a street light that is 3.6 m above the ground. At what rate is the length of his shadow is changing when he is 6 m away from the base of the light?
