Lecture 7: Curve sketching: Second derivatives

We now describe the behavior of a function from the information about second derivatives.
$f(x)$ is said to be concave upward (convex) on the interval $[a, b]$ if $f^{\prime}(x)$ is increasing on $[a, b]$.
$f(x)$ is said to be concave downward (concave) on the interval $[a, b]$ if $f^{\prime}(x)$ is decreasing on $[a, b]$

(a) Concave upward graph: The graph is above each tangent line.

Theorem 1.

(i) $f(x)$ is concave upward (convex) on the interval $[a, b]$ if and only if $f^{\prime \prime}(x)>0$ on $[a, b]$.
(ii) $f(x)$ is concave downward (concave) on the interval $[a, b]$ if and only if $f^{\prime \prime}(x)<$ 0 on $[a, b]$.
$(c, f(c))$ is called a point of inflection of $f(x)$ if $f(x)$ changes its concavity at c.
Theorem 2. If $(c, f(c))$ is called a point of inflection of $f(x)$, then $f^{\prime \prime}(c)=0$.
Theorem 3 (Second derivative test). Suppose that $f(c)=0$. Then
(i) If $f^{\prime \prime}(c)>0$, then f has a relative minimum at $x=c$.
(ii) If $f^{\prime \prime}(c)<0$, then f has a relative maximum at $x=c$.
(iii) However, if $f^{\prime \prime}(c)=0$, the test is inconclusive and f may have a relative maximum, a relative minimum, or no relative extremum at all at $x=c$.

Exercises.

1. For the following functions, find the intervals for which it is concave up or concave down. Find also the points of inflection.
(i) $f(x)=x^{3}+3 x^{2}+1$, (ii) $f(x)=x^{5}-5 x^{4}+10$,
(iii) $f(x)=\frac{x}{x^{2}+3}$, (iv) $f(x)=\frac{x+1}{(x-1)^{2}}$.
(v) $f(x)=\frac{x^{2}-9}{x^{2}+1}$.
