## Lecture 9: Curve sketching: Asymptotes

We say that the line $x=c$ is a vertical asymptote of the graph of $\mathrm{f}(\mathrm{x})$ if

$$
\lim _{x \rightarrow c} f(x)=\infty(\text { may be }+\infty \text { or }-\infty) .
$$

In general, a rational function $\frac{p(x)}{q(x)}$ has a vertical asymptote $x=c$ whenever $q(c)=0$ but $p(c) \neq 0$.
Example 1. Let $f(x)=\frac{x^{2}-9}{x(x-3)}$. Note that

$$
\lim _{x \rightarrow 0} f(x)=\infty
$$

as the denominator is zero when $x$ approaches 0 but the numerator is non-zero. Therefore, $x=0$ is a vertical asymptote. On the other hand,

$$
\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3} \frac{(x+3)(x-3)}{x(x-3)}=\lim _{x \rightarrow 3} \frac{(x+3)}{x}=\frac{6}{3}=2 .
$$

There is no vertical asymptote at $x=3$.
The horizontal line $y=b$ is called a horizontal asymptote of the graph of $y=f(x)$ if

$$
\lim _{x \rightarrow \pm \infty} f(x)=b
$$

Example 2. Let $f(x)=\frac{x^{2}-9}{x(x-3)}$. Note that

$$
\lim _{x \rightarrow \infty} \frac{x^{2}-9}{x^{2}-3 x}=1
$$

There is a horizontal asymptote $y=1$.

## Exercises.

1. For the following functions, find vertical and horizontal asymptotes (if exists).
(i) $f(x)=\frac{x}{2-x}$, (ii) $f(x)=\frac{x^{2}-1}{x^{2}+1}$,
(iii) $f(x)=\frac{x^{2}+3 x-5}{x^{2}-5 x+6}$.
2. For the following functions, find
(i) the interval of increase/decrease and also the relative extrema.
(ii) the interval for which the function is convex/concave and also the point of inflection.
(iii) the vertical and horizontal asymptotes.
(iv) sketch the graph.
(I) $f(x)=x^{3}+3 x^{2}+1$, (II) $f(x)=x^{5}-5 x^{4}+10$,
(III) $f(x)=\frac{x}{(x+1)^{2}}$, (IV) $f(x)=\frac{2 x}{x^{2}-1}$.
3. Find constants $A$ and $B$ so that the graph of the function

$$
f(x)=\frac{A x+2}{8-B x}
$$

has $x=4$ as a vertical asymptote and $y=-1$ as a horizontal asymptote.
4. A manufacturer of motorcycles estimate that if $x$ thousand dollars are spent on advertising, then

$$
M(x)=2300+\frac{125}{x}-\frac{500}{x^{2}}
$$

motorcycles will be sold.
(i) Sketch $M(x)$.
(ii) What level of advertising expenditure results in maximum sales?

