1K03E, Test 3

Date: 12 June 2013,
Name :
Duration: 90 Minutes
Student ID :

Instruction: Please put down your multiple choice answers in the space below.

1. Let $y^{2}=2 x^{3}$. Find $\frac{d y}{d x}$.
A. $\frac{3 x^{2}}{2 y^{2}}$
B. $\frac{3 x^{2}}{2 y}$
C. $\frac{3 x^{2}}{y}$
D. $\frac{3 x^{3}}{y}$
E. $\frac{3 x^{3}}{2 y^{2}}$
2. Let $y^{2}=x^{3}-4 x+1$. Find the slope of the tangent line at the point $(-2,1)$.
A. 0
B. 1
C. 2
D. 3
E. 4
3. Suppose that a spherical balloon is releasing its air inside at a rate of $3 \pi \mathrm{~cm}^{3}$ per second. What is the rate the radius of the balloon is decreasing when the balloon has a radius of 1 cm ?
(Hint: The volume of a sphere of radius r is $\frac{4}{3} \pi r^{3}$)
A. $0.25 \mathrm{~cm} / \mathrm{s}$
B. $0.5 \mathrm{~cm} / \mathrm{s}$
C. $0.75 \mathrm{~cm} / \mathrm{s}$
D. $1 \mathrm{~cm} / \mathrm{s}$
E. None of the above.
4. Let $g(x)=x^{2}-x+1$. Find the x-coordinates of the vertex of $g(x)$.
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. 1
D. $-\frac{1}{2}$
E. $-\frac{1}{4}$
5. Let

$$
f(x)=x^{6}-x^{5}+100
$$

Find the interval for which $f(x)$ is concave (concave down).
A. $0<x<\frac{2}{3}$
B. $x<0$ or $x>\frac{2}{3}$
C. $x<\frac{5}{6}$
D. $x>\frac{5}{6}$
E. $0<x<\frac{5}{6}$
6. Let $f(x)=\frac{x^{2}}{x^{2}-4}$. Find the interval for which the function is increasing.
A. $x>0$
B. $x<0$
C. $-2<x<2$
D. $0<x<2$
E. $-2<x<0$
7. Let

$$
f(x)=\frac{x^{2}}{x^{2}+2 x-15}
$$

How many vertical asymptotes does $f(x)$ have?
A. 0
B. 1
C. 2
D. 3
E. 4
8. Let

$$
f(x)=\frac{3 \sqrt{x}}{\sqrt{x}+2}
$$

Find the horizontal asymptotes of $f(x)$ as x tends to infinity.
A. $y=0$
B. $x=0$
C. $x+y=3$
D. $y=3$
E. $x=3$

From questions 9 to 11. Please write down your solutions with steps in detail in the space provided.
9. Let

$$
f(x)=x^{3}-9 x^{2}+24 x .
$$

(i) (2 points) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(ii) (2 points) Find the relative maximum and relative minimum of $f(x)$.
(iii) (2 points) Find the point of inflection of $f(x)$.
(iv) (2 points) Sketch $f(x)$. Indicate the points you found in (ii) and (iii).
10. (3 points) Let

$$
\left(x^{2}+y^{2}\right)^{2}=2 x y .
$$

Find $\frac{d y}{d x}$
11. (5 points) An ice block used in a cooler at a campsite is modelled as a cube of side length s. The block currently has volume $125000 \mathrm{~cm}^{3}$ and is melting at a rate of $1000 \mathrm{~cm}^{3}$ per hour.
(a) At what rate the side length is changing currently?
(b) What is the rate of change of the total surface area?

