
Notes on Linear Algebra

David L. Duncan

In this class linear algebra plays a key role, a role which should become a
little more clear as the course progresses. These notes are meant to give an
introduction to those concepts, as well as examples from linear algebra that are
directly related to the material in this course. Furthermore, these notes follow
very closely to the lectures given on June 21 and June 23, 2012.

1 Vector Spaces

In Section 7.6 of the textbook [2] the authors define a vector space (Definition
7.6.1) by specifying certain axioms that it needs to satisfy. Many of the details
of the definition are not very relevant to us now and, since you can find it
in the text, I won’t reproduce the definition here. When it comes down to
it, the axiomatic definition is just a way of formalizing the following ‘intuitive
definition’: A vector space is a set V in which it makes sense to

• add any two elements in V (called vector addition or simply addition),
and

• multiply any element of V by real numbers (called scalar multiplica-
tion).

Here is some additional terminology: the elements of V are called vectors and
the real numbers are called scalars. In this class we will use the word space to
refer to a set that is also a vector space. If we only use the word set then we
are do not have any vector space-type structure in mind.

The next two subsections are very important in that every example we will
see in this class will come from one of these in a sense we will make precise in
the next section.

1.1 The Vector Space Rn

Define the following set

Rn := {〈x1, . . . , xn〉 |xj ∈ R for j = 1, . . . , n}.

The notation ‘Rn’ is read ‘aar-en’. We can give Rn the structure of a vector
space by defining addition, scalar multiplication and the zero vector as follows:
Given 〈x1, . . . , xn〉 , 〈y1, . . . , yn〉 ∈ Rn and k ∈ R, we define
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• Addition in Rn: 〈x1, . . . , xn〉+ 〈y1, . . . , yn〉 := 〈x1 + y1, . . . , xn + xn〉 ,

• Scalar Multiplication in Rn: k · 〈x1, . . . , xn〉 := 〈kx1, . . . , kxn〉 .

• Zero in Rn: The zero in Rn is the element with zero in every component:
〈0, 0, . . . , 0〉.

Said succinctly addition and scalar multiplication are defined component-wise.
Then this way of defining addition, scalar multiplication, and the zero satisfies
the axioms of a vector space from the book.

Exercise 1. Verify that, with these definitions, Rn satisfies the axioms in the defi-
nition of vector space.

Remark. It is sometimes useful to use different notation to represent
vectors in Rn. For example, some authors use (x1, . . . , xn) rather than
〈x1, . . . , xn〉. However, since parentheses are so overused in math, in
this class I will primarily use the square brackets, 〈 〉, instead.

Sometimes it is also useful to think of the vectors in Rn as matrices
with one column and n rows:  x1

...
xn


This viewpoint is useful when talking about matrix multiplication, and
we will adopt this notation a few times later when we discuss linear
transformations.

1.1.1 The line R1

As a visual tool, we often think of R1 as the real number line. This identification
is made by simply placing the vector 〈x〉 at the location x on the number line.

Note also that the following two sets are obviously very similar:

R = {x |x ∈ R}

R1 = {〈x〉 |x ∈ R}

Some authors identify these two, and that is fine for most situations. However,
there are a few places where this can lead to confusion, so when talking about
the vector space I will use R1 and write its elements with square brackets 〈x〉;
on the other hand, when talking about the set of scalars I will use R and not
use any brackets for the elements. For example, 〈0〉 denotes the zero vector in
R1, while 0 denotes the zero scalar, so

0 〈x〉 = 〈0〉

for all 〈x〉 ∈ R1.
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1.1.2 The plane R2

We can visualize R2 as the set of points in the plane. Explicitly, identify the
vector 〈a, b〉 ∈ R2 with the point whose x-coordinate is a and whose y-coordinate
is b. Similar constructions can be done with Rn for any positive integer n.

1.2 The Vector Space F (a, b)

Define

F (0, 1) := {real-valued functions f defined on [0, 1]}

More succinctly, write

F (0, 1) = {f : [0, 1]→ R}

The ‘F ’ stands for ‘function’.
The following functions are elements in F (0, 1):

f(x) = x2, g(x) = sin(x), h(x) =
1

x− 2
.

However, the function

i(x) =
1

x− 1/2

is not in F (0, 1) because it is not defined at 1/2. (Why is h(x) = 1
x−2 in F (0, 1)?)

Exercise 2. Which of the following functions are in F (0, 1)?

tan(x), ex, |x| , ln(x)

The 0 and 1 in the definition of F (0, 1) are not special. Indeed, for any real
numbers a, b with a < b we can define1

F (a, b) := {f : [a, b]→ R} .

It will be useful to also consider functions defined on the whole real line. So we
define

F (−∞,∞) := {f : (−∞,∞)→ R} .

For simplicity, we will use the notation F (a, b) to denote
We can turn F (a, b) into a vector space by defining addition, scalar mul-

tiplication and the zero vector as follows: Let f, g ∈ F (a, b) and k ∈ R, and
define

1The notation F (a, b) is not standard. That is, if you are talking to someone outside of
this class they will probably not know what F (a, b) means (unlike Rn or C(a, b), which are
standard).
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• Addition in F (a, b): f + g is the function whose value at x ∈ [a, b] is
f(x) + g(x),

• Scalar Multiplication in F (a, b): kf is the function whose value at
x ∈ [a, b] is kf(x).

• Zero in F (a, b): The ‘zero element’ of F (a, b) is the function that is
constantly zero. We denote this by 0fun, and it is defined by

0fun(x) = 0

for all x ∈ [a, b].

For example, if f and g are the functions given by the formulas f(x) = x2 and
g(x) = sin(x) then 2f + 3g is the function given by the formula 2x2 + 3 sin(x).

Exercise 3. Verify that, with these definitions, F (a, b) satisfies the axioms in the
definition of vector space.

Exercise 4. Sketch the graph of 0fun ∈ F (−∞,∞). Sketch the graph of 0fun ∈
F (0, 1). How do these graphs differ?

Note that the vectors in F (a, b) are functions. Said differently, the vectors
in this space happen to also be functions. This is in contrast to the vectors in
R2, for example, which are ordered pairs of real numbers. Hence F (a, b) is often
called a function space.

2 Subspaces

In the previous section I mentioned that, in this course, all of our examples of
vector spaces will come from Rn or F (a, b) in some way. More precisely, all the
other vector spaces will be subspaces of Rn or F (a, b), (for suitably chosen n or
a, b). Simply put, a subspace is a vector space that lies inside of another vector
space. Here is the formal definition, which is what you need to refer to when
proving that subsets are subspaces:

Definition 1. Let V be a vector space and W ⊆ V a subset2. Then we say that
W is a subspace of V if each of the following conditions hold:

1. If u, v ∈W then u + v ∈W ;

2. If u ∈W and k ∈ R then ku ∈W .

The following theorem ties this definition in with the intuitive description of
a subspace from the opening paragraph of this section:

2Given sets A, B, we say that A is a subset of B if every element of A is also an element
of B. If this is the case, then we write A ⊆ B. Note that this definition does allow for the
case where A = B. The little line at the bottom of symbol ‘⊆’ is there to remind us of this
(just like the line at the bottom of ‘≤’).
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Theorem 2. If V is a vector space and W ⊆ V is a subspace, then W is a
vector space. The addition and scalar multiplication are those inherited from V .

Though this theorem isn’t difficult to prove, I will not give a proof here.
(Our textbook actually takes this as the definition of subspace.) However, one
ingredient of the proof Theorem 2 is the first part of the following exercise. It
provides an easy criteria for determining when a subset is not a subspace, as
parts (a) and (b) illustrate.

Exercise 5. Show that if W ⊆ V is a subspace of V , then 0 ∈W . Use this to show
that the following subsets of R2 are not subspaces:

(a)
˘
〈x, y〉 ∈ R2 |x2 + y2 = 1

¯
(b)

˘
〈x, y〉 ∈ R2 |x + 2y = 4

¯
In the converse direction, Theorem 2 can be used to prove certain sets are

vector spaces, without having to verify all of the 10 axioms in the definition of
vector space. This is illustrated in Corollary 4 below and through examples in
Subsections 2.1 and 2.2.

Before proceeding to specific examples, we discuss two subspaces that appear
in every vector space. These are defined in the statement of the next theorem.

Exercise 6. This exercise is especially designed for those who are uncomfortable
with proving things. The exercise is to spend some time going over the proof of this
theorem. In particular, you should

(a) Make sure you understand every step.

(b) After you have completed Part (a), try to understand the proof as a whole. For
example, you could ask yourself, why are these ideas presented in this order?

Theorem 3 (The Trivial Subspace). Let V be a vector space. Then the follow-
ing are subspaces of V

{0} ⊆ V , the subset containing only the zero vector;

V ⊆ V , the set V itself.

These subspaces are called the trivial subspaces.

Proof. I will prove that {0} is a subspace, and leave the proof that V is a sub-
space as an exercise. According to the definition of subspace, it suffices to verify
each of the following claims:

Claim 1: If u, v ∈ {0}, then u + v ∈ {0}.

Claim 2: If u ∈ {0} and k ∈ R, then ku ∈ {0}.

To prove Claim 1, first observe that if u, v ∈ {0}, then u = v = 0 since {0}
only contains one element and this element is 0. Therefore
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u + v = 0 + 0 = 0 ∈ {0} ,

which proves Claim 1.
The proof of Claim 2 is similar. If k ∈ R and u ∈ {0}, then we must have

u = 0, and so

ku = k0 = 0 ∈ {0} .

Exercise 7. Complete the proof of Theorem 3 by proving that V is a subspace of
itself.

The following corollary is a cute application of the two theorems we have
seen so far.

Corollary 4. The set consisting of exactly one point {p} is a vector space.

Proof. Let V be any vector space (R2, for example). Then think of {p} as a
subset of V by identifying p with 0 ∈ V . By Theorem 3, {p} is a subspace of
V , and so by Theorem 2, {p} itself is a vector space.

2.1 Subspaces of Rn

2.1.1 Classification of the Subspaces of R1

The only subspaces of R1 are the trivial subspaces: {〈0〉} and R1. To see this,
suppose W ⊆ R1 is a subspace. We will show that if W is not the zero subspace
{〈0〉} then it must be that W = R1. Toward this end, suppose W 6= {〈0〉}. The
only way this can happen is if there is some vector 〈w〉 ∈ W where 〈w〉 6= 〈0〉.
Since W is a subspace, we must have

k 〈w〉 ∈W

for every k ∈ R. I claim this implies that W contains every element of R1, and
so W = R1. To prove the claim, let 〈a〉 ∈ R1. Then take k = a/w (this is
allowed because w 6= 0) to get

〈a〉 = 〈(a/w)w〉 = 〈kw〉 = k 〈w〉 ∈W,

which proves the claim, since 〈a〉 ∈ R1 was arbitrary (and hence this same
argument works for any 〈a〉 you choose).

2.1.2 Classification of the Subspaces of R2

Apart from the trivial subspace, {〈0, 0〉} and R2, the only other subspaces of
R2 are the lines that pass through the origin. The proof is not hard, but it is
perhaps more instructive to think about why this is the case. For example, you
might come up with a subset that isn’t one of the ones listed here, and try to
figure out why it isn’t a subspace.
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2.1.3 Classification of the Subspaces of R3

Every subspace of R3 is either one of the trivial subspaces, a line through the
origin, or a plane through the origin. Again, try to figure out why this is the
case.

2.1.4 Subspaces are Flat

As the illustrated in R1, R2 and R3, the subspaces of Rn are flat: they look
like lines, planes, and higher dimensional versions of these. This is a general
phenomenon, and you should think of all subspaces (and all vector spaces for
that matter) as being flat in some sense.

2.2 Subspaces of F (a, b)

2.2.1 Two Subspaces of Polynomials: Pn and P

Let n ≥ 0 be an integer, and define

Pn := {polynomials of degree ≤ n}

So we have

x2 ∈ P2, x15 + x8 − 3 ∈ P1012,

but x4 is not in P3, and sin(x) is not in Pn for any n.
Since every polynomial p(x) can be thought of as a function p : (−∞,∞)→

R, we automatically have that Pn is a subset of F (−∞,∞):

Pn ⊆ F (−∞,∞).

In fact, Pn is a subspace. Indeed, if p, q are polynomials of degree less than or
equal to n, then p + q is also a polynomial of degree less than or equal to n.

Exercise 8. Convince yourself that this statement is true when n = 10: Write down
two polynomials of degree ≤ 10. Add them together and verify that you again get a
polynomial of degree ≤ 10. Try this a few more times. Can you come up with a way
to prove this statement for general n (and not just n = 10)?

Similarly, if you multiply p by a real number you get another polynomial, and
this polynomial has degree less than or equal to n, since this was true of p. This
proves that Pn is a subspace of F (−∞,∞).

Now define

P := {polynomials} .

This is the set consisting of all polynomials (no restrictions on the degrees). Es-
sentially the same argument we gave above for Pn shows that P ⊆ F (−∞,∞)
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is a subspace. In fact, we also have that Pn ⊆ P is a subspace of P . Further-
more, we can get really fancy and observe that we have an infinite sequence of
subspaces

P0 ⊆ P1 ⊆ P2 ⊆ P3 ⊆ . . . ⊆ P ⊆ F (−∞,∞).

2.2.2 The Subspace of Continuous Functions: C(a, b)

Let a, b be real numbers with a < b, or a = −∞, b =∞. Then define

C(a, b) := {f ∈ F (a, b) | f is continuous}

(The ‘C’ stands for ‘continuous’.) So sin(x), x2 ∈ C(−1, 1), but the following
piecewise function is not in C(−1, 1):

f(x) =
{

x x < 0
1 x ≥ 0

C(a, b) is a subspace of F (a, b). This is immediate given the following theo-
rem from calculus:

Theorem 5. If f, g are continuous on an interval I and k is a real number,
then

f + g, kf

are both continuous on the same interval I.

For a proof see the section on continuity in [1][Rogawski].

2.2.3 The Subspace C2
0 (a, b)

Let a, b be real numbers with a < b. Then define

C2
0 (a, b) := {f ∈ F (a, b) | f, f ′ both exist and are continuous, and f(a) = f(b) = 0} .

Exercise 9. Prove that C2
0 (a, b) is a subspace of F (a, b). You should quote a theo-

rem from calculus that is similar to Theorem 5 above.
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