S4D03/S6D03 2019/2020: Test Two Solution
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First, let’s check the Feller’s condition:
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The Feller’s condition holds, then if the Lindeberg Condition holds, then CLT holds.
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|Yi| < 1 for any k, and B, diverges, |Yi| < eB, is true for any ¢ > 0 as n — oo, i.e.
Ify,>eB,y = 0 for all k as n — oo.
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In conclusion,
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QUESTION 2
Please refer to the lecture notes on November 4th.

Any other example satisfying the required conditions is also acceptable.

QUESTION 3
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By Law of Small Number (Poisson Approximation),
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