
MATH 702, Winter 2015, Homework 1,

Due Monday, January 26

Total: 20 marks.

(1) Let k be a field, A be the polynomial ring k[x1, . . . , xn], and An be the affine n-space over k. For each
f ∈ A we denote by

(i) Z(f) the affine algebraic set of f , i.e., the zero locus of f ;

(ii) Uf the complement of Z(f) in An.

Show that the collection of sets {Uf |f ∈ A} form a basis of open sets in An (for the Zariski topology),
i.e., every open subset in An is a union of members in {Uf |f ∈ A}. (2 marks)

Answer: For any open subset U of An, write U = An − Z(I) for some ideal I of A. Then we
can just write the tautology I = 〈f〉f∈I . Since Z(I) = Z(〈f〉f∈I) = ∩f∈IZ(f), we have

U = An −

⋂
f∈I

Z(f)

 =
⋃
f∈I

(An − Z(f)) =
⋃
f∈I

Uf .

(Remark: We don’t need to use the fact that A is Noetherian.)

Remark: We usually call the open sets in {Uf |f ∈ A} basic open sets of An, and say that the ba-
sic open sets generate arbitrary open sets. When we prove statements concerning open sets, it is usually
enough to assume that the open sets involved in the questions are basic open sets.

(2) Some topological properties of An.

(i) A topological space X is called

(a) T1 if for every pair of distinct points P,Q ∈ X, there is an open subset U containing P but
not Q, and another open subset V containing Q but not P ;

(b) T2, or Hausdorff, if it satisfies the same condition in T1 with U and V disjoint.

Show that if the base field k is infinite, then An is T1 but not T2. (3 marks)

Answer: In An, every point P = (P1, . . . , Pn) is closed, because P = Z(〈x1 − P1, . . . , xn − Pn〉).
(1 mark. Note: I stress that this fact is important. Later we will see some topology of which a point
may not be closed.) If P 6= Q, then P ∈ U = An−Q, where U is open. Similarly, Q ∈ V = An−P ,
where V is open. Therefore, An is T1.

To show that An is not T2, we show that two open subsets in An must have non-empty inter-
section. It is enough to show that for every non-zero f, g ∈ A = k[An], the open sets Uf and Ug
have non-empty intersection. Indeed we can check that

Uf ∩ Ug = (An − Z(f)) ∩ (An − Z(g)) = An − (Z(f) ∪ Z(g)) = An − Z(fg) = Ufg

Since fg is also non-zero, Ufg is non-empty.
(2 marks. It is important to assume that k is infinite, since otherwise there exists polynomial f
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whose corresponding open set is empty, e.g., when k = Fp and f = xp−x ∈ k[x], then Uf = ∅.)

(ii) A topological space X is called quasi-compact if every open cover of X has a finite subcover, i.e.
if there exists a collection (possibly infinite) {Ui} of open subsets of X such that X = ∪Ui, then
there exists a finite sub-collection {Ui1 , . . . , Uik} of {Ui} such that X = Ui1 ∪ · · · ∪ Uik .
Show that An is quasi-compact. (2 marks)

Answer: Let An = ∪f∈SUf for some subset S ⊆ A = k[An]. Taking complement, we have
∩f∈SZ(f) = Z(〈f〉f∈S) = ∅. It means that there is a function in 〈f〉f∈S vanishing nowhere in An.

Such a function must be of the form g =
∑k
i=1 aifi (a finite sum!) for some f1, . . . , fk ∈ S. Then

we have Z(〈f1, . . . , fk〉) = ∅ because g ∈ 〈f1, . . . , fk〉 and is nowhere vanishing. We have found
a finite subcover {Uf1 , . . . , Ufk} of the cover {Uf}f∈S such that An = ∪ki=1Ufi . Therefore, An is
quasi-compact.
(Remark: Just like Question 1, We don’t need to use the fact that A is Noetherian.)

(iii) Given two topological space X and Y , we define the product topology on X × Y by taking the
collection of open subsets U × V as a basis, where U ⊆ X and V ⊆ Y are open.
Is the topology of A2 equal to the product topology of A1 × A1? (2 marks)

Answer: Many arguments work in this case. For example, we can argue that the open sub-
set A2 − Z(x− y) (i.e., a plane without the diagonal) is not a union of

(A1 − {finite many points})× (A1 − {finite many points}).

It is because, say, the above product of open subsets (and also their unions) can only exclude
finitely many points in the diagonal of A2.

(3) (c.f. Dummit-Foote, Sec.15.1, Ex.5) Let M be an Noetherian R-module and φ : M →M is an R-module
endomorphism. Prove that

(i) ker(φn)∩ image(φn) = 0 if n is large enough; (2 marks) (Hint: Observe that kerφ ⊆ kerφ2 ⊆ · · · .)
(ii) if φ is surjective, then it is an isomorphism. (2 marks)

(iii) If φ is injective, is it necessarily an isomorphism? (1 mark)

Answer:

(i) Observe that we have the increasing chain of R-submodules kerφ ⊆ kerφ2 ⊆ · · · in M , and so we
have ker(φn) = ker(φn+1) = · · · for large enough n, by that M is Noetherian. (1 mark) Now if
x ∈ ker(φn) ∩ image(φn), then x = φn(y) and φn(x) = φ2n(y) = 0. Then y ∈ ker(φ2n) = ker(φn)
and so x = φn(y) = 0. (1 mark)

(ii) If φ is surjective, then φn is also surjective, or image(φn) = M . Then ker(φn) ∩ image(φn) =
ker(φn) = 0. Since ker(φ) ⊆ ker(φn), we have ker(φ) = 0, and so φ is injective.

(iii) If φ is injective, then it is not necessarily an isomorphism. For example, take M = R = Z, and
φ : Z→ Z, x 7→ 2x.

(4) (Dummit-Foote, Sec.15.2, Ex.2) Let R be a ring and I, J be ideals of R. Prove that

(a)
√
IJ =

√
I ∩ J =

√
I ∩
√
J . (2 marks)

Answer: We can check easily, by definition of
√
I, that if I ⊆ J , then

√
I ⊆
√
J . Therefore, since

IJ ⊆ I ∩ J , it is then easy to check that

√
IJ ⊆

√
I ∩ J ⊆

√
I ∩
√
J.
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Suppose that x ∈
√
I ∩
√
J , then xm ∈ I and xn ∈ J for some m,n, then xm+n ∈ IJ and so

x ∈
√
IJ . Therefore √

IJ ⊆
√
I ∩ J ⊆

√
I ∩
√
J ⊆
√
IJ,

forcing all these ideals to be equal.

(b)
√
I + J =

√√
I +
√
J . (2 marks)

Answer: We have I + J ⊆
√
I +
√
J implies that

√
I + J ⊆

√√
I +
√
J Conversely if x ∈√√

I +
√
J , then xm = y + z, for some y ∈

√
I, some z ∈

√
J , and some integer m. Hence yn ∈ I

and zp ∈ J for some integers n, p. Then xmnp ∈ I + J and x ∈
√
I + J .

(5) A map f : X → Y between topological spaces is a homeomorphism (note the spelling!) if f is bijective
and both f and f−1 are continuous.

Let φ : V → W be a morphism of affine algebraic sets and φ̃ : k[W ] → k[V ] be the associated k-
algebra morphism of coordinate rings. Prove that if φ̃ is surjective, then φ is a homeomorphism of V
onto a closed subset of W . (2 marks) (Hint: First describe the image of φ as a closed subset of W .)

Answer: Consider the ideal ker φ̃ of k[W ], which provides a closed subset Z(ker φ̃) of W . We claim
that φ is a homeomorphism of V onto Z(ker φ̃).

We first show that φ maps V into Z(ker φ̃) and is injective. The first claim is easy: for all f ∈ ker φ̃, we
have φ̃(f) ≡ 0V the zero function of V . Hence if Q = φ(P ) ∈ φ(V ), then f(Q) = f(φ(P )) = (φ̃(f))(P ) =
0V (P ) = 0. This implies that Q ∈ Z(ker φ̃). To show that φ : V → Z(ker φ̃) is injective, we check
if φ(P ) = φ(P ′), then (φ̃(f))(P ) = f(φ(P )) = f(φ(P ′)) = (φ̃(f))(P ′) for all f ∈ k[W ]. Since φ̃ is
surjective, we have g(P ) = g(P ′) for all g ∈ k[V ], and so P = P ′.

We then show that ker φ̃ = IZ(ker φ̃). (Note we always have J ⊆ IZ(J) by definition, but in gen-
eral J = IZ(J) is not true. The equality only holds for some special ideals J .) If f ∈ IZ(ker φ̃), then
f |Z(ker φ̃) ≡ 0. Since φ(V ) ⊆ Z(ker φ̃), we have f ◦ φ(V ) ≡ 0. This implies that φ̃(f) ≡ 0 as a function

of V . Therefore f ∈ ker φ̃.

That ker φ̃ = IZ(ker φ̃) implies that k[W ]/ ker φ̃ ∼= k[W ]/IZ(ker φ̃) = k[Z(ker φ̃)], which then implies
that φ̃ : k[Z(ker φ̃)]→ k[V ] is an isomorphism of k-algebra. Denote the inverse k-algebra morphism of φ̃
by ψ̃ : k[V ]→ k[Z(ker φ̃)]. There is a corresponding morphism of affine algebraic sets ψ : Z(ker φ̃)→ V ,
by the equivalence of categories shown in class. Since ψ̃ ◦ φ̃ = idk[Z(ker φ̃)] and φ̃ ◦ ψ̃ = idk[V ], they induce

the equalities φ ◦ ψ = idZ(ker φ̃) and ψ ◦ φ = idV , we have indeed V and Z(ker φ̃) are isomorphic as an

affine algebraic set. In particular, φ is a homeomorphism onto its image (whose inverse is ψ).
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