
MATH 702, Winter 2015, Homework 2,

Due Monday, February 16

Total: 16 marks.

(1) (Dummit-Foote, Sec 15.2, Ex. 54) Given two ideals I, J in a ring R, define the ideal quotient

(I : J) = {x ∈ R|xJ ⊆ I}.

Note that (I : J) is also an ideal of R, and I ⊆ (I : J). Now let R = k[An].

(a) Show that Z(I)− Z(J), the set of points in Z(I) not lying in Z(J), is contained in Z((I : J)). (2
marks)

Answer: Since J(I : J) ⊆ I, we have Z(I) ⊆ Z(J(I : J)) = Z((I : J)) ∪ Z(J), which is
equivalent to say that Z(I)− Z(J) ⊆ Z((I : J)).

(b) Show that if V and W are affine algebraic sets, then (I(V ) : I(W )) = I(V −W ). (1 mark)

Answer: We can check that

f ∈ (I(V ) : I(W ))⇔ fI(W ) ⊆ I(V )

⇔ (fg)|V ≡ 0 for all g such that g|W ≡ 0

⇔(∗) f |V−W ≡ 0

⇔ f ∈ I(V −W ).

((*) is not completely trivial, only⇐ is easy. For⇒, Suppose (fg)|V ≡ 0 for all g such that g|W ≡
0, then f(P )g(P ) = 0 for all P ∈ V −W . Now take g such that g|W ≡ 0 but g(P ) 6= 0, then it
forces f(P ) = 0. Such a function g exists because W is a closed subset AND our sets are T1 (i.e.,
a point is a closed subset). For if W is not closed, then we can take P ∈ W̄ −W , then g|W ≡ 0
forces g|W̄ ≡ 0 because

g|W ≡ 0⇒W ⊆ g−1{0}
⇒ W̄ ⊆ g−1{0} (because g−1{0} is a closed subset.)

⇒ g|W̄ ≡ 0.

I have not deducted marks if you did not mention this.)

(c) Suppose that k is algebraically closed and I is a radical ideal. Prove that Z((I : J)) = Z(I)− Z(J),
the closure of Z(I)− Z(J). (2 marks) (Hint: J is not necessarily a radical ideal.)

Answer: Note that J may not a radical ideal. But we will prove that (I : J) = (I :
√
J).

Assuming this, the statement we want to prove becomes

Z((I :
√
J)) = Z((I : J)) = Z(I)− Z(J) = Z(I)− Z(

√
J).

Therefore, we can assume that J is a radical ideal. By Nullstellensatz, we can write I = I(V ) and
J = I(W ), where V = Z(I) and W = Z(J). By (ii), we have

(I : J) = (I(V ) : I(W )) = I(V −W ) = I(Z(I)− Z(J)).
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Taking zero sets, we have

Z((I : J)) = ZI(Z(I)− Z(J)) = Z(I)− Z(J).

We now prove that (I : J) = (I :
√
J). It is easy to check that (I :

√
J) = {x ∈ R|x

√
J ⊆ I} ⊆

{x ∈ R|xJ ⊆ I} = (I : J). Conversely, if x ∈ (I : J), then xJ ⊆ I. If k ∈
√
J , then km ∈ J

and (xk)m = xm−1(xkm) ∈ xm−1(xkm) ∈ xm−1(xJ) = xm−1I ⊆ I. Hence xk ∈
√
I = I and so

x
√
J ⊆ I.

Remark: Usually, we impose the algebraically-closed condition for k because we want to use the Hilbert’s
Nullstellensatz (that IZ(J) =

√
J for every ideal J) and its consequences.

(2) (i) (Dummit-Foote, Sec 15.2, Ex. 20) Suppose ϕ : V →W is a surjective morphism of affine algebraic
sets. Prove that if V is a variety, then W is a variety. (1 mark)

Answer: If W = W1 ∪ W2 where W1, W2 are closed proper subsets of W , then we define
Vi = ϕ−1Wi for i = 1, 2, which are clearly closed subsets. Since Wi is a proper subset and ϕ is
surjective, Vi is also proper. Moreover, we must have V = V1 ∪ V2, which contradicts that V is
irreducible.

(ii) (Dummit-Foote, Sec 15.2, Ex. 26) Let

V = Z(xz − y2, yz − x3, z2 − x2y) ⊂ A3.

Show that if k is infinite, then V is an affine variety. (3 marks) (Hint: Consider A1 → V, t 7→
(t3, t4, t5).)

Answer: We define a map ϕ : A1 → A3, t 7→ (t3, t4, t5). This is a morphism because it is
defined by polynomials. The image lies in V : we can check xz − y2 = (t3)(t5) − (t4)2 = 0 and
similarly for yz − x3 and z2 − x2y. To show that ϕ is surjective, notice that if (x, y, z) ∈ V with
x = 0, then all x, y, z are zero, and so ϕ(0) = (0, 0, 0). If x 6= 0, then we take t = y/x and so
t 7→ (t3, t4, t5) = ((y/x)3, (y/x)4, (y/x)5). We can check that (y/x)3 = x since

y3

x3
=

(xz)y

x3
=

x(yz)

x3
=

x(x3)

x3
= x.

Similarly, we can check (y/x)4 = y and (y/x)5 = z. Finally, if we apply (a), then we know that V
is irreducible, so it is an affine variety.

(3) (Dummit-Foote, Sec 15.3, Ex. 2) Let k be a field and R = k[x, y]/
〈
x2 − y3

〉
. For x̄, ȳ ∈ R the natural

projections of x, y, denote t = x̄/ȳ and K = k(t). Prove that k[t] is the integral closure of R in K. (3
marks) (Hint: It is enough to show that K is the field of fraction of R. Why?)

Answer: Recall that we have a morphism A1 → V = Z(x2 − y3), t 7→ (t3 − t2) which is bijec-
tive (but not an isomorphism, as the inverse map (x̄, ȳ) 7→ x̄/ȳ is not a polynomial). This induces a
morphism of rings Φ : k[x̄, ȳ]→ k[t], which is injective (one way to check this is to show that Φ maps a
k-basis {ȳi, x̄ȳi, x̄2ȳi}i∈Z of R into {t3i, t3i+2, t3i+4}i∈Z, which is k-linearly independent in k[t].)

We then show that K = k(t) is the field of fraction KR of R = k[x̄, ȳ]. Clearly K ⊆ KR since
t = x̄/ȳ as a quotient of x̄ ∈ R by ȳ ∈ R. Conversely, every f(x̄, ȳ) ∈ R, if non-zero, can be
written as f(t3, t2), which is also non-zero since the ring morphiasm Φ is injective. Hence we have
(f(x̄, ȳ))−1 = (f(t3, t2))−1 ∈ K = k(t).

Finally, we know that k[t] is a PID, since t is a genuine variable of A1. (In a more technical term,
we say that t is transcendental over k.). Hence it is a UFD. We checked in class (or from Example 3,
p.693 of the book) that a UFD is integrally closed (in its field of fractions). Moreover t is integral over
R as t2 − ȳ = (x̄/ȳ)2 − ȳ = (x̄2 − ȳ3)/ȳ = 0. Hence k[t] is integral over R, and is the integral closure of
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R in KR = K = k(t).

(4) First recall some basic notions.

(i) Let Φ : A → B be a ring homomorphism. We say that Φ has the going-up property, or that Φ
is GU, if it satisfies the following condition: Let P1 ⊆ · · · ⊆ Pn be a chain of prime ideals of A
and Q1 ⊆ · · · ⊆ Qm (with m < n) be a chain of prime ideals of B such that Φ−1Qi = Pi for all
i = 1, . . . ,m. Then the chain Q1 ⊆ · · · ⊆ Qm can be extended to a chain Q1 ⊆ · · · ⊆ Qn of prime
ideals such that Φ−1Qi = Pi for all i = 1, . . . , n.
For example, if Φ is the inclusion map of A ⊆ B, and B is integral over A, then Φ is GU, by
Theorem 26 of the textbook.

(ii) Let ϕ : X → Y be a continuous map of topological space. We say that ϕ is closed if it maps every
closed subset of X onto a closed subset of Y .

Let the base field k be algebraically closed. Suppose that ϕ : V → W is a morphism of affine algebraic
sets, and ϕ̃ : k[W ]→ k[V ] be the corresponding morphism of rings. Prove that

ϕ : V →W is closed if and only if ϕ̃ is GU.

(4 marks)

Answer:

• In the proof below, I will denote a prime idaal by p or q instead of P or Q, which should be used
for denoting points. Sorry for the confusions.

• Some of the techniques in the proof are similar to those in the proof of

ϕ : V →W is surjective if and only if ϕ̃ is LO (Lying-Over).

done in class.

(⇒) Given ϕ : V → W is closed, and let p ⊆ p′ be two prime ideals in k[W ], and q be a prime ideal in
k[V ] such that ϕ̃−1q = p. ( The general statement for GU follows by applying induction to the above
statement.)
Applying Z to p ⊆ p′, we have

Z(p′) ⊆ Z(p) = Z(ϕ̃−1q) = ϕ(Z(q)) = ϕ(Z(q)),

where the last equality holds because ϕ is closed. So Z(p′) lies in the image of ϕ. Let J be an ideal
containing q in k[V ] such that Z(J) = ϕ−1Z(p′), so that ϕ(Z(J)) = Z(p′). We claim that we can choose
J to be a prime ideal. Otherwise, let Z(J) = ∪iZ(qi) be a decomposition into varieties, so that every qi
is a prime ideal. Then we have a decomposition of Z(p′) as

Z(p′) = ϕ(Z(J)) =
⋃
i

ϕ(Z(qi)) =
⋃
i

ϕ(Z(qi)),

again because ϕ is closed. As Z(p′) is irreducible, we have Z(p′) = ϕ(Z(qi)) = ϕ(Z(qi)) for some qi. We
can take J to be qi so that J ⊇ q and ϕ̃−1J = p′.

(⇐) Given ϕ̃ is GU. Given every closed subset Z(J) in V , by decomposition into varieties we can
assume that J = p is a prime ideal. To show that ϕ(Z(p)) is equal to its closure, suppose that
Q ∈ ϕ(Z(p)) = Z(ϕ−1p), then the maximal ideal mQ corresponding to Q contains ϕ−1p. By GU there
exists an ideal n containing p such that ϕ−1n = mQ. We can assume that n is maximal, as its preimage is
maximal. Let P be the point corresponding to n by Nullstellensatz. This implies Q = ϕ(P ) ∈ ϕ(Z(p)).
Therefore, ϕ(Z(p)) ⊆ ϕ(Z(p)), or in other words, ϕ(Z(p)) is closed.
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