MATH 702, Winter 2015, Homework 2,
 Due Monday, February 16

Total: 16 marks.
(1) (Dummit-Foote, Sec 15.2, Ex. 54) Given two ideals I, J in a ring R, define the ideal quotient

$$
(I: J)=\{x \in R \mid x J \subseteq I\}
$$

Note that $(I: J)$ is also an ideal of R, and $I \subseteq(I: J)$. Now let $R=k\left[\mathbb{A}^{n}\right]$.
(a) Show that $Z(I)-Z(J)$, the set of points in $Z(I)$ not lying in $Z(J)$, is contained in $Z((I: J))$. (2 marks)

Answer: Since $J(I: J) \subseteq I$, we have $Z(I) \subseteq Z(J(I: J))=Z((I: J)) \cup Z(J)$, which is equivalent to say that $Z(I)-Z(J) \subseteq Z((I: J))$.
(b) Show that if V and W are affine algebraic sets, then $(I(V): I(W))=I(V-W)$. (1 mark)

Answer: We can check that

$$
\begin{aligned}
f \in(I(V): I(W)) & \Leftrightarrow f I(W) \subseteq I(V) \\
& \left.\Leftrightarrow(f g)\right|_{V} \equiv 0 \text { for all } g \text { such that }\left.g\right|_{W} \equiv 0 \\
& \left.\Leftrightarrow{ }_{(*)} f\right|_{V-W} \equiv 0 \\
& \Leftrightarrow f \in I(V-W) .
\end{aligned}
$$

$\left((*)\right.$ is not completely trivial, only \Leftarrow is easy. For \Rightarrow, Suppose $\left.(f g)\right|_{V} \equiv 0$ for all g such that $\left.g\right|_{W} \equiv$ 0 , then $f(P) g(P)=0$ for all $P \in V-W$. Now take g such that $g \mid W \equiv 0$ but $g(P) \neq 0$, then it forces $f(P)=0$. Such a function g exists because W is a closed subset AND our sets are T1 (i.e., a point is a closed subset). For if W is not closed, then we can take $P \in \bar{W}-W$, then $g \mid W \equiv 0$ forces $\left.g\right|_{\bar{W}} \equiv 0$ because

$$
\begin{aligned}
g \mid W \equiv 0 & \Rightarrow W \subseteq g^{-1}\{0\} \\
& \Rightarrow \bar{W} \subseteq g^{-1}\{0\} \quad \text { (because } g^{-1}\{0\} \text { is a closed subset.) } \\
& \left.\Rightarrow g\right|_{\bar{W}} \equiv 0
\end{aligned}
$$

I have not deducted marks if you did not mention this.)
(c) Suppose that k is algebraically closed and I is a radical ideal. Prove that $Z((I: J))=\overline{Z(I)-Z(J)}$, the closure of $Z(I)-Z(J)$. (2 marks) (Hint: J is not necessarily a radical ideal.)

Answer: Note that J may not a radical ideal. But we will prove that $(I: J)=(I: \sqrt{J})$. Assuming this, the statement we want to prove becomes

$$
Z((I: \sqrt{J}))=Z((I: J))=\overline{Z(I)-Z(J)}=\overline{Z(I)-Z(\sqrt{J})}
$$

Therefore, we can assume that J is a radical ideal. By Nullstellensatz, we can write $I=I(V)$ and $J=I(W)$, where $V=Z(I)$ and $W=Z(J)$. By (ii), we have

$$
(I: J)=(I(V): I(W))=I(V-W)=I(Z(I)-Z(J))
$$

Taking zero sets, we have

$$
Z((I: J))=Z I(Z(I)-Z(J))=\overline{Z(I)-Z(J)}
$$

We now prove that $(I: J)=(I: \sqrt{J})$. It is easy to check that $(I: \sqrt{J})=\{x \in R \mid x \sqrt{J} \subseteq I\} \subseteq$ $\{x \in R \mid x J \subseteq I\}=(I: J)$. Conversely, if $x \in(I: J)$, then $x J \subseteq I$. If $k \in \sqrt{J}$, then $k^{m} \in J$ and $(x k)^{m}=x^{m-1}\left(x k^{m}\right) \in x^{m-1}\left(x k^{m}\right) \in x^{m-1}(x J)=x^{m-1} I \subseteq \bar{I}$. Hence $x k \in \sqrt{I}=I$ and so $x \sqrt{J} \subseteq I$.

Remark: Usually, we impose the algebraically-closed condition for k because we want to use the Hilbert's Nullstellensatz (that $I Z(J)=\sqrt{J}$ for every ideal J) and its consequences.
(2) (i) (Dummit-Foote, Sec 15.2, Ex. 20) Suppose $\varphi: V \rightarrow W$ is a surjective morphism of affine algebraic sets. Prove that if V is a variety, then W is a variety. (1 mark)

Answer: If $W=W_{1} \cup W_{2}$ where W_{1}, W_{2} are closed proper subsets of W, then we define $V_{i}=\varphi^{-1} W_{i}$ for $i=1,2$, which are clearly closed subsets. Since W_{i} is a proper subset and φ is surjective, V_{i} is also proper. Moreover, we must have $V=V_{1} \cup V_{2}$, which contradicts that V is irreducible.
(ii) (Dummit-Foote, Sec 15.2, Ex. 26) Let

$$
V=Z\left(x z-y^{2}, y z-x^{3}, z^{2}-x^{2} y\right) \subset \mathbb{A}^{3}
$$

Show that if k is infinite, then V is an affine variety. (3 marks) (Hint: Consider $\mathbb{A}^{1} \rightarrow V, t \mapsto$ $\left(t^{3}, t^{4}, t^{5}\right)$.)

Answer: We define a map $\varphi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{3}, t \mapsto\left(t^{3}, t^{4}, t^{5}\right)$. This is a morphism because it is defined by polynomials. The image lies in V : we can check $x z-y^{2}=\left(t^{3}\right)\left(t^{5}\right)-\left(t^{4}\right)^{2}=0$ and similarly for $y z-x^{3}$ and $z^{2}-x^{2} y$. To show that φ is surjective, notice that if $(x, y, z) \in V$ with $x=0$, then all x, y, z are zero, and so $\varphi(0)=(0,0,0)$. If $x \neq 0$, then we take $t=y / x$ and so $t \mapsto\left(t^{3}, t^{4}, t^{5}\right)=\left((y / x)^{3},(y / x)^{4},(y / x)^{5}\right)$. We can check that $(y / x)^{3}=x$ since

$$
\frac{y^{3}}{x^{3}}=\frac{(x z) y}{x^{3}}=\frac{x(y z)}{x^{3}}=\frac{x\left(x^{3}\right)}{x^{3}}=x
$$

Similarly, we can check $(y / x)^{4}=y$ and $(y / x)^{5}=z$. Finally, if we apply (a), then we know that V is irreducible, so it is an affine variety.
(3) (Dummit-Foote, Sec 15.3, Ex. 2) Let k be a field and $R=k[x, y] /\left\langle x^{2}-y^{3}\right\rangle$. For $\bar{x}, \bar{y} \in R$ the natural projections of x, y, denote $t=\bar{x} / \bar{y}$ and $K=k(t)$. Prove that $k[t]$ is the integral closure of R in K. (3 marks) (Hint: It is enough to show that K is the field of fraction of R. Why?)

Answer: Recall that we have a morphism $\mathbb{A}^{1} \rightarrow V=Z\left(x^{2}-y^{3}\right), t \mapsto\left(t^{3}-t^{2}\right)$ which is bijective (but not an isomorphism, as the inverse map $(\bar{x}, \bar{y}) \mapsto \bar{x} / \bar{y}$ is not a polynomial). This induces a morphism of rings $\Phi: k[\bar{x}, \bar{y}] \rightarrow k[t]$, which is injective (one way to check this is to show that Φ maps a k-basis $\left\{\bar{y}^{i}, \bar{x} \bar{y}^{i}, \bar{x}^{2} \bar{y}^{i}\right\}_{i \in \mathbb{Z}}$ of R into $\left\{t^{3 i}, t^{3 i+2}, t^{3 i+4}\right\}_{i \in \mathbb{Z}}$, which is k-linearly independent in $k[t]$.)

We then show that $K=k(t)$ is the field of fraction K_{R} of $R=k[\bar{x}, \bar{y}]$. Clearly $K \subseteq K_{R}$ since $t=\bar{x} / \bar{y}$ as a quotient of $\bar{x} \in R$ by $\bar{y} \in R$. Conversely, every $f(\bar{x}, \bar{y}) \in R$, if non-zero, can be written as $f\left(t^{3}, t^{2}\right)$, which is also non-zero since the ring morphiasm Φ is injective. Hence we have $(f(\bar{x}, \bar{y}))^{-1}=\left(f\left(t^{3}, t^{2}\right)\right)^{-1} \in K=k(t)$.

Finally, we know that $k[t]$ is a PID, since t is a genuine variable of \mathbb{A}^{1}. (In a more technical term, we say that t is transcendental over k.). Hence it is a UFD. We checked in class (or from Example 3, p. 693 of the book) that a UFD is integrally closed (in its field of fractions). Moreover t is integral over R as $t^{2}-\bar{y}=(\bar{x} / \bar{y})^{2}-\bar{y}=\left(\bar{x}^{2}-\bar{y}^{3}\right) / \bar{y}=0$. Hence $k[t]$ is integral over R, and is the integral closure of
R in $K_{R}=K=k(t)$.
(4) First recall some basic notions.
(i) Let $\Phi: A \rightarrow B$ be a ring homomorphism. We say that Φ has the going-up property, or that Φ is GU, if it satisfies the following condition: Let $P_{1} \subseteq \cdots \subseteq P_{n}$ be a chain of prime ideals of A and $Q_{1} \subseteq \cdots \subseteq Q_{m}$ (with $m<n$) be a chain of prime ideals of B such that $\Phi^{-1} Q_{i}=P_{i}$ for all $i=1, \ldots, m$. Then the chain $Q_{1} \subseteq \cdots \subseteq Q_{m}$ can be extended to a chain $Q_{1} \subseteq \cdots \subseteq Q_{n}$ of prime ideals such that $\Phi^{-1} Q_{i}=P_{i}$ for all $i=1, \ldots, n$.
For example, if Φ is the inclusion map of $A \subseteq B$, and B is integral over A, then Φ is GU, by Theorem 26 of the textbook.
(ii) Let $\varphi: X \rightarrow Y$ be a continuous map of topological space. We say that φ is closed if it maps every closed subset of X onto a closed subset of Y.

Let the base field k be algebraically closed. Suppose that $\varphi: V \rightarrow W$ is a morphism of affine algebraic sets, and $\tilde{\varphi}: k[W] \rightarrow k[V]$ be the corresponding morphism of rings. Prove that

$$
\varphi: V \rightarrow W \text { is closed if and only if } \tilde{\varphi} \text { is GU. }
$$

(4 marks)

Answer:

- In the proof below, I will denote a prime idaal by \mathfrak{p} or \mathfrak{q} instead of P or Q, which should be used for denoting points. Sorry for the confusions.
- Some of the techniques in the proof are similar to those in the proof of

$$
\varphi: V \rightarrow W \text { is surjective if and only if } \tilde{\varphi} \text { is LO (Lying-Over). }
$$

done in class.
(\Rightarrow) Given $\varphi: V \rightarrow W$ is closed, and let $\mathfrak{p} \subseteq \mathfrak{p}^{\prime}$ be two prime ideals in $k[W]$, and \mathfrak{q} be a prime ideal in $k[V]$ such that $\tilde{\varphi}^{-1} \mathfrak{q}=\mathfrak{p}$. (The general statement for $G U$ follows by applying induction to the above statement.)
Applying Z to $\mathfrak{p} \subseteq \mathfrak{p}^{\prime}$, we have

$$
Z\left(\mathfrak{p}^{\prime}\right) \subseteq Z(\mathfrak{p})=Z\left(\tilde{\varphi}^{-1} \mathfrak{q}\right)=\overline{\varphi(Z(\mathfrak{q}))}=\varphi(Z(\mathfrak{q}))
$$

where the last equality holds because φ is closed. So $Z\left(\mathfrak{p}^{\prime}\right)$ lies in the image of φ. Let J be an ideal containing \mathfrak{q} in $k[V]$ such that $Z(J)=\varphi^{-1} Z\left(\mathfrak{p}^{\prime}\right)$, so that $\varphi(Z(J))=Z\left(\mathfrak{p}^{\prime}\right)$. We claim that we can choose J to be a prime ideal. Otherwise, let $Z(J)=\cup_{i} Z\left(\mathfrak{q}_{i}\right)$ be a decomposition into varieties, so that every \mathfrak{q}_{i} is a prime ideal. Then we have a decomposition of $Z\left(\mathfrak{p}^{\prime}\right)$ as

$$
Z\left(\mathfrak{p}^{\prime}\right)=\varphi(Z(J))=\bigcup_{i} \varphi\left(Z\left(\mathfrak{q}_{i}\right)\right)=\bigcup_{i} \overline{\varphi\left(Z\left(\mathfrak{q}_{i}\right)\right)}
$$

again because φ is closed. As $Z\left(\mathfrak{p}^{\prime}\right)$ is irreducible, we have $Z\left(\mathfrak{p}^{\prime}\right)=\overline{\varphi\left(Z\left(\mathfrak{q}_{i}\right)\right)}=\varphi\left(Z\left(\mathfrak{q}_{i}\right)\right)$ for some \mathfrak{q}_{i}. We can take J to be \mathfrak{q}_{i} so that $J \supseteq \mathfrak{q}$ and $\tilde{\varphi}^{-1} J=\mathfrak{p}^{\prime}$.
(\Leftarrow) Given $\tilde{\varphi}$ is GU. Given every closed subset $Z(J)$ in V, by decomposition into varieties we can assume that $J=\mathfrak{p}$ is a prime ideal. To show that $\varphi(Z(\mathfrak{p}))$ is equal to its closure, suppose that $Q \in \overline{\varphi(Z(\mathfrak{p}))}=Z\left(\varphi^{-1} \mathfrak{p}\right)$, then the maximal ideal m_{Q} corresponding to Q contains $\varphi^{-1} \mathfrak{p}$. By GU there exists an ideal \mathfrak{n} containing \mathfrak{p} such that $\varphi^{-1} \mathfrak{n}=\mathfrak{m}_{Q}$. We can assume that \mathfrak{n} is maximal, as its preimage is maximal. Let P be the point corresponding to \mathfrak{n} by Nullstellensatz. This implies $Q=\varphi(P) \in \varphi(Z(\mathfrak{p}))$. Therefore, $\overline{\varphi(Z(\mathfrak{p}))} \subseteq \varphi(Z(\mathfrak{p}))$, or in other words, $\varphi(Z(\mathfrak{p}))$ is closed.

