MATH 702, Winter 2015, Homework 3,
Due Monday, March 9

Total: 22 marks.

(1) If V and W are affine algebraic sets, define the Cartesian product

VxW={(P,Q)|PeVandQeW}

Prove that

(a)

V x W is also an affine algebraic set (1 mark);

Answer:  Suppose that V = Z((f;);) and W = Z((g;);), where f; € k[A™] = klz1,... 2]
and g; € k[A"] = k[y1,...,yn]. Then

VW =2((fd;), ).

,J
where f;(P,Q) = fi(P), 3:(P,Q) = gi(Q), and (f;, g;) is now an ideal in k[A™ "] = k[1, ..., T, Y1, - -, Yn].
O

klV x W] 2 k[V] @k k[W] as k-algebras (4 marks). (Hint: It may be hard to prove that k[V] ®j
kW] — k[V x W], whatever defined, is injective and surjective. Use Universal Property instead.)

Answer: As mentioned, it may be hard (or just tedious) to prove that k[V]®y k[W] — k[V x W],
which is explicitly

k[xla"wxm]/ <f1> ®k k[ylvvyn}/<g]> — k[xla"'7xmvy17"'7yn]/ <f~'757§j>7

ZFk ® G — ZFka,
k k

is injective and surjective. We use Universal Property instead. This means we want to establish a
commutative diagram

K[V] x kW] = 25 5 k[V x W]

I
| F77
4
R

for every given k-algebra R and k-bilinear morphism k[V] x k[W]| — R.

We first establish the k-bilinear morphism P : k[V] x k[W] — k[V x W]. We can define an
obvious morphism of affine algebraic sets pry, : V. x W — V, the usual projection, and let
pry ¢ k[V] — k[V x W] be the corresponding k-algebra morphism. Similarly, we have pr}, :
kW] — k[V x W]. Putting the two morphisms together, we obtain a k-bilinear morphism
P =prl x priy : k[V] x E[W] = k[V x W],

Now given a k-bilinear morphism ¢ : k[V] x k[W] — R. We first make a reduction: since the



image of ¢ is finitely generated, by replacing R by this image, we can assume that R is finite gener-
ated. Hence R is a coordinate ring k[X] for some affine algebraic set X. To establish the diagram
above, we establish the dual diagram: given morphisms fy : X — V and fi : X — W, we want
to define f : X — V x W such that we have the commutative diagram

v

%
27 pry

X=—""—->VxW .

Pry,

fw W

Clearly, we can define f : X — V x W by « — (fv(z), fw(x)). The corresponding k-algebra
morphism F' : k[V x W] — k[X] is the one that fits in the diagram

E[V] x kW] —E—— K[V x W]
R = k[X].

This setup holds for every finitely generated k-algebra morphism R. By the Universal Property,
k[V x W] must be isomorphic to k[V] ® k[W]. O

Remark: Some of you use the example I mentioned in class

R/I®gr R/J = R/I + J.

Take R = K[A™"] = kla1, ..., Zm, Y1, -y, T = <f;->_ and J = (), so that

R/I - k[l'la ey Ty Yty e *yn}/ <fz>Z = k[wh e ::I’)m]/ <fz>, - ]i[V]
(the isomorphism is given by assigning all y; to 0),

R/J = kﬁ[;L'l,...,:L'7,,,yl,...,y,L]/<§j>j

1%

k[ylv s ?y"V <gj>‘7' - ]iUV}

and R/T +J = k[V x W]/ <ﬁ~,gj> by (a).

,J
(2) Let R be a ring. Denote R™ = R X --- X R (m times).
(a) Show that if a morphism R™ — R" is surjective, then m > n. (3 marks) (Hint: Note that it is true

if R is a vector space. How can we reduce this problem to a vector space problem? Hint: tensor
product.)

Answer: Take a maximal ideal M of R, so that K = R/M is a field. We apply the tensor
product — ®g K to the morphism R™ — R"™ and get

R™"@p K — R" ®r K,

which is again surjective (as tensor product preserves subjectivity). Notice that, by the ‘distributive

law’ of tensor product,
R"@r K2 (Rer K)" =2 K™,

so that the above morphism is a K-morphism K™ — K". This is a K-linear morphism of vector
spaces. If it is surjective, then by counting dimensions we have m > n. (This dimension counting
property does not hold in general for R-modules, if R is not a field.) O

Remark: Some of you checked some of the basic properties like:



e R®r R/I=R/I,orin general R@p M = M,
e ( M®N)®rP=(M®®rP)Dd(N®gP).
Checking these facts is a good practice for you to get more familiar with tensor product.

(b) If a morphism R™ — R™ is injective, is it always true that m < n? (?? marks, you are not required
to submit this problem.)

Remarks:

i. You cannot use the same method as in the first part, because tensor product does not preserve
injectivity.

ii. This is Q.11 in Ch.2 of Atiyah-MacDonald, and is perhaps one of the hardest problems in the
book. Actually I couldn’t prove it, and so far I cannot find anyone proved it: all the so-called
‘solutions’ in the internet are either false or contain some unexplainable vague arguments. If
you think you have a convincing solution, please let me know.

iii. In fact, I believe the answer is false. If R is non-commutative, there is an example in Ex.13, p.190
of Hungerford’s Algebra textbook (GTM 73). But I couldn’t find an example for commutative
R.

(3) Prove that “being integrally closed” (i.e. being integrally closed in its field of fractions) is a local property
for an integral domain, in the sense of the following: given an integral domain R, prove that the following
are equivalent.

(a) R is integrally closed (i.e. integrally closed in its field of fractions K = KRg);
(

(¢) Ry is integrally closed for each maximal ideal M of R.

b) Rp is integrally closed for each prime ideal P of R;

(3 marks) (Hint: Let S be the integral closure of R in K. Then consider the inclusion morphism

f:R—S)

Answer: We first show that if S is the integral closure of R, then Sp is the integral closure of
Rp. We already knew that Sp is integral over Rp, so it is enough to show that if z € K is integral over
Rp, then x € Sp. There is an equation for z as

" + (ap-1/bp—1)x" "t + -+ + (a1/b1)z" + ag /by = 0,

where a; € R, b; € R — P. By clearing the denominator (with detail skipped), we can reduce the above
equation to another one of the form

(az)™ + cp_1(az)" P+ -+ cp(az) + ¢ =0,
where a € R — P, ¢; € R. By integrally we have ax € S, and so = ax/a € Sp.

We therefore have

R is integrally closed

R=S

Rp = Sp, for all prime ideal P (by local property)

Rp = the integral closore of Rp in K, for all prime ideal P (proved avove)

to e

Rp is integrally closed, for all prime ideal P.

(4) (You may assume that k is algebraically closed.) Let V be an affine variety.



(a) Prove that the subset of singular points of V' is a closed subset of V. (2 marks) (Hint: You may use
the following fact: the rank r of an m x n matrix A is the maximal number satisfies the following:
there exists a r X r sub-matrix B in A such that det(B) # 0.)

Answer: Suppose that V = Z((f1,..., fm)) € A™. Recall that

P €V is a singular point

ofi
8xj
& all 7 x r sub-matrices B in A has det(B) = 0.

& the Jacobian matrix A = [ (P)} has rank strictly smaller than r =n — dim V'

Let By,..., B be all r X r sub-matrices. For each Bj, let g; be the polynomial det(B;), then the
set of singular points of V' is given by Z({f1,..., fm,91,---,9a)) which is clearly a closed subset of
V. O O

(b) (Sard’s Theorem) Suppose now V is a hypersurface, i.e. V is of the form Z(f), a variety cut off by
a single polynomial. Prove that the subset of singular points of V' is a proper closed subset of V.
(2 marks) (Note: you may have to distinguish the cases when the characteristic of k is 0 or a prime
number.)

Answer: If V = Z((f)), then the singular locus of V is given by Z(<f, i >) To

Ox1’ """ Oxn

show that this is a proper subset of V, it is enough to show that at least one a—

s.,
RS
\/
g

separate into two cases.

i. When char(k) = 0, if f is a non-constant polynomial in a variable z;, then Tf] is a non-zero

polynomial and has degree < deg(f) (this degree is the highest power of x;), but every non-zero
C . af ..
polynomial in {f) has degree > deg(f). Therefore 2, cannot lie in (f).

ii. When char(k) > 0, then it may happen that all af = 0, in which case each term of f in z; is

a p-power, i.e. f = Z“Zn
algebraically closed, each a;, ... i,
then

; xf“ cogPing where each coefficient a;,, . ;, € k. Since k is

; . _ ‘ o ‘ A
is a p-power, so write a;, ..., = bZl e for some b;,,. ;, €k,
P
Z pit | Pin _ }: ot gt
bzl, ,'nxl Ty " = bh,mﬂ Ty Ty )
U1 yeenyin U1 yeenylin

which contradicts that f is irreducible (remember that V = Z(f) is a variety).
O

Remark: The Theorem still holds if Y is a general affine variety, but we need a special trick
beyond this course to reduce it to the hypersurface case. See I. Theorem 5.3 in Hartshrone for
detail.)

(5) (Dummit-Foote, Sec 15.4, Ex. 27) Recall the curve V = Z(xz — y?,yz — 23,22 — 2%y) C A% in HW2,
Q.2(ii). Let ¢ : AL — V be the map t — (3,4, 1°).

(a) Describe the differential dip; : Ty g1 — Ty, explicitly, for each t € Al. (2 marks)
Remark: The notation dy; is the same as D;p I used in class.

Answer: We checked in class that if V. C A™ W C A", and if ¢ : V — W is given by poly-

nomials ¢ = (p1,...,9,), then the differential map at P € V is given by the Jacobian matrix
[%‘Z(P)]. In the question, the differential map is just ( t3, C‘litt‘l, jtt5) (3t2, 4¢3, 5t4). O

(b) Prove that ¢ is not an isomorphism of affine algebraic sets. (2 marks)



Answer: We know that if ¢ is an isomorphism of affine algebraic sets, then Dy is an iso-
morphism of k-vector spaces for each t € A!, which means that (3t2,4t3,5t*) has to be non-zero
for each t € A'. However, at t = 0 we have (3t2,4t3,5t*) = (0,0,0). Therefore ¢ cannot be an
isomorphism. O

(6) (Dummit-Foote, Sec 15.4, Ex. 28) If k is an algebraically closed field, the quotient k[z]/ (2?) is called
the ring of dual numbers over k. If V' is an affine algebraic set over k, prove that the set

{k-algebra morphism k[V] — k[z]/ (2*)}

is bijective to

{(P,v), where Pe V and v € Tpy}.
(This means giving a k-algebra morphism k[V] — k[z]/ (2?) is equivalent to specifying a point P € V
with a tangent vector v € Tpy.) (3 marks)

Answer: Let S be the first set and 7 be the second set above. We first define a map S — T.
Given ¢ € S, which is a k-algebra morphism ¢ : k[V] — k[z]/ (2?).

e Consider the natural surjective morphism 7o : k[z]/ () — k, a + bz +— a with kernel (z) and the
composition
o k[V] 5 k[z]/ (2®) ™ &,
which is a k-algebra morphism. The kernel of ¢g is a maximal ideal, hence by Nullstellensatz it
corresponds to a point P € V. (1 mark)
e Since k[z]/(2?) = k @ kx as a k-vector space, we define 7y : k ® kx — k, a + bz +— b and the

composition
p1:mpy <= k[V] 5 klz]/ (2?) =k @ kx ™5 k.
(Note that 7 is a k-linear but not a k-algebra morphism.) As ¢(mp) C (z), we have p(m?%) C (2?).

Hence the above composition induces a k-linear map mpy /m%py = mp/(m% + 1(V)) — k, which
is an element in Tpy . (1 mark)

We remark that ¢ being a k-algebra morphism is equivalent to ¢y being a k-algebra morphism
and ¢ satisfying
¢1(fg) = do(f)d1(9) + ¢o(9)1(f).

We then show that the map & — 7T is bijective. The above construction implies that S is bijective to
U = {¢o, p1} satisfying the above properties. To show that U is bijective to T, we can show that ¢
is bijective to P € V by Nullstellensatz, and if given ® : mp/(m% + I(V)) — k, we define ®1(f) =
®(f — f(P)1) (where 1 is the constant function 1). We then check that ®; satisfies the property of o1
above, i.e. to check

() P1(fg) = 2o(f)P1(g) + Po(9)P1(f),
where we already know that ®(f) = f(P). Notice that
®1(fg) = @(fg— f(P)g(P)1) = &((f = f(P)1)g) + ((g — g(P)1) f(P)1).

(Note you cannot naively write ®(fg — f(P)g(P)1) = ®(fg) — ®(f(P)g(P)1), as @ is defined on mp
only but not on the whole k[V]. However, note that f — f(P)1, g — g(P)1 € mp.) After expansions and
some cancelations, (*) is changed into

O((f = f(P)1)(g —g(P)1)) =0

which is true as (f — f(P)1)(g — g(P)1) € m% C ker ®. (1 mark) O



