MATH 702, Winter 2015, Homework 3, Due Monday, March 9

Total: 22 marks.
(1) If V and W are affine algebraic sets, define the Cartesian product

$$
V \times W=\{(P, Q) \mid P \in V \text { and } Q \in W\}
$$

Prove that
(a) $V \times W$ is also an affine algebraic set (1 mark);

Answer: Suppose that $V=Z\left(\left\langle f_{i}\right\rangle_{i}\right)$ and $W=Z\left(\left\langle g_{j}\right\rangle_{j}\right)$, where $f_{i} \in k\left[\mathbb{A}^{m}\right]=k\left[x_{1}, \ldots, x_{m}\right]$ and $g_{j} \in k\left[\mathbb{A}^{n}\right]=k\left[y_{1}, \ldots, y_{n}\right]$. Then

$$
V \times W=Z\left(\left\langle\tilde{f}_{i}, \tilde{g}_{j}\right\rangle_{i, j}\right)
$$

where $\tilde{f}_{i}(P, Q)=f_{i}(P), \tilde{g}_{i}(P, Q)=g_{i}(Q)$, and $\left\langle f_{i}, g_{j}\right\rangle$ is now an ideal in $k\left[\mathbb{A}^{m+n}\right]=k\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right]$.
(b) $k[V \times W] \cong k[V] \otimes_{k} k[W]$ as k-algebras (4 marks). (Hint: It may be hard to prove that $k[V] \otimes_{k}$ $k[W] \rightarrow k[V \times W]$, whatever defined, is injective and surjective. Use Universal Property instead.)

Answer: As mentioned, it may be hard (or just tedious) to prove that $k[V] \otimes_{k} k[W] \rightarrow k[V \times W]$, which is explicitly

$$
\begin{aligned}
& k\left[x_{1}, \ldots, x_{m}\right] /\left\langle f_{i}\right\rangle \otimes_{k} k\left[y_{1}, \ldots, y_{n}\right] /\left\langle g_{j}\right\rangle \rightarrow k\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right] /\left\langle\tilde{f}_{i}, \tilde{g}_{j}\right\rangle, \\
& \sum_{k} F_{k} \otimes G_{k} \mapsto \sum_{k} F_{k} G_{k}
\end{aligned}
$$

is injective and surjective. We use Universal Property instead. This means we want to establish a commutative diagram

for every given k-algebra R and k-bilinear morphism $k[V] \times k[W] \rightarrow R$.
We first establish the k-bilinear morphism $P: k[V] \times k[W] \rightarrow k[V \times W]$. We can define an obvious morphism of affine algebraic sets $\mathrm{pr}_{V}: V \times W \rightarrow V$, the usual projection, and let $\operatorname{pr}_{V}^{*}: k[V] \rightarrow k[V \times W]$ be the corresponding k-algebra morphism. Similarly, we have pr_{W}^{*} : $k[W] \rightarrow k[V \times W]$. Putting the two morphisms together, we obtain a k-bilinear morphism $P=\operatorname{pr}_{V}^{*} \times \operatorname{pr}_{W}^{*}: k[V] \times k[W] \rightarrow k[V \times W]$.

Now given a k-bilinear morphism $\phi: k[V] \times k[W] \rightarrow R$. We first make a reduction: since the
image of ϕ is finitely generated, by replacing R by this image, we can assume that R is finite generated. Hence R is a coordinate ring $k[X]$ for some affine algebraic set X. To establish the diagram above, we establish the dual diagram: given morphisms $f_{V}: X \rightarrow V$ and $f_{W}: X \rightarrow W$, we want to define $f: X \rightarrow V \times W$ such that we have the commutative diagram

Clearly, we can define $f: X \rightarrow V \times W$ by $x \mapsto\left(f_{V}(x), f_{W}(x)\right)$. The corresponding k-algebra morphism $F: k[V \times W] \rightarrow k[X]$ is the one that fits in the diagram

This setup holds for every finitely generated k-algebra morphism R. By the Universal Property, $k[V \times W]$ must be isomorphic to $k[V] \otimes k[W]$.

Remark: Some of you use the example I mentioned in class

$$
R / I \otimes_{R} R / J \cong R / I+J
$$

Take $R=k\left[\mathbb{A}^{m+n}\right]=k\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right], I=\left\langle\tilde{f}_{i}\right\rangle_{i}$ and $J=\left\langle\tilde{g}_{j}\right\rangle_{j}$, so that

$$
R / I=k\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right] /\left\langle\tilde{f}_{i}\right\rangle_{i} \cong k\left[x_{1}, \ldots, x_{m}\right] /\left\langle f_{i}\right\rangle_{i}=k[V]
$$

(the isomorphism is given by assigning all y_{j} to 0),

$$
R / J=k\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right] /\left\langle\tilde{g}_{j}\right\rangle_{j} \cong k\left[y_{1}, \ldots, y_{n}\right] /\left\langle g_{j}\right\rangle_{j}=k[W]
$$

and $R / I+J \cong k[V \times W] /\left\langle\tilde{f}_{i}, \tilde{g}_{j}\right\rangle_{i, j}$ by (a).
(2) Let R be a ring. Denote $R^{m}=R \times \cdots \times R$ (m times).
(a) Show that if a morphism $R^{m} \rightarrow R^{n}$ is surjective, then $m \geq n$. (3 marks) (Hint: Note that it is true if R is a vector space. How can we reduce this problem to a vector space problem? Hint: tensor product.)

Answer: Take a maximal ideal M of R, so that $K=R / M$ is a field. We apply the tensor product $-\otimes_{R} K$ to the morphism $R^{m} \rightarrow R^{n}$ and get

$$
R^{m} \otimes_{R} K \rightarrow R^{n} \otimes_{R} K
$$

which is again surjective (as tensor product preserves subjectivity). Notice that, by the 'distributive law' of tensor product,

$$
R^{m} \otimes_{R} K \cong\left(R \otimes_{R} K\right)^{m} \cong K^{m}
$$

so that the above morphism is a K-morphism $K^{m} \rightarrow K^{n}$. This is a K-linear morphism of vector spaces. If it is surjective, then by counting dimensions we have $m \geq n$. (This dimension counting property does not hold in general for R-modules, if R is not a field.)

Remark: Some of you checked some of the basic properties like:

- $R \otimes_{R} R / I \cong R / I$, or in general $R \otimes_{R} M \cong M$,
- $(M \oplus N) \otimes_{R} P \cong\left(M \otimes_{R} P\right) \oplus\left(N \otimes_{R} P\right)$.

Checking these facts is a good practice for you to get more familiar with tensor product.
(b) If a morphism $R^{m} \rightarrow R^{n}$ is injective, is it always true that $m \leq n$? (?? marks, you are not required to submit this problem.)

Remarks:

i. You cannot use the same method as in the first part, because tensor product does not preserve injectivity.
ii. This is Q. 11 in Ch. 2 of Atiyah-MacDonald, and is perhaps one of the hardest problems in the book. Actually I couldn't prove it, and so far I cannot find anyone proved it: all the so-called 'solutions' in the internet are either false or contain some unexplainable vague arguments. If you think you have a convincing solution, please let me know.
iii. In fact, I believe the answer is false. If R is non-commutative, there is an example in Ex.13, p. 190 of Hungerford's Algebra textbook (GTM 73). But I couldn't find an example for commutative R.
(3) Prove that "being integrally closed" (i.e. being integrally closed in its field of fractions) is a local property for an integral domain, in the sense of the following: given an integral domain R, prove that the following are equivalent.
(a) R is integrally closed (i.e. integrally closed in its field of fractions $K=K_{R}$);
(b) R_{P} is integrally closed for each prime ideal P of R;
(c) R_{M} is integrally closed for each maximal ideal M of R.
(3 marks) (Hint: Let S be the integral closure of R in K. Then consider the inclusion morphism $f: R \rightarrow S$.)

Answer: We first show that if S is the integral closure of R, then S_{P} is the integral closure of R_{P}. We already knew that S_{P} is integral over R_{P}, so it is enough to show that if $x \in K$ is integral over R_{P}, then $x \in S_{P}$. There is an equation for x as

$$
x^{n}+\left(a_{n-1} / b_{n-1}\right) x^{n-1}+\cdots+\left(a_{1} / b_{1}\right) x^{1}+a_{0} / b_{0}=0
$$

where $a_{i} \in R, b_{i} \in R-P$. By clearing the denominator (with detail skipped), we can reduce the above equation to another one of the form

$$
(a x)^{n}+c_{n-1}(a x)^{n-1}+\cdots+c_{1}(a x)^{1}+c_{0}=0
$$

where $a \in R-P, c_{i} \in R$. By integrally we have $a x \in S$, and so $x=a x / a \in S_{P}$.
We therefore have

$$
\begin{array}{ll}
& R \text { is integrally closed } \\
\Leftrightarrow & R=S \\
\Leftrightarrow & R_{P}=S_{P}, \text { for all prime ideal } P \text { (by local property) } \\
\Leftrightarrow & R_{P}=\text { the integral closore of } R_{P} \text { in } K, \text { for all prime ideal } P \text { (proved avove) } \\
\Leftrightarrow & R_{P} \text { is integrally closed, for all prime ideal } P .
\end{array}
$$

(4) (You may assume that k is algebraically closed.) Let V be an affine variety.
(a) Prove that the subset of singular points of V is a closed subset of V. (2 marks) (Hint: You may use the following fact: the rank r of an $m \times n$ matrix A is the maximal number satisfies the following: there exists a $r \times r$ sub-matrix B in A such that $\operatorname{det}(B) \neq 0$.)

Answer: Suppose that $V=Z\left(\left\langle f_{1}, \ldots, f_{m}\right\rangle\right) \subseteq \mathbb{A}^{n}$. Recall that

$$
\begin{aligned}
& P \in V \text { is a singular point } \\
\Leftrightarrow \quad & \text { the Jacobian matrix } A=\left[\frac{\partial f_{i}}{\partial x_{j}}(P)\right] \text { has rank strictly smaller than } r=n-\operatorname{dim} V \\
\Leftrightarrow \quad & \text { all } r \times r \text { sub-matrices } B \text { in } A \text { has } \operatorname{det}(B)=0 .
\end{aligned}
$$

Let B_{1}, \ldots, B_{M} be all $r \times r$ sub-matrices. For each B_{j}, let g_{j} be the polynomial $\operatorname{det}\left(B_{j}\right)$, then the set of singular points of V is given by $Z\left(\left\langle f_{1}, \ldots, f_{m}, g_{1}, \ldots, g_{M}\right\rangle\right)$ which is clearly a closed subset of V.
(b) (Sard's Theorem) Suppose now V is a hypersurface, i.e. V is of the form $Z(f)$, a variety cut off by a single polynomial. Prove that the subset of singular points of V is a proper closed subset of V. (2 marks) (Note: you may have to distinguish the cases when the characteristic of k is 0 or a prime number.)

Answer: If $V=Z(\langle f\rangle)$, then the singular locus of V is given by $Z\left(\left\langle f, \frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right\rangle\right)$. To show that this is a proper subset of V, it is enough to show that at least one $\frac{\partial f}{\partial x_{j}} \notin\langle f\rangle$. We separate into two cases.
i. When $\operatorname{char}(k)=0$, if f is a non-constant polynomial in a variable x_{j}, then $\frac{\partial f}{\partial x_{j}}$ is a non-zero polynomial and has degree $\leq \operatorname{deg}(f)$ (this degree is the highest power of x_{j}), but every non-zero polynomial in $\langle f\rangle$ has degree $\geq \operatorname{deg}(f)$. Therefore $\frac{\partial f}{\partial x_{j}}$ cannot lie in $\langle f\rangle$.
ii. When $\operatorname{char}(k)>0$, then it may happen that all $\frac{\partial f}{\partial x_{j}} \equiv 0$, in which case each term of f in x_{j} is a p-power, i.e. $f=\sum_{i_{1}, \ldots, i_{n}} a_{i_{1}, \ldots, i_{n}} x_{1}^{p i_{1}} \cdots x_{n}^{p i_{n}}$, where each coefficient $a_{i_{1}, \ldots, i_{n}} \in k$. Since k is algebraically closed, each $a_{i_{1}, \ldots, i_{n}}$ is a p-power, so write $a_{i_{1}, \ldots, i_{n}}=b_{i_{1}, \ldots, i_{n}}^{p}$ for some $b_{i_{1}, \ldots, i_{n}} \in k$, then

$$
f=\sum_{i_{1}, \ldots, i_{n}} b_{i_{1}, \ldots, i_{n}}^{p} x_{1}^{p i_{1}} \cdots x_{n}^{p i_{n}}=\left(\sum_{i_{1}, \ldots, i_{n}} b_{i_{1}, \ldots, i_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right)^{p}
$$

which contradicts that f is irreducible (remember that $V=Z(f)$ is a variety).

Remark: The Theorem still holds if Y is a general affine variety, but we need a special trick beyond this course to reduce it to the hypersurface case. See I. Theorem 5.3 in Hartshrone for detail.)
(5) (Dummit-Foote, Sec 15.4, Ex. 27) Recall the curve $V=Z\left(x z-y^{2}, y z-x^{3}, z^{2}-x^{2} y\right) \subset \mathbb{A}^{3}$ in HW2, Q.2(ii). Let $\varphi: \mathbb{A}^{1} \rightarrow V$ be the map $t \mapsto\left(t^{3}, t^{4}, t^{5}\right)$.
(a) Describe the differential $d \varphi_{t}: \mathbb{T}_{t, \mathbb{A}^{1}} \rightarrow \mathbb{T}_{\varphi(t), V}$ explicitly, for each $t \in \mathbb{A}^{1}$. (2 marks)

Remark: The notation $d \varphi_{t}$ is the same as $D_{t} \varphi$ I used in class.
Answer: We checked in class that if $V \subseteq \mathbb{A}^{m}, W \subseteq \mathbb{A}^{n}$, and if $\varphi: V \rightarrow W$ is given by polynomials $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$, then the differential map at $P \in V$ is given by the Jacobian matrix $\left[\frac{\partial \varphi_{i}}{\partial x_{j}}(P)\right]$. In the question, the differential map is just $\left(\frac{d}{d t} t^{3}, \frac{d}{d t} t^{4}, \frac{d}{d t} t^{5}\right)=\left(3 t^{2}, 4 t^{3}, 5 t^{4}\right)$.
(b) Prove that φ is not an isomorphism of affine algebraic sets. (2 marks)

Answer: We know that if φ is an isomorphism of affine algebraic sets, then $D_{t} \varphi$ is an isomorphism of k-vector spaces for each $t \in \mathbb{A}^{1}$, which means that $\left(3 t^{2}, 4 t^{3}, 5 t^{4}\right)$ has to be non-zero for each $t \in \mathbb{A}^{1}$. However, at $t=0$ we have $\left(3 t^{2}, 4 t^{3}, 5 t^{4}\right)=(0,0,0)$. Therefore φ cannot be an isomorphism.
(6) (Dummit-Foote, Sec 15.4, Ex. 28) If k is an algebraically closed field, the quotient $k[x] /\left\langle x^{2}\right\rangle$ is called the ring of dual numbers over k. If V is an affine algebraic set over k, prove that the set

$$
\left\{k \text {-algebra morphism } k[V] \rightarrow k[x] /\left\langle x^{2}\right\rangle\right\}
$$

is bijective to

$$
\left\{(P, \mathbf{v}), \text { where } P \in V \text { and } \mathbf{v} \in \mathbb{T}_{P, V}\right\}
$$

(This means giving a k-algebra morphism $k[V] \rightarrow k[x] /\left\langle x^{2}\right\rangle$ is equivalent to specifying a point $P \in V$ with a tangent vector $\mathbf{v} \in \mathbb{T}_{P, V}$.) (3 marks)

Answer: Let \mathcal{S} be the first set and \mathcal{T} be the second set above. We first define a map $\mathcal{S} \rightarrow \mathcal{T}$. Given $\varphi \in \mathcal{S}$, which is a k-algebra morphism $\varphi: k[V] \rightarrow k[x] /\left\langle x^{2}\right\rangle$.

- Consider the natural surjective morphism $\pi_{0}: k[x] /\left\langle x^{2}\right\rangle \rightarrow k, a+b x \mapsto a$ with kernel $\langle x\rangle$ and the composition

$$
\varphi_{0}: k[V] \xrightarrow{\varphi} k[x] /\left\langle x^{2}\right\rangle \xrightarrow{\pi_{0}} k,
$$

which is a k-algebra morphism. The kernel of φ_{0} is a maximal ideal, hence by Nullstellensatz it corresponds to a point $P \in V$. (1 mark)

- Since $k[x] /\left\langle x^{2}\right\rangle=k \oplus k x$ as a k-vector space, we define $\pi_{1}: k \oplus k x \rightarrow k, a+b x \mapsto b$ and the composition

$$
\varphi_{1}: m_{P, V} \hookrightarrow k[V] \xrightarrow{\varphi} k[x] /\left\langle x^{2}\right\rangle=k \oplus k x \xrightarrow{\pi_{1}} k .
$$

(Note that π_{1} is a k-linear but not a k-algebra morphism.) As $\varphi\left(m_{P}\right) \subseteq\langle x\rangle$, we have $\varphi\left(m_{P}^{2}\right) \subseteq\left\langle x^{2}\right\rangle$. Hence the above composition induces a k-linear map $m_{P, V} / m_{P, V}^{2} \cong m_{P} /\left(m_{P}^{2}+I(V)\right) \rightarrow k$, which is an element in $\mathbb{T}_{P, V}$. (1 mark)

We remark that ϕ being a k-algebra morphism is equivalent to ϕ_{0} being a k-algebra morphism and ϕ_{1} satisfying

$$
\phi_{1}(f g)=\phi_{0}(f) \phi_{1}(g)+\phi_{0}(g) \phi_{1}(f)
$$

We then show that the map $\mathcal{S} \rightarrow \mathcal{T}$ is bijective. The above construction implies that \mathcal{S} is bijective to $\mathcal{U}=\left\{\phi_{0}, \phi_{1}\right\}$ satisfying the above properties. To show that \mathcal{U} is bijective to \mathcal{T}, we can show that ϕ_{0} is bijective to $P \in V$ by Nullstellensatz, and if given $\Phi: m_{P} /\left(m_{P}^{2}+I(V)\right) \rightarrow k$, we define $\Phi_{1}(f)=$ $\Phi(f-f(P) 1)$ (where 1 is the constant function 1). We then check that Φ_{1} satisfies the property of φ_{1} above, i.e. to check

$$
(*) \quad \Phi_{1}(f g)=\Phi_{0}(f) \Phi_{1}(g)+\Phi_{0}(g) \Phi_{1}(f)
$$

where we already know that $\Phi_{0}(f)=f(P)$. Notice that

$$
\Phi_{1}(f g)=\Phi(f g-f(P) g(P) 1)=\Phi((f-f(P) 1) g)+\Phi((g-g(P) 1) f(P) 1)
$$

(Note you cannot naively write $\Phi(f g-f(P) g(P) 1)=\Phi(f g)-\Phi(f(P) g(P) 1)$, as Φ is defined on m_{P} only but not on the whole $k[V]$. However, note that $f-f(P) 1, g-g(P) 1 \in m_{P}$.) After expansions and some cancelations, $\left(^{*}\right)$ is changed into

$$
\Phi((f-f(P) 1)(g-g(P) 1))=0
$$

which is true as $(f-f(P) 1)(g-g(P) 1) \in m_{P}^{2} \subseteq \operatorname{ker} \Phi$. (1 mark)

