MATH 702, Winter 2015, Homework 4,
Solutions

Total: 20 marks.

(1) (Atiyah-MacDoald, Ex. 3.20) I proved in class that

¢ : R — S is LO (Lying-Over) if and only if ¢* : Spec(S) — Spec(R) is surjective.

Now given a ring morphism ¢ : R — S in general. We say that ¢ is LB if it satisfies:

(a)

(LB) every prime ideal of S is extended from a prime ideal of R.

Prove that
¢:R— SisLB = ©* : Spec(S) — Spec(R) is injective.
(2 marks) (Hint: Denote by e(p) the extension of p and ¢(q) the contraction of g, and think about

them as maps between sets of ideals of R and S, then apply the general idea on saturation: ec is
the identity map on the subsets of extended ideals.)

Answer: 1If ¢*(q1) = ¢*(qz2), then by definition ¢~'q; = ¢ 1q2. Think about this statement
using contraction, we have ¢(q1) = ¢(q2). Given (LB), we know that each q; is extended from
a prime ideal p; of R, i.e. e(p;)) = p1S = ¢, so ¢(q1) = ce(p1) = c(q2) = ce(p2). Apply e we
have ece(p1) = ece(pz). By the saturation property, this is equal to e(p1) = e(p2), which is just
q1 = qa2- O

(Remark: T could not find a name of this fact in the literature. Perhaps we may call it “Lying
Below Theorem”.)

Is the converse true? (1 mark) (Hint: It is enough to think of some rings, each of which has a
one-point spectrum.)

Answer: No, for example Z/27Z — 7Z/47Z,1 — 2. The only prime ideals on both sides are 0
and 27 /47 respectively, and clearly 2Z /47 cannot be extended from 0. O

Other example from students.
e k< k[z]/ (2?). The only prime ideals on both sides are 0 and (z) / (2%) respectively.
e R— (R/p) x Kg, for a fixed prime ideal p.

(2) Let R be a ring.

(a)

If f € R, write down a canonical morphism Spec(R;) — Spec(R) and show that the image is the
basic open set

Uy = {p € Spec(R), where f ¢ p}.
(3 marks)

Answer: (The complete proof below is actually similar to Prop 38 on p.709 of the textbook.
It is okay if you state some of the facts there, as we covered them in class.)



We denote by i : R — Ry the natural map r — r/1, then the corresponding map on spectrums is
just the contraction map
Spec(Ry) — Spec(R), c(q) = i 'q.

We claim that the image is Uy defined above. First we must have f ¢ i~'q for all ¢ € Spec(Ry),
otherwise if f/1 € e(i~1q) = ec(q) = g (similar to the proof of Prop 38(1) on p.709, you may
provide details). But f/1 is invertible in Ry, so ¢ contains an invertible element, which is the whole
ring Ry and is not a prime ideal.

Conversely, for every prime ideal p € Spec(R) with f ¢ p, we show that it is coming from a
q € Spec(Ry). Similar to above, we can show that the extended ideal e(p) is a proper ideal in Ry
(i.e., e(p) cannot be the whole ring Ry). Moreover, e(p) is a prime ideal (similar to the proof of
Prop 38(3) on p.709, you may provide details). Therefore, ¢ = e(p) € Spec(R;) has contraction
p € Spec(R).

Finally, we check that the contraction map is 1-1. Given ¢(q) = ¢(¢'), then using ¢ = ec(q)
above we obtain ¢ = ec(q) = ec(¢’) =¢'. 0

If p € Spec(R), write down a canonical morphism Spec(R,) — Spec(R) and show that the image
is the intersection of all open neighborhood of p in Spec(R). (2 marks)

Answer: We denote by j : R — R, the natural map r — r/1, then the corresponding map
on spectrums is just the contraction map

Spec(Ry,) — Spec(R), c(q) = j'q.

From the correspondence of prime ideals (Prop 38(3) on p.709), this map can be expressed as a
bijection,
Spec(R,) = {q € Spec(R), ¢N (R — p) = 0}.

We then rewrite this as
Spec(Ry) = {q € Spec(R), q C p}
= {q € Spec(R), f ¢ q for all f € R —p}
= [ {g€Spec(R), [ ¢q}

feER—p

= ) U

fER—p

We know that {Uf}scr—p for a fundamental basis of open neighborhood of p, so (from basic
topology) the above intersection is equal to the intersection of all open neighborhood of p. O

(3) Recall some basic notions.

(i)

(i)

Let ¢ : R — S be a ring homomorphism. We say that ¢ has the going-down property, or that
@ is GD, if it satisfies the following condition: Let p; D -+ D p,, be a chain of prime ideals of
Rand q; D -++ D ¢, (with m < n) be a chain of prime ideals of S such that ¢~'q; = p; for all
i =1,...,m, then the chain q; 2 --- D g, can be extended to a chain q; 2 -+ 2O ¢, of prime
ideals of S such that ¢ ='q; = p; foralli =1,...,n.

For example, if ¢ is the inclusion map of R C S, and S is integral over R, then (with some extra
conditions) ¢ is GD, by Theorem 26 of the textbook.

Let ¢ : X — Y be a continuous map of topological space. We say that ¢ is open if it maps every
open subset of X onto a open subset of Y.



Prove that
©* : Spec(S) — Spec(R) is open = ¢: R— S is GD (Going-Down).
(5 marks) (Hint: Following Atiyah-MacDoald, Ex. 5.10, you may first try to show that

©" : Spec(Sq) — Spec(R,) is surjective whenever ¢~ 'q = p
= ¢: R — S is GD (Going-Down).

Then prove the another implication using Question 2(b).)

Answer: Notice that we regard Spec(S,) as a subset of Spec(S) using Ex 2(b) above, so the no-
tation ¢* : Spec(Sq) — Spec(R)) is the restriction of the map ¢* : Spec(S) — Spec(R).

We now prove the statement, following the hint. Given ¢* : Spec(Sq) — Spec(R)) is surjective if
¢~ 'q = p, and given p; C p, we take the prime ideal p’ = pi R, € Spec(R,), and take ¢’ € Spec(Sy) be
a point in the preimage (¢*)~*({p'}). Such a prime ideal ¢’ must be of the form ¢.S, for some prime
ideal q; C g, by Prop 38(3) of p.709. The fact that p*({¢'}) = p’ implies that ¢ ~'q; = p;. Therefore
p:R—S1is GD.

We then show that
©* : Spec(S) — Spec(R) is open
= ©* : Spec(S,) — Spec(Ry) is surjective whenever ¢~ 'q = p.

The following proof is similar to the hint given in Atiyah-MacDoald. Remember from Ex.2(b) above
that we can write Spec(S;) = N¢g,Uys, where Uy is a basic open subset of Spec(S). If we can show that

(%) " (Spec(Sy)) =[] " (Uy),
féa

then since ¢*(Uy) is an open subset containing ¢*(¢q) = p, the right side of (*) is the intersection of a
subcovering of the full covering of all open neighborhoods of p, which certainly contains the intersection
of the full covering, which is Spec(R,).

It remains to prove (*). Many of you only stated this fact without proof. I assume that you are
thinking this statement is trivial, but in fact it is not (only one direction is trivial from set-theory).
However, by tracing back the exercises in Atiyah-MacDoald, I realize that the proof is too technical to
be a 5-mark homework exercise. I try to rephrase the arguments to the level of our course and summarize
them in the following proof. For the homework, I don’t require you to give the full detail, but at least
you have to mention that you realized there is some problem happened from (*).

We now prove (*). Remember that Spec(S,) = Ngg Uy, so the direction

" (Spec(Sy)) € () " (Uy)
féaq
is just coming from arguments of point-set. It remains to prove
* *
0" (Spec(Sy)) D () " (Uy).
féq
The trick is to prove the contra-positive statement

P& (Spec(Sy)) = pd ()¢ (Up) e, pé e (Uy) for some f ¢ q.
féaq



Notice that p ¢ ¢*(Spec(S,)) if and only if the preimage (¢*)~'({p}) N Spec(S,;) = 0. The trick to
proceed is to use Ex 4(i) below: the preimage above is actually a spectrum, which is that of the ring
Sq ®r (Rp/pRy). We then apply the following easy fact which is not often used,

Spec(Sq ®r (R,/pRy)) is an emptyset if and only if S, ®r (R,/pR,) is a zero ring.

Remember I showed in class that we can write S, as a direct limit S; = lim_,y7,54 Sy, where Sy is the
localization of S at f. Now

Sa ®r (Bp/pRy) = lim Sy ®r (Ry/pRy) =0
S Sy @r(Ry/pRy) =0 for some f ¢ g,
which implies (by using Ex 4(i) again) that p ¢ ¢*(Uy). O
(4) (i) Let ¢ : R — S be a ring morphism, and ¢* : Spec(S) — Spec(R) be the corresponding map of
schemes. If p € Spec(R), take D = R — p which is a multiplicatively closed subset and denote

Sy = D718, the localization of S at p (if we view S as an R-module). Prove that the fibre of ¢*
over p € Spec(R), i.e., the preimage (¢*)~!(p) as a subset of Spec(S), is homeomorphic to

Spec(Sy/pSp) = Spec(R, /pRy, @R S).
(4 marks) (Hint: Define the morphisms in the commutative diagram

S ———5,/pS, .

T

R—— R, /pR,
Take Spec and check how the point in Spec(R,/pR,) goes through the diagram. )

Answer: It is better to consider the diagram in two stages

T S, Ss/pS,
R R, Ry /pRy

and the corresponding diagram of spectrums
(xx) Spec(S) «——— Spec(S,) «———-— Spec(S,/pSp) -
T
Spec(R) «———— Spec(R,) «——— Spec(R, /pR,)
We first show that
the image of (Spec(S,/pSy) — Spec(S)) = {q € Spec(S) such that ¢*q = ¢~ 'q = p}.
Firstly, we know that
the image of (Spec(S,/pSy) — Spec(Sy)) = {¢' € Spec(S,) such that ¢" D pS,}.
We know that the image of Spec(S,) in Spec(S) consists of prime ideals ¢ such that

gNeR—p)=0 & ¢ (9 Cp



Hence
the image of Spec(Sy/pSy) — Spec(S)
={q € Spec(S) such that ¢ *(¢) C p and is of the form c(q') where ¢’ D pS,}.
But using the commutative diagram we have
q 2pSy & ©y(q) 2 pR,
& " ({ah) = ¢"({c(d)}) = cle;({d'}) 2 p.

Therefore, we must have p~!(q) = p. Note that the two contractions Spec(S) <= Spec(S,) <
Spec(S,/pSy) are injective, so Spec(Sy,/pSy) is bijective to its image in Spec(S).

Finally, Spec(Sp/pSy) is homeomorphic to its image in Spec(S), because for every closed sub-
set Z(Jp) of Spec(S,/pSy), where J is an ideal of S and J, is the corresponding ideal in S, /pS,,
we have

ce(Z(Jp)) = Z(J) N {q € Spec(S), ¢~ 'q = p}.
This can be shown using the correspondence of prime ideals in the commutative diagram. The idea
is very similar to the arguments in the previous part of the proof, so I skip the details.

Sadly, almost none of you used the correspondence of prime ideals between Spec(S,/pS,) and
Spec(S), but instead constructed the map Spec(S,/pS,) — Spec(S) directly. O
Now let ¢ : Z — Z[x] be the inclusion map, and (f) € Spec(Z[z]) where f(z) = z* + 1. For each

prime number p, describe -
{{(N ) DD,

i.e., describe the prime ideals in Z[z] lying over p € Z and containing f. (3 marks) (Hint: Fol-
lowing the hint from the book, you may need to separate into three cases: p =2, p =1 mod 8,
and p # 1 mod 8. More hint: The reason of considering p mod 8 is related to the roots of X*+1.)

Answer: The prime ideals of Z[z] containing (f) corresponds bijectively to the prime ideals
in S =Z[x]/{f), so those lying over the prime ideal {p) of R = Z are exactly the prime ideals in

Z/pZ)[x]
Sp/pSp = Ry/pRy ®r S = I
Therefore, we switch the problem to check how (%4 ff)l[;c] decomposes, or in other words how z* + 1

decomposes mod p. We separate into 3 cases.
i. When p =2, we have 2* +1 =2*—1 = (z—1)* mod 2. Hence the only prime ideal in %

is the one generated by = — 1.
ii. When p =1 mod 8, notice that the roots of * + 1 are primitive 8th roots of unity, so these
four roots z1,...,z4 all lie in (Z/pZ)*. We have

(Z/p2)la] o, Z/p2)le] o (2/PD)la]
(x* +1) (x — 21) (x — z4)
and the prime ideals are (x — 21),---, (x — z4). Notice that the right side is a direct sum of

four fields, so its spectrum is a 4-point space.

iii. When p # 1 mod 8, then the four roots 21, ..., z4 do not lie in (Z/pZ)*. However, since p*> = 1
mod 8, the four roots lie in the quadratic extension F,. of F, = Z/pZ. If we denote the four
roots by z1, 21, 22,22, where Z; is the Fp2 /F,-conjugate of z;, and denote f; € (Z/pZ)[x] the
quadratic irreducible polynomial with roots z;, Z;, then

Z/pD) , (Z/p2)lz]  (Z/pZ)[a]
(z* +1) (f1) (f2)
and the two prime ideals are (f1) and (f2). Notice that the right side has a 2-point spectrum.
O




