
MATH 4E03/6E03 Galois Theory, Fall 2014

Homework 1 Solution

Total: 18 marks.

(1) Let G be a group acting on a set X. If x, y ∈ X lie in the same G-orbit, what is the relation between
the stabilizers of x and y? (1 mark, no work is needed)

Answer: If g · x = y, then StabG(y) = gStabG(x)g−1, because for every k ∈ StabG(x), we have
k · x = x and so

gkg−1 · y = gkg−1 · (g · x) = (gkg−1g) · x = (gk) · x = g · x = y,

or in other words, gkg−1 ∈ StabG(y).

(2) Let p be a prime number and G be a group. Show that if the order of G is a power of p, then the center
of G, defined as

Z(G) = {g ∈ G such that gk = kg for all k ∈ G},

is non-trivial. (3 marks)

(Hint: Consider the conjugate action of G on itself, and decompose G into orbits, which are conju-
gacy classes in this situation. If g ∈ G lies in the center, how does its conjugacy class look like?)

Answer: Direct from the definition of the center of G, we know that

x ∈ Z(G)⇔ gxg−1 = x or all g ∈ G⇔ orbG(x) = {x}. (1 mark)

In other words, elements in Z(G) are are those with singleton conjugacy classes (orbits). Decompose G
into conjugacy classes and count the number of elements on each orbit, we have

#G = #Z(G) +
∑
x∈G

#(Conj−Class(x))≥2

#Conj − Class(x). (1 mark)

Notice that each #Conj − Class(x), if #(Conj − Class(x)) ≥ 2, must be a p-power, because its
cardinality divides the order of G which is a p-power. This forces #Z(G) to be a multiple of p, and so
it cannot be 1. (1 mark)

(3) (Garling, Ex 1.10) Let Σn be the permutation group of n elements.

(a) Given a permutation σ ∈ Σn, convince yourself that the following quantity

ε(σ) =
∏

1≤i<j≤n

σ(i)− σ(j)

i− j

is either 1 or −1 (0 marks).

Answer: As explained in class, if we define X+ = {(i, j), where 1 ≤ i < j ≤ n}, then

ε(σ) = (−1)the number of pairs in X+ inverted by σ.
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(b) Show that the map ε : Σn → {±1} is a group homomorphism of Σn onto the cyclic group {±1} of
order 2 (2 marks).

Answer: This is to show that ε(στ) = ε(σ)ε(τ). We have

ε(στ) =
∏

1≤i<j≤n

στ(i)− στ(j)

i− j

=
∏

1≤i<j≤n

(
στ(i)− στ(j)

τ(i)− τ(j)

)(
τ(i)− τ(j)

i− j

)
 ∏

1≤i<j≤n

στ(i)− στ(j)

τ(i)− τ(j)

 ∏
1≤i<j≤n

τ(i)− τ(j)

i− j

 . (1 mark)

The second product is ε(τ). To show that the first product is ε(σ), (Comment: Some of you did
not show this.) we separate the factors into two subsets: one has order preserved by τ and one has
order reversed by τ ,

∏
1≤i<j≤n

στ(i)− στ(j)

τ(i)− τ(j)
=

 ∏
1≤i<j≤n
τ(i)<τ(j)

στ(i)− στ(j)

τ(i)− τ(j)


 ∏

1≤i<j≤n
τ(i)>τ(j)

στ(i)− στ(j)

τ(i)− τ(j)

 .

In the second product, if we replace στ(i)−στ(j)
τ(i)−τ(j) by στ(j)−στ(i)

τ(j)−τ(i) , which does not change the value,

then all pairs are now in the correct order. Since τ is a bijection on the n numbers, we have∏
1≤i<j≤n

στ(i)− στ(j)

τ(i)− τ(j)
=

∏
1≤i<j≤n

σ(i)− σ(j)

i− j
= ε(σ).

(1 mark)

(c) Prove that the kernel of ε is An consisting of all even permutations (2 marks).

Answer: It is the same as to show that ε is equal to the signature homomorphism s : Σn/An → {±1}.
Since we have shown that ε is also a group homomorphism, to prove that the two homomorphisms
ε and s are equal, it suffices to show that every transposition σ = (a b) is mapped by ε to −1.
Notice that a, b are just two random numbers between 1 and n, but recall from (b) that ε is an
homomorphism, we know that

ε(τστ−1) =ε(τ)ε(σ)ε(τ)−1

=ε(τ)ε(τ)−1ε(σ) (because the codomain {±1} is an abelian group)

=ε(σ).

Therefore, if we take τ to be the permutation

τ : a 7→ 1 and b 7→ 2

then τστ−1 = (1 2). Therefore, it suffices to show that ε((1 2)) = −1. The affected pairs are those
(i, j) with either i or j being 1 or 2, namely

(1, 2), (1, 3) . . . , (1, n), (2, 3), . . . , (2, n),

which are mapped by (1 2) to

(2, 1), (2, 3) . . . , (2, n), (1, 3), . . . , (1, n).
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Only the pair (2, 1) has negative order. Therefore, in the product ε((1 2)) =
∏

1≤i<j≤n
(1 2)(i)−(1 2)(j)

i−j ,

almost all fractions are equal to 1 except when i = 1, j = 2, in which case ε((1 2)) = 1−2
2−1 = −1.

Comment: Some of you says that an arbitrary transposition (a b) has only one pair (a, b) with
order swapped. This is wrong. Consider when n = 3 and the transposition (1 3), then all pairs
(1, 2), (1, 3), (2, 3) are mapped by (1 3) to (3, 2), (3, 1), (2, 1), so all three pairs have order swapped.
So if you insist to check the affected pairs by arbitrary transposition (a, b), you should say that
the pairs with order swapped are (a, b) and all (a, c), (c, b) with a < c < b, but the negative signs
produced by (a, c) and (c, b) cancel each other and finally we only have the negative sign coming
from the pair (a, b).

(4) Let Σ4 be the group of permutations of 4 elements. Let σ = (12)(34) be a product of transpositions in
Σ4.

(a) Express the Σ4-stabilizer of σ and find its order. (2 marks)

Answer: The stabilizer of σ are those τ ∈ Σ4 such that τστ−1 = σ. We write down this re-
lation explicitly as

τ(12)(34)τ−1 = (τ(1)τ(2))(τ(3)τ(4)) = (12)(34).

Therefore, it suffices to look for the permutations on {1, 2, 3, 4} which stabilize (12)(34). We see
that

• We can permute the elements within each cycle, i.e., take τ1 = (12) : 1↔ 2, leaving 3,4 fixed,
and τ2 = (34) : 3↔ 4, leaving 1,2 fixed.

• We can permute the two 2-cycles, i.e., we take τ3 = (13)(24) : 1↔ 3, 2↔ 4.

The stabilizer of σ is hence generated by the group generated by τ1, τ2 and τ3. Using the relations

τ1τ2 = τ2τ1 and τ3τ1 = τ2τ3,

we find that this group is equal to

{I, τ1, τ2, τ3, τ1τ2, τ3τ1, τ3τ2, τ1τ2τ3}
={I, (12), (34), (13)(24), (12)(34), (1423), (1324), (14)(23)}

(2 marks)

which has order 8.

Note: this is the dihedral group of order 8, represented by generator relations〈
ρ, τ , where ρ4 = 1, τ2 = 1, τρτ = ρ3

〉
if we take ρ = τ3τ1 = (1423) and τ = τ1 = (12).

(b) How many elements are there in the Σ4-orbit of σ? (1 marks)

Answer: 24/8 = 3.

(5) (Garling, Ex 3.9) Suppose that R is an infinite ring (i.e., #R = ∞) such that R/I is finite for each
non-trivial ideal I. Show that R is an integral domain. (3 marks)

Answer: Suppose that R is not an integral domain, so that there are non-zero elements a and b in
R with ab = 0. Consider the map

φ : R→ R, φ(x) = ax. (1 mark)

If we regard R as a group under addition, then φ is a group homomorphism. The image is the ideal (a).
By Isomorphism Theorem (of Groups), we have

R/ kerφ ∼= (a). (1 mark)
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Now kerφ cannot be a trivial subgroup, because (b) ⊆ kerφ. Therefore by the given condition, R/ kerφ
is finite, and the ideal (a) should also be finite because it is isomorphic to R/ kerφ. However, with the
condition that #(R/(a)) is finite, this implies that R is a finite ring because #R = #(a) ×#(R/(a)).
We arrive at a contradiction. (1 mark)

Comment: Some of you gave the following alternative solution, of which I only sketch the idea. Given
a, b 6= 0 but ab = 0. Since R/(a) = {ri + (a), i = 1 . . . , n} is finite, then every element in R is of the
form ri + sa, but then it forces (b) = {rib, i = 1 . . . , n} to be finite.

(6) (Garling, Ex 3.4) Let R be a ring. Suppose that a, b ∈ R for which (a, b) = R. Show that (am, bn) = R
for every positive integers m,n. (2 marks)

Answer: Let N = m + n. The given condition (a, b) = R implies that as + bt = 1 for some s, t ∈ R.
Taking N -th power, we obtain

1 = (as+ bt)N =

N∑
k=0

CNN−k(as)N−k(bt)k.

(1 mark)
Look at each term (as)N−k(bt)k above. If k ≤ n, then N − k ≥ m and the term is a multiple of am. If
k ≥ n, then the term is a multiple of bn. The above equality implies that there exists S and T , both in
R, such that amS + bnT = 1, which is equivalent to say that (am, bn) = R. (1 mark)

(7) Let R be a ring and I be an ideal of R. Prove that

(a) I[X] = {polynomials in R[X] with coefficients in I} is an ideal of R[X], and

(b) R[X]/I[X] is isomorphic to (R/I)[X] as a ring.

(2 marks)

Answer: To show that I[X] is an ideal, first notice that is clearly ad additive subgroup. If p(X) =∑
i aiX

i ∈ R[X] and q(X) =
∑
j bjX

j ∈ I[X], then p(X)q(X) =
∑
k ckX

k where ck =
∑
j ak−jbj .

Clearly ck ∈ I since I is an ideal and each bj ∈ I. Therefore I[X] is an ideal of R[X]. (1 mark)

If we denote
R→ R/I, a 7→ ā = a+ I

the natural surjective homomorphism, then we define

φ : R[X]→ (R/I)[X], φ

(∑
i

aiX
i

)
=
∑
i

āiX
i.

Then we show that

• φ is a ring homomorphism, since

φ

(∑
i

aiX
i +
∑
i

biX
i

)
= φ

(∑
i

(ai + bi)X
i

)
=
∑
i

(ai + bi)X
i =

∑
i

(āi + b̄i)X
i (since a 7→ ā is a ring homomorphism)

=
∑
i

āiX
i +
∑
i

b̄iX
i = φ(

∑
i

aiX
i) + φ(

∑
i

biX
i).
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and

φ

∑
i

aiX
i
∑
j

bjX
j

 = φ

∑
k

(
∑
i+j=k

aibj)X
k


=
∑
k

(
∑
i+j=k

aibj)X
k =

∑
k

(
∑
i+j=k

āib̄j)X
k (since a 7→ ā is a ring homomorphism)

=
∑
i

āiX
i
∑
j

b̄jX
j = φ(

∑
i

aiX
i)φ(

∑
j

bjX
j).

and φ(1R[X]) = φ(1R) = 1R/I = 1(R/I)[X]. (It is fine if you just state that φ is a ring homomorphism
without showing it.)

• Its kernel is I[X], since if
∑
i āiX

i = 0, then each coefficient āi = ai + I = 0, which means that
ai ∈ I and so

∑
i aiX

i ∈ I[X].

• φ is surjective, i.e. image(φ) = (R/I)[X], since each coefficient āi ∈ R/I is coming from an ai ∈ R.

Therefore, by the Isomorphism Theorem (for ring homomorphisms) (1 mark for applying Isomorphism
Theorem), we have R[X]/I[X] ∼= (R/I)[X] as a ring.

Answer to some Suggested Problems (no need to hand in):

(1) (Garling, Ex 3.3) Show that an integral domain with a finite number of elements is always a field.

Answer: Let a be an non-zero element in R. We want to show it is invertible. Define a map

φ : R→ R, φ(x) = ax.

This map is a group homomorphism, if we regard R as a group under addition. This map is injective,
because if φ(x) = φ(y), then ax = ay and a(x − y) = 0. Since R is an integral domain and a 6= 0, this
forces x− y = 0 and so x = y. Now the map is then automatically bijectively, because R is a finite set.
In particular, it is surjective, hence 1 ∈ R is in the image of φ, which means that there is an x ∈ R such
that φ(x) = ax = 1. The last statement means that a is invertible.

(2) Let ΣX be the group consisting of bijective maps of a set X to itself. Define an action of ΣX on the
cartesian product

X ×X = {(x, y), where x, y ∈ X}

by σ · (x, y) = (σ(x), σ(y)). What are the ΣX -orbits of X ×X?

Answer: If #X = 1, then #(X × X) = 1 and there is only one orbit. If #X ≥ 2, then there are
two orbits: one consists of pairs with equal coordinates

∆(X) = {(x, x), where x ∈ X};

another consists of pairs with different coordinates

X ×X −∆(X) = {(x, y), where x, y ∈ X and x 6= y}.

It is clear that ∆(X) forms an orbit: for every two elements (x, x) and (y, y), any function σ which
maps x to y certainly translates (x, x) to (σ(x), σ(x)) = (y, y). Now for every two pairs (x, y), (z, w) ∈
X × X − ∆(X), we have x 6= y and z 6= w. We can always find a bijective map of the form σ =(
· · · x · · · y · · ·
· · · z · · · w · · ·

)
such that σ(x) = z and σ(y) = w.

(3) (Just for fun) Find a formula for the size of a conjugacy class of Σn. (Hint: First find the order of the
stabilizer of an element in the given orbit.)
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Answer: (This question also appears in Dummit-Foote Sec.4.3, Q.33) Given σ ∈ Σn, we define a
map mσ : N → N0 defined by the condition: there are mσ(j) many j-cycles in the decomposition of
σ into disjoint cycles. We look for the symmetry of such a σ, using the idea similar to the question
concerning Σ4 above.

• We can cyclicly permute the elements in each j-cycle, which generate a subgroup isomorphic to Zj
the cyclic group of order j. Since there are mσ(j) many j-cycles, their product generates the direct
product subgroup (Zj × · · · × Zj)︸ ︷︷ ︸

mσ(j)-times

.

• We can permute each pair of j-cycles, altogether such action generates the permutation group
Σmσ(j).

Hence the stabilizer is isomorphic to the product∏
j∈N

(Zj × · · · × Zj)︸ ︷︷ ︸
mσ(j)-times

oΣmσ(j),

where the semi-direct product of Σmσ(j) on the mσ(j) pieces of Zj is given by the action mentioned
above. Its order is given by ∏

j∈N
jmσ(j)(mσ(j))!.

Notice that this is a finite product, because mσ(j) = 0 if j is large enough. Therefore, the size of the
stabilizer is given by

n!∏
j∈N j

mσ(j)(mσ(j))!
.
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