
MATH 4E03/6E03 Galois Theory, Fall 2014

Homework 2, Due Wednesday, October 15, 12:00 noon

Total: 18 marks.

(1) This exercise shows that

R is a PID if and only if R is a UFD and every prime ideal is maximal.

I have shown in class that (PID) ⇒ (prime ⇒ max). To show that (PID) ⇒ (UFD), we follow Garling
(P.29). Remember that a UFD satisfies (ACCPI) and (irr ⇒ prime).

• To show that (PID) ⇒ (ACCPI), suppose we have a chain (a1) ⊆ (a2) ⊆ · · · of principal ideals.
We define J = ∪∞i=1(ai).

(I) Show that J is an ideal. (1 mark)

Answer: Given a, b ∈ J , say a ∈ (ai) and b ∈ (aj). We can assume i ≤ j, then a ∈ (aj)
and so a+ b ∈ (aj) ⊆ J . For any r ∈ R and a ∈ J , again say a ∈ (ai), then ra ∈ (ai) ⊆ J .

As in a PID, the ideal J is equal to (a) for some a ∈ R. Now that a ∈ J = ∪∞i=1(ai) implies
that a ∈ (ak) for some k, and so (a) ⊆ (ak). But we have

(ak) ⊆ (ak+1) ⊆ · · · ⊆ J = (a) ⊆ (ak).

By Sandwich, this shows that all (ai) are equal for i ≥ k.

• To show that (PID) ⇒ (irr ⇒ prime), given an irreducible a ∈ R. We want to show that (a) is a
prime ideal. In fact, we can prove a stronger statement.

(II) Given a PID R, show that (a) is a maximal ideal if a is irreducible. (1 mark)

Answer: Let (a) is contained in a maximal ideal M , which is a principal ideal (m) as R is a
PID. Therefore a = mx for some x ∈ R. Since a is irreducible and m is not invertible, x is invert-
ible, and so (a) = (m) is maximal.

For then (a) is a prime ideal, since every maximal ideal is also a prime ideal.

We show that (UFD) + (prime⇒ max)⇒ (PID). Given an ideal I, we want to show that it is principal.
Remember that in a UFD, every element has a decomposition into irreducibles (up to an invertible
element which can be ignored) like p1 . . . pk. Choose an element whose number of irreducible factors k
is minimal among all choices in I. The proof will be done by induction on k.

(III) Prove that I is principal when k = 1, i.e., when there exists an irreducible element p1 ∈ I. (1
mark)

Answer: We have (p1) ⊆ I. But p1 is irreducible, so is a prime (as in a UFD). Hence (p1) is maximal
by the given condition (prime ⇒ max), which forces (p1) = I.

1



Now assume that I is principal if k = 1, . . . , d − 1. Let I contain an element p1 . . . pd, with d mini-
mal. Define J = {x ∈ R, xpd ∈ I}.

(IV) Prove that J is an ideal and Jpd = I. (2 marks) (Hint: Jpd ⊆ I is clear. To show the re-
verse, you may have to use that (pd) is a maximal ideal, since we are given (prime ⇒ max).)

Answer: J is an ideal: For a, b ∈ J , we have apd, bpd ∈ I, so that (a + b)pd ∈ I and a + b ∈ J .
For r ∈ R and a ∈ J , then rapd ∈ I and so ra ∈ J . (1 mark) Now we have Jpd ⊆ I. To show the
reverse, by the definition of J , it is enough to show that I ⊆ (pd). If not, then because (pd) is maximal
as hinted, we have I + (pd) = (1), or there exists x ∈ I and a ∈ R such that x+ apd = 1. But now

p1 . . . pd−1 = p1 . . . pd−1 · 1 = p1 . . . pd−1(x+ apd) = xp1 . . . pd−1 + ap1 . . . pd ∈ I

since both x and p1 . . . pd lie in I. The above contradicts the minimality of d. (1 mark)

Since p2 . . . pd ∈ J , we apply induction assumption to conclude that J is principal, say J = (a). Hence
I = (apd) is also principal.

(2) (c.f. Garling Ex.3.12) Let R be the integral domain Z +
√
−5Z. Show that 1 +

√
−5 is not invertible in

R. Moreover, show that 1 +
√
−5 is irreducible but is not a prime element in R. (3 marks)

(Hint: Consider the norm map φ : R → N≥0, φ(a +
√
−5b) = a2 + 5b2. The map φ is not a ring

homomorphism: it does not satisfy φ(x+ y) = φ(x) + φ(y). It satisfies φ(xy) = φ(x)φ(y) anyway.)

Answer: If 1 +
√
−5 is invertible, then there exists a +

√
−5b such that (1 +

√
−5)(a +

√
−5b) = 1.

Applying φ to the last equality we have

1 = φ(1) = (1 +
√
−5)(a+

√
−5b) = 6(a2 + 5b2),

which is clearly impossible. (1 mark)

To show that 1 +
√
−5 is irreducible, suppose that 1 +

√
−5 = (a +

√
−5b)(c +

√
−5d). We have

to show that either a+
√
−5b or c+

√
−5d is invertible. Applying φ to the last equality we have

6 = φ(1 +
√
−5) = φ((a+

√
−5b)(c+

√
−5d)) = (a2 + 5b2)(c2 + 5d2).

Either {a2 + 5b2, c2 + 5d2} = {1, 6} or = {2, 3}. But we can check that a2 + 5b2 = 2 has no integral
solution, and same as a2 + 5b2 = 3. Therefore, we can assume that a2 + 5b2 = 1, which happens only
when a = 1 and b = 0, and so a+

√
−5b = 1 which is clearly invertible. (1 mark)

Finally, 1 +
√
−5 is not a prime, because (1 +

√
−5) ⊇ ((1 +

√
−5)(1 −

√
−5)) = (6) = (2)(3), but

both (1 +
√
−5) + (2) and (1 +

√
−5) + (3). (1 mark)

Remark: Remember that every irreducible element in a UFD is also a prime element. This exercise
shows that not all integral domain is a UFD. Neglecting this fact could lead to serious mistakes, e.g.,
wrong proofs of Fermat’s Last Theorem.

(3) (Garling Ex.5.4) Suppose that K is a field and that f and g are relatively prime in K[X], i.e., the ideal
(f, g) generated by f and g is the whole polynomial ring K[X]. Show that f − Y g is irreducible in
K(Y )[X]. Here

K(Y ) =

{
p(Y )

q(Y )
, where p(Y ) ∈ K[Y ] and q(Y ) ∈ K[Y ]− {0}

}
.

(3 marks) (Hint: K(Y )[X] is a PID.)
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Answer: Forget about the issue whether the polynomial f − Y g is monic or not, just apply Gauss
Lemma blindly, then

f − Y g is irreducible in K(Y )[X] ⇔ f − Y g is irreducible in K[Y ][X]

⇔ f − Y g is irreducible in K[X][Y ]

⇔ f − Y g is irreducible in K(X)[Y ].

Now the last statement is true because f − Y g is a linear polynomial in Y (with coefficients in K(X)).

In class, I stated that you can apply Gauss Lemma only when the polynomial is monic. However,
one can actually argue in certain ways that this condition can be dropped, see for example the proof in
Dummit-Foote. This makes the solution of this question much easier than I thought, and I am sorry
that the given hint may not help much.

(4) Show that X4 +10X+5 is irreducible over the field Q[i], where i =
√
−1 and Q[i] = {a+bi, where a, b ∈

Q}.

If you insist on using Eisenstein Criterion, then there are a number of steps you need to justify.

(a) First show that Z[i] is a PID. (3 marks)

(Hint: First define a norm map φ on Z[i] similar to Ex.(2) above, then formulate and prove an
Euclidean algorithm on Z[i]: for every a, b ∈ Z[i] and b 6= 0, there exists q, r ∈ Z[i] such that
a = bq + r, with either r = 0 or φ(r) ≤ φ(b).)

Answer: The proof that ‘an integral domain admits an Euclidean algorithm (an Euclidean
domain) is a PID’ is shown in case when R = Z or K[X], and the general situation is very similar
to these two cases. Below I just show that the ring Z[i] admits an Euclidean algorithm. We define

φ(a+ bi) = a2 + b2. (1 mark)

and show that

for every α, β ∈ Z[i] and β 6= 0, there exists θ (quotient) and ρ (remainder) in Z[i] such
that α = βθ + ρ and φ(ρ) < φ(β).

Let θ be the complex number in Z[i] which has closest distance to α
β in the complex plane, i.e.,

such that |αβ − θ| is minimal, or φ(αβ − θ) = |αβ − θ|
2 is minimal, and let ρ = β(αβ − θ) (1 mark for

defining θ and ρ). By simple geometry, αβ must lie in one of the four quadrants (area= 1
2 ×

1
2 ) of a

unit square with one of the corners being θ, so that we have

|α
β
− θ| ≤

√(
1

2

)2

+

(
1

2

)2

=
1√
2

and so

φ(ρ) = φ(β)φ(
α

β
− θ) ≤ φ(β)

(
1

2

)
≤ φ(β). (1 mark)

(b) Show that 1 + 2i and 1 − 2i are prime elements in Z[i]. (Again, make use of the norm defined
above.) (1 mark)

Answer: The inverse of 1 + 2i is 1
5 −

2
5 i /∈ Z[i], so that 1 + 2i is not invertible in Z[i]. If

1 + 2i = (a+ bi)(c+ di), then applying the norm map defined by above, we have

(a2 + b2)(c2 + d2) = φ(a+ bi)φ(c+ di) = φ(1 + 2i) = 12 + 22 = 5.

Since both a2 + b2 and c2 + d2 are integers, the above forces a2 + b2 = 1 and c2 + d2 = 5. The
former statement holds only when (a, b) = (1, 0) or (0, 1), which means that a+ bi = 1 or i, which
is invertible in Z[i]. We have just proved that 1 + 2i is irreducible, which is hence a prime (as in a
PID).
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(c) Show that the given polynomial is irreducible over Q[i] by Eisenstein Criterion and Gauss Lemma.
(1 mark)

Answer: We have proved that 1 + 2i is a prime number in Z[i]. Since the prime factoriza-
tion of 5 in Z[i] is (1 + 2i)(1 − 2i), the prime number 1 + 2i divides (a3, a2, a1, a0) = (0, 0, 10, 5)
and (1 + 2i)2 does not divide a0 = 5. The polynomial X4 + 10X + 5 is (1 + 2i)-Eisenstein, hence
is irreducible in Z[i]. This monic polynomial is irreducible in Q[i] by Gauss Lemma.

Remark: The number 5 is a prime in Z but is not a prime in Z[i]. You need to use the prime
1 + 2i for this question. Failing to notice this will receive no mark.

Remark: I am not sure if this is the only method. If you can provide other justified methods, you can
also get 5 marks.

(5) (Garling Ex.4.5) Given field extensions L/K and L(α)/L such that the degrees [L : K] and [K(α) : K]
are relatively prime. Show that the minimal polynomial of α over L has coefficients in K. (2 marks)

Answer: The idea is to show that mL
α is equal to mK

α . We know that mL
α divides mK

α (1 mark
for stating this, which has been stated in class a couple times), and so it is enough to show that their
degrees, which are respectively [L(α) : L] and [K(α) : K], are equal. We know that

[L(α) : L][L : K] = [L(α) : K(α)][K(α) : K] = [L(α) : K].

But since [L : K] and [K(α) : K] are coprime, the above relation forces [K(α) : K] = [L(α) : L] by
simple arithmetic. (1 mark)
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