MATH 4E03/6E03 Galois Theory, Fall 2014 Homework 3 Solution

Total: 16 marks. No mark for any unjustified arguments using calculators.

(1) Show that if p is a prime, and if the regular p-gon (the regular polygon with p sides) is constructible, then p is of the form $2^{2^t} + 1$ for some integer t. (3 marks)

(Hints: First show that p is of the form $2^k + 1$, then show that k must be of the form 2^t .)

Remark: A prime of the form $2^{2^t} + 1$ is called a Fermat prime.

Remark 2: What is the condition on n (not necessarily a prime) such that a regular n-gon is constructible? We need Galois theory in Sec 19.3 of Garling. Hopefully we can discuss it in the future.

Answer: We first show that p is of the form $2^k + 1$. If we inscribe the regular p-gon in the unit circle on the plane, with one of the vertices being (1,0), then the next vertex (in the anti-clockwise direction) is

$$(\cos(2\pi/p),\sin(2\pi/p)).$$

If we view the plane as the complex \mathbb{C} , then this vertex is just $\cos(2\pi/p) + i\sin(2\pi/p) = e^{2\pi i/p}$. Therefore, if the regular *p*-gon is constructible, then $e^{2\pi i/p}$ is a constructible number (over \mathbb{Q}). (1 mark)

By Theorem 6.1, the degree of extension

$$\left[\mathbb{Q}(e^{2\pi i/p}):\mathbb{Q}\right] = 2^k$$

for some integer k. We have computed in class that $e^{2\pi i/p}$ is a root of the polynomial

$$X^{p-1} + X^{p-2} + \dots + X + 1,$$

which is irreducible over \mathbb{Q} . Hence $[\mathbb{Q}(e^{2\pi i/p}):\mathbb{Q}] = p-1$ (1 mark) and so $p = 2^k + 1$.

Remark: I checked that this polynomial is irreducible in a class before. Many of you re-did the proof, which is not necessary. Stating $[\mathbb{Q}(e^{2\pi i/p}):\mathbb{Q}] = p-1$ is good enough.

We then show that k must be of the form 2^t . If k has an odd factor, say k = ab with a being odd, then

$$2^{k} + 1 = 2^{ab} + 1 = (2^{b} + 1)((2^{b})^{a-1} - (2^{b})^{a-2} + \dots - 2^{b} + 1),$$

which implies that p has a proper factor $2^b + 1 > 1$ and leads to a contradiction. (1 mark)

(2) Using the method covered in class, compute the automorphism group of Σ/\mathbb{Q} , where Σ is the splitting field of $X^4 + 5X^2 + 5 \in \mathbb{Q}[X]$. (3 marks)

(Hints: The group is not the dihedral group D_8 covered in class. The reason is as follows. Let's recall the example in class: $f(X) = X^4 - 4X^2 + 5$ with roots

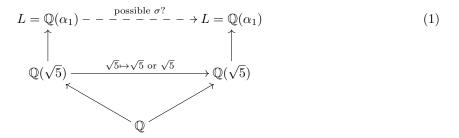
$$\alpha_1, \alpha_2 = \pm \sqrt{2+i}, \qquad \alpha_3, \alpha_4 = \pm \sqrt{2-i}.$$

The splitting field Σ is $\mathbb{Q}(\alpha_1, \alpha_3)$. We can compute $[\Sigma : \mathbb{Q}(\alpha_1)] = 2$ since $\alpha_3 \notin \mathbb{Q}(\alpha_1)$, and $[\mathbb{Q}(\alpha_1) : \mathbb{Q}(i)] = 2$, and so $[\Sigma : \mathbb{Q}] = 8$. However, in our question, the polynomial has roots

$$\alpha_1, \alpha_2 = \pm i \sqrt{\frac{5 + \sqrt{5}}{2}}, \qquad \alpha_3, \alpha_4 = \pm i \sqrt{\frac{5 - \sqrt{5}}{2}},$$

and $\alpha_3 \in \mathbb{Q}(\alpha_1)$ because $\alpha_1 \alpha_3 = -\sqrt{5}$. Therefore we have $\Sigma = \mathbb{Q}(\alpha_1)$ and $[\mathbb{Q}(\alpha_1) : \mathbb{Q}(\sqrt{5})] = 2$.)

Answer: In this question we have the following tower of fields and automorphisms



Notice that $[L : \mathbb{Q}] = 4$ because we have the extra condition $\alpha_1 \alpha_3 = -\sqrt{5}$. We expect the Galois group has order 4. We distinguish between two cases.

Case when $\sigma: \sqrt{5} \mapsto \sqrt{5}$. By arguing as in class, the possible permutations in the Galois group are

Id,
$$(1\ 2)$$
, $(3\ 4)$, $(1\ 2)(3\ 4)$.

However, under the extra condition $\alpha_1\alpha_3 = -\sqrt{5}$, a qualified permutation should satisfy $\sigma(\alpha_1\alpha_3) = \sigma(-\sqrt{5}) = -\sqrt{5}$. This condition hence cuts down half of the permutations. For example, $\sigma = (1 \ 2)$ cannot be in the Galois group because

$$\sigma(\alpha_1 \alpha_3) = \sigma(-\sqrt{5}) = -\sqrt{5}$$

= $\sigma(\alpha_1)\sigma(\alpha_3) = \alpha_2 \alpha_3 = \sqrt{5},$ (2)

which is impossible. Arguing similarly, we find that $(3 \ 4)$ cannot be in the Galois group, and only Id and $(1 \ 2)(3 \ 4)$ can be lying in the Galois group.

<u>Case when $\sigma: \sqrt{5} \mapsto -\sqrt{5}$.</u> The argument is similar to the case above. Just remember in this case a qualified permutation should satisfy $\sigma(\alpha_1\alpha_3) = \sigma(-\sqrt{5}) = \sqrt{5}$. We then find that only (1 3 2 4) and (1 4 2 3) can be lying in the Galois group, but (1 3)(2 4) and (1 4)(2 3) cannot.

Finally, we observe that the group

$$\{ Id, (1 \ 3 \ 2 \ 4), (1 \ 2)(3 \ 4), (1 \ 4 \ 2 \ 3) \}$$

is isomorphic to the cyclic group \mathbb{Z}_4 . Indeed, if we take $\rho = (1 \ 3 \ 2 \ 4)$, then $\rho^2 = (1 \ 2)(3 \ 4)$, $\rho^3 = (1 \ 4 \ 2 \ 3)$, and $\rho^4 = \mathrm{Id}$.

(If you fail to use the condition $\alpha_1\alpha_3 = -\sqrt{5}$, you can only receive half of the marks.)

(3) (Garling Ex. 9.5) Let L/K be a normal extension. Suppose that f is a monic irreducible polynomial in K[X] and g, h are monic irreducible factors of f in L[X]. Show that there exists a K-automorphism of L such that $\sigma(g) = h$. (3 marks)

(Hints: What are the relations between the roots of g and h?)

Answer: Let α be a root of g and β be a root of h. They are both a root of f, so by Extension Theorem 7.4, there is a K-isomorphism $j: K(\alpha) \to K(\beta)$ mapping $\alpha \mapsto \beta$.

Let Σ be a normal extension containing both L and the splitting field of f over K; in particular, it contains both $K(\alpha)$ and $K(\beta)$. By applying Corollary 2 of Extension Theorem 7.5 for splitting field extensions successively, we can obtain a K-automorphism $k : \Sigma \to \Sigma$ extending $j : K(\alpha) \to K(\beta)$. In particular, $k(\alpha) = \beta$.

$$\begin{array}{c} \Sigma - - -^{k} - - \rightarrow \Sigma \\ \uparrow \qquad \uparrow \\ K(\alpha) \xrightarrow{j} K(\beta) \end{array} \tag{4}$$

(1 mark for choosing appropriate Σ and k.)

Since L/K is normal, by Theorem 9.2, we have k(L) = L. Let σ be $k|_L$, which is now a K-automorphism of L.



(1 mark for defining σ .)

It remains to show that $\sigma(g) = h$. Now the above K-isomorphisms induce the following diagram

The top compositions of isomorphisms is induced from the surjection

$$L[X] \xrightarrow{\sigma} L[X] \to L[X]/(h),$$

where g is mapped to $0 \in L[X]/(h)$; in other words, $\sigma(g)$ lies in the ideal generated by h, which means that $\sigma(g)$ is a L[X]-multiple of h. Apply the same argument to $\sigma^{-1}(h)$, then $\sigma^{-1}(h)$ is a L[X]-multiple of g. But we know that the pair of polynomials g and $\sigma(g)$ have the same degree, and so are the pair h and $\sigma^{-1}(h)$. The arguments above forces that g and h have the same degree, i.e. $\sigma(g)$ is a L-multiple of h. Since both are assumed to be monic, we have $\sigma(g) = h$. (1 mark)

Remark: Most of you did this question remarkably well, like choosing the correct splitting field Σ and use the various Extension Theorems appropriately.

Remark 2: Many of you assumed something like $\deg(g) \leq \deg(h)$, which is not necessarily. Is it a coincidence?

- (4) (Garling Ex. 9.6) Suppose that L/K is algebraic. Show that the following are equivalent.
 - (i) L/K is normal;
 - (ii) if j is a K-monomorphism from L to \overline{L} (the algebraic closure of L), then $j(L) \subset L$;

(iii) if j is a K-monomorphism from L to \overline{L} , then j(L) = L.

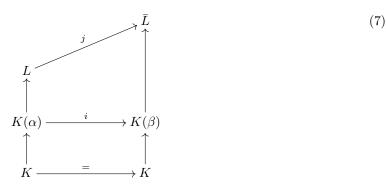
(4 marks)

(Hints: You may want to copy the proof of Theorem 9.3. However, here [L : K] could be ∞ , so that some arguments of the proof of Theorem 9.3 do not apply here. You may take the proof there as a reference, but eventually you need to produce a new proof for the above question.)

Answer: (i) \Rightarrow (ii). Given (i) that L/K is normal, and $j: L \to \overline{L}$ is a K-monomorphism, we want to show that $j(L) \subseteq L$. It is the same to show that given every $\alpha \in L$, we have $j(\alpha) \in L$. We know that $j(\alpha)$ is also a root of the minimal polynomial $m_{\alpha} \in K[X]$, by the argument similar to the proof of Theorem 9.2. Hence $j(\alpha) \in L$ by the normality of L/K. (1 mark)

(ii) \Rightarrow (iii). Given (ii) that every K-monomorphism $j: L \to \overline{L}$ satisfies $j(L) \subseteq L$, so that $j: L \to L$ is defined. We want to show that j(L) = L, which is the same as to show that $j: L \to L$ is surjective, or the same as to show that for every $\beta \in L$, there is $\alpha \in L$ such that $j(\alpha) = \beta$. Let Σ/K be the splitting field extension of $m_{\beta} \in K[X]$. Since (i) \Rightarrow (ii) is proved above, we apply it to the normal extension Σ and the K-monomorphism $j|_{\Sigma}: \Sigma \to \overline{L} = \overline{\Sigma}$, so that we have $j|_{\Sigma}(\Sigma) \subseteq \Sigma$. Since Σ/K has finite degree, we actually have $j|_{\Sigma}(\Sigma) = \Sigma$. Since $\beta \in \Sigma$, we can find $\alpha \in \Sigma$ such that $\beta = j|_{\Sigma}(\alpha)$. Since $\Sigma \subseteq L$, we have $\alpha \in L$ and $j(\alpha) = j|_{\Sigma}(\alpha) = \beta$. Therefore j is surjective. (1.5 marks)

(iii) \Rightarrow (i). Given (iii) that every K-monomorphism $j : L \to \overline{L}$ satisfies j(L) = L, to show L/K is normal, it is enough to show that if $\alpha \in L$ and β is a root of $m_{\alpha} \in K[X]$, then $\beta \in L$. We now prove by contradiction: suppose that $\beta \notin L$. Suppose that $i : K(\alpha) \to K(\beta)$ is a K-isomorphism mapping $\alpha \mapsto \beta$ (whose existence is due to Extension Theorem 7.4). Then any K-monomorphism $j : L \to \overline{L}$ extending i(if there exists any such j, see the remark below) does not satisfy j(L) = L, because $j(\alpha) = k(\alpha) = \beta \notin L$. This contradicts the given condition (iii). (1.5 marks)



Remark: If you really want to argue that such a K-monomorphism j exists, you require Zorn's Lemma, which is Theorem 8.3 I have not covered in class. I did not deduct any mark if you did not use this Lemma. Usually I avoid using it.

(5) Recall that \mathbb{Z}_p is a finite field of p elements. Take our base field to be $K = \mathbb{Z}_p(T)$, the field of rational polynomials with variable T. Explicitly,

$$K = \left\{ \frac{f}{g}, \text{ where } f, g \in \mathbb{Z}_p[T] \text{ and } g \neq 0 \right\}.$$

Consider the polynomial ring $K[X] = \mathbb{Z}_p(T)[X]$.

(i) Show that the polynomial $f(X) = X^p - T \in K[X]$ is irreducible. (1 mark) (Hints: Remember one of the exercise in the previous homework.)

Answer: We apply Exercise 3 of Homework 2, which states that F(X) - YG(X) is irreducible

in L(Y)[X] if gcd(F(X), G(X)) = 1 in L[X] (notice that some notations are changed from the Exercise). In above question we take $L = \mathbb{Z}_p$, Y = T, $F(X) = X^p$ and G(X) = 1.

Remark: Some of you did not use Exercise 3 of Homework 2. They mentioned that T is a prime in the 'ring of integers' $\mathbb{Z}_p[T]$ of the field $\mathbb{Z}_p(T)$, so that the given polynomial $X^p - T$ is T-Eisenstein. This is also a nice proof.

(ii) Describe the roots of f. (Since $\deg(f) = p$, there are p roots.) Show your work. (2 marks)

Answer: Suppose that one of the root of $X^p - T$ is α , so that $\alpha^p = T$. Then we have

$$X^p - T = X^p - \alpha^p = (X - \alpha)^p.$$
 (1 mark)

The last equality is valid in characteristic p. Therefore, α is a repeated root of multiplicity p. In other words, all p roots are equal. (1 mark)

Remark: this is a typical example of an inseparable polynomial.