
MATH 4E03/6E03 Galois Theory, Fall 2014

Homework 3 Solution

Total: 16 marks. No mark for any unjustified arguments using calculators.

(1) Show that if p is a prime, and if the regular p-gon (the regular polygon with p sides) is constructible,

then p is of the form 22t + 1 for some integer t. (3 marks)

(Hints: First show that p is of the form 2k + 1, then show that k must be of the form 2t.)

Remark: A prime of the form 22t + 1 is called a Fermat prime.

Remark 2: What is the condition on n (not necessarily a prime) such that a regular n-gon is con-
structible? We need Galois theory in Sec 19.3 of Garling. Hopefully we can discuss it in the future.

Answer: We first show that p is of the form 2k + 1. If we inscribe the regular p-gon in the unit
circle on the plane, with one of the vertices being (1, 0), then the next vertex (in the anti-clockwise
direction) is

(cos(2π/p), sin(2π/p)).

If we view the plane as the complex C, then this vertex is just cos(2π/p)+i sin(2π/p) = e2πi/p. Therefore,
if the regular p-gon is constructible, then e2πi/p is a constructible number (over Q). (1 mark)

By Theorem 6.1, the degree of extension

[Q(e2πi/p) : Q] = 2k

for some integer k. We have computed in class that e2πi/p is a root of the polynomial

Xp−1 +Xp−2 + · · ·+X + 1,

which is irreducible over Q. Hence [Q(e2πi/p) : Q] = p− 1 (1 mark) and so p = 2k + 1.

Remark: I checked that this polynomial is irreducible in a class before. Many of you re-did the proof,
which is not necessary. Stating [Q(e2πi/p) : Q] = p− 1 is good enough.

We then show that k must be of the form 2t. If k has an odd factor, say k = ab with a being odd, then

2k + 1 = 2ab + 1 = (2b + 1)((2b)a−1 − (2b)a−2 + · · · − 2b + 1),

which implies that p has a proper factor 2b + 1 > 1 and leads to a contradiction. (1 mark)

(2) Using the method covered in class, compute the automorphism group of Σ/Q, where Σ is the splitting
field of X4 + 5X2 + 5 ∈ Q[X]. (3 marks)

(Hints: The group is not the dihedral group D8 covered in class. The reason is as follows. Let’s
recall the example in class: f(X) = X4 − 4X2 + 5 with roots

α1, α2 = ±
√

2 + i, α3, α4 = ±
√

2− i.
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The splitting field Σ is Q(α1, α3). We can compute [Σ : Q(α1)] = 2 since α3 /∈ Q(α1), and [Q(α1) :
Q(i)] = 2, and so [Σ : Q] = 8. However, in our question, the polynomial has roots

α1, α2 = ±i

√
5 +
√

5

2
, α3, α4 = ±i

√
5−
√

5

2
,

and α3 ∈ Q(α1) because α1α3 = −
√

5. Therefore we have Σ = Q(α1) and [Q(α1) : Q(
√

5)] = 2.)

Answer: In this question we have the following tower of fields and automorphisms

L = Q(α1)
possible σ?

// L = Q(α1)

Q(
√

5)

OO

√
5 7→
√

5 or
√

5
// Q(
√

5)

OO

Q

ff 88

(1)

Notice that [L : Q] = 4 because we have the extra condition α1α3 = −
√

5. We expect the Galois group
has order 4. We distinguish between two cases.

Case when σ :
√

5 7→
√

5. By arguing as in class, the possible permutations in the Galois group are

Id, (1 2), (3 4), (1 2)(3 4).

However, under the extra condition α1α3 = −
√

5, a qualified permutation should satisfy σ(α1α3) =
σ(−
√

5) = −
√

5. This condition hence cuts down half of the permutations. For example, σ = (1 2)
cannot be in the Galois group because

σ(α1α3) = σ(−
√

5) = −
√

5

= σ(α1)σ(α3) = α2α3 =
√

5,
(2)

which is impossible. Arguing similarly, we find that (3 4) cannot be in the Galois group, and only Id
and (1 2)(3 4) can be lying in the Galois group.

Case when σ :
√

5 7→ −
√

5. The argument is similar to the case above. Just remember in this case a

qualified permutation should satisfy σ(α1α3) = σ(−
√

5) =
√

5. We then find that only (1 3 2 4) and
(1 4 2 3) can be lying in the Galois group, but (1 3)(2 4) and (1 4)(2 3) cannot.

Finally, we observe that the group

{Id, (1 3 2 4), (1 2)(3 4), (1 4 2 3)}

is isomorphic to the cyclic group Z4. Indeed, if we take ρ = (1 3 2 4), then ρ2 = (1 2)(3 4), ρ3 = (1 4 2 3),
and ρ4 = Id.

(If you fail to use the condition α1α3 = −
√

5, you can only receive half of the marks. )

(3) (Garling Ex. 9.5) Let L/K be a normal extension. Suppose that f is a monic irreducible polynomial in
K[X] and g, h are monic irreducible factors of f in L[X]. Show that there exists a K-automorphism of
L such that σ(g) = h. (3 marks)

(Hints: What are the relations between the roots of g and h?)
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Answer: Let α be a root of g and β be a root of h. They are both a root of f , so by Extension
Theorem 7.4, there is a K-isomorphism j : K(α)→ K(β) mapping α 7→ β.

K(α)
j

α7→β
// K(β)

K

OO

= // K

OO
(3)

Let Σ be a normal extension containing both L and the splitting field of f over K; in particular, it
contains both K(α) and K(β). By applying Corollary 2 of Extension Theorem 7.5 for splitting field
extensions successively, we can obtain a K-automorphism k : Σ → Σ extending j : K(α) → K(β). In
particular, k(α) = β.

Σ
k // Σ

K(α)

OO

j
// K(β)

OO (4)

(1 mark for choosing appropriate Σ and k.)

Since L/K is normal, by Theorem 9.2, we have k(L) = L. Let σ be k|L, which is now a K-automorphism
of L.

Σ
k // Σ

L

OO

σ // L

OO (5)

(1 mark for defining σ.)

It remains to show that σ(g) = h. Now the above K-isomorphisms induce the following diagram

L[X]/(g)
evaluate at α

∼= // L(α)
k|L(α)

// L(β) L[X]/(h)
∼=

evaluate at β
oo

L

OO

σ // L

OO
(6)

The top compositions of isomorphisms is induced from the surjection

L[X]
σ−→∼= L[X]→ L[X]/(h),

where g is mapped to 0 ∈ L[X]/(h); in other words, σ(g) lies in the ideal generated by h, which means
that σ(g) is a L[X]-multiple of h. Apply the same argument to σ−1(h), then σ−1(h) is a L[X]-multiple
of g. But we know that the pair of polynomials g and σ(g) have the same degree, and so are the pair h
and σ−1(h). The arguments above forces that g and h have the same degree, i.e. σ(g) is a L-multiple of
h. Since both are assumed to be monic, we have σ(g) = h. (1 mark)

Remark: Most of you did this question remarkably well, like choosing the correct splitting field Σ
and use the various Extension Theorems appropriately.

Remark 2: Many of you assumed something like deg(g) ≤ deg(h), which is not necessarily. Is it a
coincidence?

(4) (Garling Ex. 9.6) Suppose that L/K is algebraic. Show that the following are equivalent.

(i) L/K is normal;

(ii) if j is a K-monomorphism from L to L̄ (the algebraic closure of L), then j(L) ⊂ L;
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(iii) if j is a K-monomorphism from L to L̄, then j(L) = L.

(4 marks)

(Hints: You may want to copy the proof of Theorem 9.3. However, here [L : K] could be ∞, so
that some arguments of the proof of Theorem 9.3 do not apply here. You may take the proof there as a
reference, but eventually you need to produce a new proof for the above question.)

Answer: (i)⇒(ii). Given (i) that L/K is normal, and j : L → L̄ is a K-monomorphism, we want
to show that j(L) ⊆ L. It is the same to show that given every α ∈ L, we have j(α) ∈ L. We know
that j(α) is also a root of the minimal polynomial mα ∈ K[X], by the argument similar to the proof of
Theorem 9.2. Hence j(α) ∈ L by the normality of L/K. (1 mark)

(ii)⇒(iii). Given (ii) that every K-monomorphism j : L → L̄ satisfies j(L) ⊆ L, so that j : L → L is
defined. We want to show that j(L) = L, which is the same as to show that j : L→ L is surjective, or
the same as to show that for every β ∈ L, there is α ∈ L such that j(α) = β. Let Σ/K be the splitting
field extension of mβ ∈ K[X]. Since (i)⇒(ii) is proved above, we apply it to the normal extension Σ and
the K-monomorphism j|Σ : Σ → L̄ = Σ̄, so that we have j|Σ(Σ) ⊆ Σ. Since Σ/K has finite degree, we
actually have j|Σ(Σ) = Σ. Since β ∈ Σ, we can find α ∈ Σ such that β = j|Σ(α). Since Σ ⊆ L, we have
α ∈ L and j(α) = j|Σ(α) = β. Therefore j is surjective. (1.5 marks)

(iii)⇒(i). Given (iii) that every K-monomorphism j : L → L̄ satisfies j(L) = L, to show L/K is
normal, it is enough to show that if α ∈ L and β is a root of mα ∈ K[X], then β ∈ L. We now prove by
contradiction: suppose that β /∈ L. Suppose that i : K(α)→ K(β) is a K-isomorphism mapping α 7→ β
(whose existence is due to Extension Theorem 7.4). Then any K-monomorphism j : L→ L̄ extending i
(if there exists any such j, see the remark below) does not satisfy j(L) = L, because j(α) = k(α) = β /∈ L.
This contradicts the given condition (iii). (1.5 marks)

L̄

L

j

66

K(α)

OO

i // K(β)

OO

K

OO

= // K

OO

(7)

Remark: If you really want to argue that such a K-monomorphism j exists, you require Zorn’s Lemma,
which is Theorem 8.3 I have not covered in class. I did not deduct any mark if you did not use this
Lemma. Usually I avoid using it.

(5) Recall that Zp is a finite field of p elements. Take our base field to be K = Zp(T ), the field of rational
polynomials with variable T . Explicitly,

K =

{
f

g
, where f, g ∈ Zp[T ] and g 6= 0

}
.

Consider the polynomial ring K[X] = Zp(T )[X].

(i) Show that the polynomial f(X) = Xp − T ∈ K[X] is irreducible. (1 mark) (Hints: Remember one
of the exercise in the previous homework.)

Answer: We apply Exercise 3 of Homework 2, which states that F (X) − Y G(X) is irreducible
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in L(Y )[X] if gcd(F (X), G(X)) = 1 in L[X] (notice that some notations are changed from the
Exercise). In above question we take L = Zp, Y = T , F (X) = Xp and G(X) = 1.

Remark: Some of you did not use Exercise 3 of Homework 2. They mentioned that T is a prime in
the ‘ring of integers’ Zp[T ] of the field Zp(T ), so that the given polynomial Xp−T is T -Eisenstein.
This is also a nice proof.

(ii) Describe the roots of f . (Since deg(f) = p, there are p roots.) Show your work. (2 marks)

Answer: Suppose that one of the root of Xp − T is α, so that αp = T . Then we have

Xp − T = Xp − αp = (X − α)p. (1 mark)

The last equality is valid in characteristic p. Therefore, α is a repeated root of multiplicity p. In
other words, all p roots are equal. (1 mark)

Remark: this is a typical example of an inseparable polynomial.
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