
MATH 4E03/6E03 Galois Theory, Fall 2014

Homework 4 Solution

Total: 16 marks. No mark for any unjustified arguments using tables or calculators.

(1) Let L/K be a Galois extension and M1 and M2 be two intermediate subfields between L and K. Define
the composite field M1M2 of M1 and M2 as the smallest subfield containing both M1 and M2.

(i) Prove that Γ(L/M1M2) = Γ(L/M1) ∩ Γ(L/M2). (2 marks)

Answer: Recall the definition of Galois group, for every intermediate field extension M between
L/K,

Γ(L/M) = {σ ∈ Γ(L/K) such that σ|M = IdM}.

If σ ∈ Γ(L/M1M2), then σ|M1M2
= IdM1M2

. Since both M1 and M2 are contained in M1M2, we
have σ|M1

= IdM1
and σ|M2

= IdM2
, and so

Γ(L/M1M2) ⊆ Γ(L/M1) ∩ Γ(L/M2). (1 mark for one inclusion)

To show the reverse inclusion, we let Γ(L/M1) ∩ Γ(L/M2) = Γ(L/M) for a certain interme-
diate field extension M/K in L (whose existence is by Galois Correspondence). Notice that
Γ(L/M1) ∩ Γ(L/M2) is the largest subgroup contained in both Γ(L/M1) and Γ(L/M2). By Galois
Correspondence again and also by its order reversing property, M is the smallest subfield containing
both M1 and M2, so it must be M1M2. (1 mark for another)

(ii) Suppose further that M1/K is Galois.

(a) Show that M1M2/M2 is Galois. (2 marks)

Answer: We use the fact that a Galois extension is separable and normal.

• Since L/K is Galois, it is separable and by Theorem 10.1, any intermediate sub-extension
between L and K, in particular M1M2/M2, is separable. (1 mark)

• To show that it is normal, notice that M1/K is given to be Galois, so it is normal, and so
it is a splitting field of some polynomials {fi} ⊆ K[X]. If we view these polynomials as in
M2[X], then the splitting field for these polynomials is M1M2 (explained below). Hence
M1M2/M2 is normal. (1 mark)
To show that M1M2 is the splitting field of {fi} ⊆ K[X] viewed as in M2[X], we write
M1 = K[α1, . . . , αm], where {αj} are the set of all roots of {fi}. Then the splitting field of
{fi} ⊆ M2[X] is M2[α1, . . . , αm]. Notice that this is the smallest subfield containing both
M1 and M2, so it must be M1M2. (It is fine if you did not show these.)

(b) Show that Γ(M1M2/M2) is isomorphic to Γ(M1/M1 ∩M2). (2 marks)

Answer: Define the restriction homomorphism

R : Γ(M1M2/M2)→ Γ(M1/M1 ∩M2), σ 7→ σ|M1 .

There are three steps we need to check.
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• We have to show that we the map is well-defined, which means that σ|M1 has to be an
automorphism of M1 fixing M1 ∩ M2. To show that σ(M1) = M1, notice that every
σ ∈ Γ(M1M2/M2) is in particular in Γ(M1M2/K) and M1/K is given to be normal. By
Theorem 9.2, we have σ(M1) = M1. The fact that σ|M1

fixing M1 ∩M2 is easy to show.
(I did not deduct any mark if you did not show these.)

• We then show that R is injective. Suppose that R : σ 7→ σ|M1
= IdM1

, then remember
that σ ∈ Γ(M1M2/M2) implies that σ|M2

= IdM2
. Hence σ is trivial on the field generated

by M1 and M2, which is M1M2. Therefore, σ = Id ∈ Γ(M1M2/M2), and R is injective. (1
mark)

• To show that R is surjective, we consider the image of R, which is a subgroup of Γ(M1/M1∩
M2), say of the form Γ(M1/M) for some intermediate field extension M/M1 ∩M2 in M1.

M1M2

M1

77

M2M

OO

M

OO 77

M2

OO

M1 ∩M2

77

=?

OO

(1)

Hence if σ ∈ Γ(M1M2/M2) with R(σ) = σ|M1
, then σ|M = IdM and so σ|M2M = IdM2M .

In other words, σ ∈ Γ(M1M2/M2M) ⊆ Γ(M1M2/M2). But σ is an arbitrary element in
Γ(M1M2/M2). This forces M2M = M2, and so M ⊆ M2. We know that M ⊆ M1, so
M ⊆M1 ∩M2. But we also know that M1 ∩M2 ⊆M , so M1 ∩M2 = M . (1 mark)

(2) (Garling Ex. 11.9, modified) Given an arbitrary finite group G, show that there exists a Galois extension
L/K, where L is a finite extension over Q, such that Γ(L/K) ∼= G. (2 marks)

(Hint: You may use Theorem 11.7.)

Remark: If L is a finite extension over a finite field Zp, then the statement is not true. We will see
that every Galois group of a finite extension over a finite field is cyclic.

Answer: We view G as a subgroup of Σn for some n. By choosing a prime number p > n and
view Σp as a subgroup of Σp , we can view G as a subgroup of Σp. (1 mark)

Take a normal extension L/Q whose Galois group is Σp. The existence of such an extension is guaranteed
by Theorem 11.7.

Then the field extension K/Q is the one corresponding to the subgroup G of Σp under the Galois
Correspondence.

L 1

��

K

OO

G

��

Q

OO

Σp

(2)

(1 mark, applying Galois Correspondence is required. Some of you try L/K = Q(x1, . . . , xn)/Q({f}),
where f runs through all symmetric polynomials in x1, . . . , xn. The problem for this is that L/Q is
infinite.)
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(3) (Garling Ex. 11.5) Describe all transitive subgroups of Σ4, up to conjugacy (which means that we view
a subgroup H of Σ4 being the same as σHσ−1, for every σ ∈ Σ4). (4 marks)

(Hint: First find out the possible orders of such subgroups. Then for each possible order, find out
the possible subgroups with this order and explain why these subgroups exhaust all possibilities.)

(More Hint: There are four possible orders, and five transitive subgroups up to conjugacy. So in almost
all cases, you only have one choice of transitive subgroup with the chosen order.)

Answer: If H is a transitive subgroup of Σ4, then every H-orbit of X4 = {1, 2, 3, 4} is X4 itself.
Hence by the fact that #(H/StabH(x)) = #OrbH(x) = #X4 = 4, the order #H of H must be a mul-
tiple of 4. Since #Σ4 = 4! = 24, the possible cases are #H = 4, 8, 12 or 24. (1 mark for listing out the
possible orders. Some of you list out all orders 1, 2, 3, 4, 6, 8, 12, 24 and argue that we can exclude the
cases of orders 1, 2, 3, 6. The arguments are usually clumsy but still acceptable.)

(i) When #H = 24, then H = Σ4.

(ii) When #H = 12, then H must be isomorphic to A4, because it is known that An is the only
subgroup of Σn having index 2. It is easy to check that A4 is transitive by listing the elements.
(1/2 mark)

(iii) When #H = 8, then H is a 2-Sylow subgroup of Σ4. All 2-Sylow subgroups are conjugate (by
Sylow’s Theorem in group theory), in other words, there is only one such a subgroup up to con-
jugacy. We have seen in class that the dihedral group D8 can be realized as a subgroup of Σ4.
Therefore, H is isomorphic to D8. (1 mark, must show that this is the only realization, either by
Sylow’s Theorem or some other justified arguments.)

(iv) When #H = 4, then there are only two possibilities: the Klein 4-group V4 ∼= Z2 × Z2, and the
cyclic group Z4.

(a) If H ∼= V4 ∼= Z2 × Z2, we let ρ and τ be two generators of V4, both of order 2, so that
V4 = {Id, ρ, τ, ρτ}. One realization of V4 in Σ4 is

ρ = (1 2)(3 4), τ = (1 3)(2 4), and so ρτ = (1 4)(3 2).

I claim that this is the possible realization, up to conjugacy (or relabelling). Suppose there is
another one. Since ρ and τ have order 2, they are either a transposition or a product of disjoint
transpositions. We may assume that one of them, say ρ, is a transposition. (Otherwise, if both
ρ and τ are products of disjoint transpositions, then we go back to the above realization.)
Assume ρ = (1 2) by relabelling. Then we can check case by case that if τ is one of the
following:

(a b) (with one of a, b is 1 or 2), (1 3)(2 4), or (1 4)(3 2),

then the group generated by ρ and τ is not V4 (in each case, there exists either only ρ = (1 2)
itself, a 3-cycle, or a 4-cycle). Therefore, τ can only be (3 4) or (1 2)(3 4), and so the group
generated by ρ and τ is

{Id, (1 2), (3 4), (1 2)(3 4)}.

But this is not a transitive subgroup of Σ4. (1 mark, must show that there are two realizations
and only one of them is transitive.)

(b) If H ∼= Z4, then we know one of the realization is

{Id, (1 3 2 4), (1 2)(3 4), (1 4 2 3)}.

(For example, see the last Homework.) Up to conjugacy, this is the only realization, since
H ∼= Z4 must contain a 4-cycle, and up to relabelling (conjugacy) we can assume it to be
(1 3 2 4). (1/2 mark)
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If you forgot to check the conjugacy of subgroups (especially for Z4, where two conjugacy classes are
allowed), you get at most 2 marks out of 4.

(4) (Garling Ex. 12.11) Let p < q be two prime numbers such that (p, q−1) = 1. Show that there is a unique
(up to isomorphism) finite field extension L/Zq which is the splitting field extension of all polynomials
Xp − a, where a ∈ Z×q . (2 marks)

Remark: This statement is not true if Zq is replaced by Q. Clearly, we do not have a finite exten-
sion containing all the roots of X2 − a, where a ∈ Q.

Answer: In fact, the given condition implies that for every a ∈ Z×q , the polynomial Xp − a con-
tains a root in Z×q . Because of the following fact:

Lemma. The map a 7→ ap is a bijection on the set Z×q . Proof: It is enough to show it is injective.
Suppose ap = bp, then (a/b)p = 1 (remember we are in characteristic p). Also notice that Z×q is an
abelian group of order q − 1, so that (a/b)q−1 = 1. Now the given condition (p, q − 1) = 1 shows that
there exists s, t ∈ Z such that sp+ t(q − 1) = 1, and so

a/b = (a/b)1 = (a/b)sp+t(q−1) = ((a/b)p)s((a/b)q−1)t = 1s1t = 1.

Hence a = b. Q.E.D. Lemma. (1 mark for this Lemma, or any equivalent statements)

For each a ∈ Z×q , let cp = a for some c ∈ Z×q . Therefore, if we adjoin to Zq a primitive pth root of unity

ζ ∈ Z̄q, i.e., take L = Zq[ζ], then L contains all roots c, ζc . . . , ζp−1c of Xp − a. This is true for all a,
and so L is the required field extension. (1 mark for identifying L.)

(5) Compute and simplify ∏
d|n

∏
f∈Zp[X]
deg(f)=d

f is irreducible

f,

i.e., the factors f runs through all irreducible polynomials in Zp[X] of degree d, and d runs through all
divisors of n. (2 marks)

Answer: Actually, my intention is to have the answer equal to Xpn − X. This requires all poly-
nomials in the product to be monic. I will give the proof below under this condition.

The product is Xpn −X. We know from class that the splitting field of Xpn −X is Fpn , and Fpn is the
unique field extension of Fp = Zp of degree n. If we have an irreducible polynomial f ∈ Fp[X] whose
degree d divides n, then the splitting field of f must be Fpd by uniqueness, which is contained in Fpn by

degree consideration. Therefore, f must be a factor of Xpn −X. (1 mark)

Conversely, if we have an irreducible polynomial f ∈ Fp[X] whose degree d does not divide n, then the
splitting field Fpd is not contained in Fpn and so f cannot be a factor of Xpn −X. (1 mark)

It remains to show that each irreducible factor f appears in the factorization of Xpn−X with multiplicity
one. It is almost clear because the roots of Xpn −X in Fpn are all distinct. (Many of you did not check
this. I did not deduct marks.)

If we do not have the monic condition as imposed, then for each irreducible polynomial f , each of the
multiples 2f, 3f, . . . , (p − 1)f has the same set of roots has f . Therefore, each irreducible polynomial
is multi-counted by (p− 1) times. The correct answer for the product is then

(1 · 2 · 3 · · · (p− 1)) (Xpn

−X)p−1 = −(Xpn

−X)p−1,

where the last constant is computed using the fact (p−1)! ≡ −1 mod p (Wilson’s Theorem in elementary
number theory).
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