MATH 4E03/6E03 Galois Theory, Fall 2014 Homework 5 Solution

Total: 16 marks. No mark for any unjustified arguments using tables or calculators.
(1) Choose a root α of an irreducible quadratic polynomial over $\mathbb{F}_{3}=\{0,1,2\}$ and write down the cyclic group structure of \mathbb{F}_{9}^{\times}(similar to the example $\mathbb{F}_{8}^{\times} \mathrm{I}$ did in class). (2 marks)

Answer: Choose $X^{2}+X+2$ which is irreducible over \mathbb{F}_{3} (since it has no root in \mathbb{F}_{3}.) We take a root α and write

$$
\mathbb{F}_{9}^{\times}=\{1,2, \alpha, \alpha+1, \alpha+2,2 \alpha, 2 \alpha+1,2 \alpha+2\}
$$

If we take $\zeta=\alpha$, then we have

$$
\begin{aligned}
& \zeta=\alpha \\
& \zeta^{2}=\alpha^{2}=-\alpha-2=2 \alpha+1 \\
& \zeta^{3}=\alpha(2 \alpha+1)=2(2 \alpha+1)+\alpha=2 \alpha+2 \\
& \zeta^{4}=\alpha(2 \alpha+2)=2(2 \alpha+1)+2 \alpha=2 \\
& \zeta^{5}=2 \alpha=2 \zeta \\
& \zeta^{6}=2 \zeta^{2}=\alpha+2 \\
& \zeta^{7}=2 \zeta^{3}=\alpha+1 \\
& \zeta^{8}=1
\end{aligned}
$$

(2) Using the method shown in class (Lemma 2 and 3), show that the discriminant of an irreducible cubic polynomial of the form $X^{3}+b X+c$ is equal to $-4 b^{3}-27 c^{2}$. (2 marks)

Answer: Using Lemma 2 in class, we have

$$
\Delta=\operatorname{det}\left[\begin{array}{llll}
\lambda_{0} & \lambda_{1} & \lambda_{2} \\
\lambda_{1} & \lambda_{2} & \lambda_{3} \\
\lambda_{2} & \lambda_{3} & \lambda_{4}
\end{array}\right],
$$

where $\lambda_{i}=\alpha_{1}^{i}+\alpha_{2}^{i}+\alpha_{3}^{i}$ the sum of i th powers of roots. To compute λ_{i} we apply Newton's identities (Lemma 3 in class):

$$
\begin{array}{rll}
& \lambda_{0}=\text { number of roots }=3, \\
& & \lambda_{1}=\text { sum of roots }=0 \\
2 b+0 \lambda_{1}+\lambda_{2}=0 & \Rightarrow & \lambda_{2}=-2 b, \\
3 c+b \lambda_{1}+0 \lambda_{2}+\lambda_{3}=0 & \Rightarrow \quad & \lambda_{3}=-3 c, \\
c \lambda_{1}+b \lambda_{2}+0 \lambda_{3}+\lambda_{4}=0 & \Rightarrow \quad \lambda_{4}=2 b^{2},
\end{array}
$$

Therefore

$$
\Delta=\operatorname{det}\left[\begin{array}{ccc}
3 & 0 & -2 b \\
0 & -2 b & -3 c \\
-2 b & -3 c & 2 b^{2}
\end{array}\right]=-4 b^{3}-27 b^{2} .
$$

(3) Suppose $\operatorname{char}(K) \neq 2$. Let $f=X^{4}+p X^{2}+q X+r \in K[X]$ be an irreducible and separable quartic polynomial, and L / K be its splitting field extension. Denote by $\Delta=\delta^{2}$ its discriminant, and assume that $\delta \notin K$. Let $g \in K[X]$ be the resolvent cubic of f, and assume it has one and only one root $t \in K$. In this situation, I showed in class the following fact from Kappe-Warren,

$$
\Gamma(L / K) \cong \begin{cases}\mathbb{Z}_{4} & \text { if both } X^{2}+t \text { and } X^{2}-(p-t) X+r \text { split over } K(\delta) \\ D_{8} & \text { otherwise }\end{cases}
$$

The question is to refine the above conditions such that they only involve the base field K.
(a) Show that if an element $a \in K$ is not a square but is a square in $K(\delta)$, then $a=b^{2} \Delta$ for some $b \in K$. (1 mark)

Answer: Let $a=(c+b \delta)^{2}=c^{2}+2 b c \delta+b^{2} \Delta \in K$, then we have $2 b c=0$. In $\operatorname{char}(K) \neq 2$, we have $b c=0$, and so either $b=0$ or $c=0$. If $b=0$, then $a=c^{2}$, which contradicts the assumption that a is a non-square in K. Hence $c=0$ and $a=b^{2} \Delta$.
(b) Show that for each of the two quadratic polynomials above, its discriminant is either 0 or a nonsquare in K. (1 mark)

Answer: We only prove the assertion for $\Delta_{1}=\operatorname{disc}\left(X^{2}+t\right)$, while the proof for $\Delta_{2}=\operatorname{disc}\left(X^{2}-\right.$ $(p-t) X+r)$ is similar. Suppose that $\Delta_{1} \neq 0$, then the polynomial $X^{2}+t$ has distinct roots, i.e., $\alpha_{1}+\alpha_{2} \neq \alpha_{3}+\alpha_{4}$. If Δ_{1} is a square in K, then the polynomial $X^{2}+t$ is reducible, i.e., $\alpha_{1}+\alpha_{2} \in K$. Now remember that in the given situation, the Galois group $\Gamma(L / K)$ is isomorphic to either \mathbb{Z}_{4} or D_{8}. Take $\sigma=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right) \in \Gamma(L / K)$, then we have

$$
\alpha_{1}+\alpha_{2}=\sigma\left(\alpha_{1}+\alpha_{2}\right)=\alpha_{3}+\alpha_{4}
$$

which is a contradiction. Therefore, Δ_{1} has to be non-square in K.
(c) Show that in the above setting, we have

$$
\Gamma(L / K) \cong \begin{cases}\mathbb{Z}_{4} & \text { if both }-4 t \Delta \text { and }\left((p-t)^{2}-4 r\right) \Delta \text { are squares in } K \\ D_{8} & \text { otherwise }\end{cases}
$$

(1 mark)
Answer: We have to show that

$$
X^{2}+t \text { splits over } K(\delta) \text { if and only if }-4 t \Delta \text { is a square in } K
$$

and

$$
X^{2}-(p-t) X+r \text { splits over } K(\delta) \text { if and only if }\left((p-t)^{2}-4 r\right) \Delta \text { is a square in } K
$$

Again we only prove the first statement, while the proof of the another is similar. We seperate into two cases.

- If $\Delta_{1}=-4 t=0$, then $t=0$ in $\operatorname{char}(K) \neq 2$ and $X^{2}+t=X^{2}$ clearly splits over $K(\delta)$. Also $-4 t \Delta=0$ is clearly a square in K.
- If $\Delta_{1}=-4 t \neq 0$, then notice that

$$
X^{2}+t \text { splits over } K(\delta) \quad \Leftrightarrow \quad \Delta_{1}=-4 t \text { is a square in } K(\delta)
$$

We know from (b) that $-4 t$ is a non-square in K, so by using (a) we have

$$
\Delta_{1}=-4 t \text { is a square in } K(\delta) \quad \Leftrightarrow \quad-4 t \Delta \text { is a square in } K
$$

(You may need to recall that, because we have set $t=\theta_{1}=\left(\alpha_{1}+\alpha_{2}\right)\left(\alpha_{3}+\alpha_{4}\right)$, the realization of \mathbb{Z}_{4} is

$$
\left\{\mathrm{Id}_{L},\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 2
\end{array}\right)(34),\left(\begin{array}{lll}
1 & 4 & 3
\end{array}\right)\right\}
$$

and the realization of D_{8} is

$$
\left\{\operatorname{Id}_{L},(12),(34),(12)(34),(1324),(1432),(13)(24),(14)(32)\right\}
$$

both as subgroups permuting the roots.)
(4) (Garling Ex 15.3) If p is a prime, show that for every positive integer n,

$$
\Phi_{p^{n}}(X)=1+X^{p^{n-1}}+X^{2 p^{n-1}}+\cdots+X^{(p-1) p^{n-1}}
$$

(2 marks)
Answer: Recall the definition for $\Phi_{N}(X)$, that

$$
\Phi_{N}(X)=\frac{X^{N}-1}{\prod_{d \mid N} \text { but } d \neq N} \Phi_{d}(X) .
$$

When $N=p^{n}$, the proper divisors of N are $1, p, p^{2}, \ldots, p^{n-1}$. Therefore, we have

$$
\Phi_{p^{n}}(X)=\frac{X^{p^{n}}-1}{\prod_{j=0}^{n-1} \Phi_{p^{j}}(X)}
$$

If we apply induction here, then by induction assumption the denominator is equal to $X^{p^{n-1}}-1$. Hence

$$
\Phi_{p^{n}}(X)=\frac{X^{p^{n}}-1}{X^{p^{n-1}}-1}=\frac{\left(X^{p^{n-1}}\right)^{p}-1}{X^{p^{n-1}}-1} .
$$

If we write $Y=X^{p^{n-1}}$, then he above is equal to

$$
\frac{Y^{p}-1}{Y-1}=1+Y+Y^{2}+\cdots+Y^{p-1}=1+X^{p^{n-1}}+X^{2 p^{n-1}}+\cdots+X^{(p-1) p^{n-1}}
$$

(5) (Garling Ex 15.6) Suppose that p is a prime number which does not divide a positive integer m. Let ζ be a primitive m th root of unity over \mathbb{Z}_{p}.
(a) Show that $\left[\mathbb{Z}_{p}(\zeta): \mathbb{Z}_{p}\right]$ is equal to the order of p in the multiplicative group

$$
\mathbb{Z}_{m}^{\times}=\left\{a \in \mathbb{Z}_{m} \text { which is invertible }\right\}=\left\{a \in \mathbb{Z}_{m} \text { where }(a, m)=1\right\}
$$

(1 mark)
Answer: Remember that every field extension of \mathbb{Z}_{p} must be of the form $\mathbb{F}_{p^{k}}$ for a certain positive integer k, and its multiplicative subgroup contains all $\left(p^{k}-1\right)$ th roots of unity (not necessarily primitive). Since $\mathbb{Z}_{p}(\zeta)$ is the smallest field extension of \mathbb{Z}_{p} containing the m th root of unity ζ, the degree $k=\left[\mathbb{Z}_{p}(\zeta): \mathbb{Z}_{p}\right]$ must be the smallest k such that ζ is a $\left(p^{k}-1\right)$ root of unity. This implies that

$$
p^{k}-1 \text { is a multiple of } m, \quad \text { (} 1 \text { mark for this key observation) }
$$

or $p^{k} \equiv 1 \bmod m$, with k being the smallest positive integer satisfying this property. In other words, k is the multiplicative order of $p \bmod m$.
(b) Show that
the cyclotomic polynomial Φ_{m} is irreducible over \mathbb{Z}_{p}
if and only if

$$
\mathbb{Z}_{m}^{\times} \text {is a cyclic group generated by } p
$$

(Notice here a group generated by p is the one of the form $\left\{p, p^{2}, p^{3}, \ldots\right\}$.) (2 marks)
Answer: (\Rightarrow) Suppose that Φ_{m} is irreducible, then $\left[\mathbb{Z}_{p}(\zeta): \mathbb{Z}_{p}\right]=\operatorname{deg} \Phi_{m}=\phi(m)=\# \mathbb{Z}_{m}^{\times}$. We know that $\mathbb{Z}_{p}(\zeta)$ is a splitting field of $X^{m}=1$, so that $\mathbb{Z}_{p}(\zeta) / \mathbb{Z}_{p}$ is a Galois extension and so $\# \Gamma\left(\mathbb{Z}_{p}(\zeta) / \mathbb{Z}_{p}\right)=\left[\mathbb{Z}_{p}(\zeta): \mathbb{Z}_{p}\right]=\# \mathbb{Z}_{m}^{\times}$. Recall from Theorem 15.4 that $\Gamma\left(\mathbb{Z}_{p}(\zeta) / \mathbb{Z}_{p}\right)$ is isomorphic to a subgroup of \mathbb{Z}_{m}^{\times}. The above equality of orders implies that indeed $\Gamma\left(\mathbb{Z}_{p}(\zeta) / \mathbb{Z}_{p}\right)$ is isomorphic to \mathbb{Z}_{m}^{\times}. In particular, \mathbb{Z}_{m}^{\times}is cyclic, because it is the Galois group of an extension of a finite field. We know it is generated by p from (a).
(\Leftarrow) Let m_{ζ} be the minimal polynomial of ζ over \mathbb{Z}_{p}. The aim is to show that $\operatorname{deg} m_{\zeta}=\operatorname{deg} \Phi_{m}=$ $\phi(m)$. We know that $\operatorname{deg} m_{\zeta}=\# \Gamma\left(\mathbb{Z}_{p}(\zeta) / \mathbb{Z}_{p}\right)$. By (a), the order of the Galois group is the multiplicative order of p in \mathbb{Z}_{m}. By the given condition, this multiplicative order is $\phi(m)$.

Remark: Some of you assume that Φ_{m} is irreducible throughout the solution, which is not true. Remember that Φ_{m} is irreducible in $\mathbb{Q}[X]$, but is not necessarily irreducible in $\mathbb{Z}_{p}[X]$.
(6) Let p be an odd prime number, and denote the primitive p th root of unity $\zeta_{p}=e^{2 \pi i / p} \in \mathbb{C}$. Define the following sum (an example of Gauss sum)

$$
G=\sum_{a=1}^{p-1}\left(\frac{a}{p}\right) \zeta_{p}^{a}
$$

where $\left(\frac{a}{p}\right)$ is the Legendre symbol (not the rational number $\frac{a}{p} \in \mathbb{Q}$), defined by

$$
\left(\frac{a}{p}\right)= \begin{cases}1 & \text { if } a \text { is a square in } \mathbb{Z}_{p} \\ -1 & \text { otherwise }\end{cases}
$$

Hence $a \mapsto\left(\frac{a}{p}\right)$ is indeed a function on \mathbb{Z}_{p}^{\times}; in other words, we have $\left(\frac{a+p}{p}\right)=\left(\frac{a}{p}\right)$.
(a) Show that $G^{2}=\left(\frac{-1}{p}\right) p$ (again $\left(\frac{-1}{p}\right)$ is the Legendre symbol). (2 marks) (Hint: You may use the fact that half of the elements in \mathbb{Z}_{p}^{\times}are squares, and another half are not.)

Answer: We compute directly that

$$
G^{2}=\left(\sum_{a=1}^{p-1}\left(\frac{a}{p}\right) \zeta_{p}^{a}\right)\left(\sum_{b=1}^{p-1}\left(\frac{b}{p}\right) \zeta_{p}^{b}\right)
$$

Since $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)$, we have

$$
G^{2}=\sum_{a=1}^{p-1} \sum_{b=1}^{p-1}\left(\frac{a b}{p}\right) \zeta_{p}^{a+b}
$$

We then change variable by writing $b=a c$ for $c=1 \cdots, p-1$, and rewrite the above sum as

$$
\sum_{a=1}^{p-1} \sum_{c=1}^{p-1}\left(\frac{a^{2} c}{p}\right) \zeta_{p}^{a+a c}=\sum_{a=1}^{p-1} \sum_{c=1}^{p-1}\left(\frac{c}{p}\right) \zeta_{p}^{a(1+c)}
$$

We separate the sum by the conditions $c=p-1$ and $c \neq p-1$. When $c=p-1$, the sum is equal to

$$
\sum_{a=1}^{p-1}\left(\frac{-1}{p}\right) \zeta_{p}^{a(1-1)}=\sum_{a=1}^{p-1}\left(\frac{-1}{p}\right)=\left(\frac{-1}{p}\right)(p-1)
$$

For each $c \neq p-1$, the sum is equal to

$$
\begin{equation*}
\sum_{a=1}^{p-1}\left(\frac{c}{p}\right) \zeta_{p}^{a(1+c)}=\left(\frac{c}{p}\right) \sum_{a=1}^{p-1} \zeta_{p}^{a(1+c)} \tag{1}
\end{equation*}
$$

Notice that the set $\left\{\zeta_{p}^{a(1+c)}\right.$, where $\left.a=1, \cdots, p-1\right\}$ contains exactly all the p th roots of unity except 1 , so the sum is equal to -1 . Therefore, the equation 1 above is equal to $-\left(\frac{c}{p}\right)$. Finally we sum up all the terms with $c=1, \ldots, p-2, p-1$ and obtain

$$
G^{2}=-\sum_{c=1}^{p-2}\left(\frac{c}{p}\right)+\left(\frac{-1}{p}\right)(p-1)
$$

The first sum $-\sum_{c=1}^{p-2}\left(\frac{c}{p}\right)$ is equal to $\left(\frac{-1}{p}\right)$, since the given hint implies that $\sum_{c=1}^{p-1}\left(\frac{c}{p}\right)=0$. Therefore,

$$
G^{2}=\left(\frac{-1}{p}\right)+\left(\frac{-1}{p}\right)(p-1)=\left(\frac{-1}{p}\right) p
$$

(b) Prove the following particular example of Kronecker-Weber Theorem: Every quadratic extension is contained in a cyclotomic extension over \mathbb{Q}. (2 marks)

Answer: Remember that every quadratic extension is of the form $\mathbb{Q}(\sqrt{N})$ for some integer \sqrt{N}. We can assume N is positive since we know that $\mathbb{Q}(\sqrt{-1})$ is cyclotomic. Therefore, it is enough to show that for each prime number p, we have $\sqrt{p} \in \mathbb{Q}\left(\zeta_{m}\right)$ for some sufficiently large integer m. If $p=2$, then we know that $\sqrt{2} \subseteq \mathbb{Q}\left(\zeta_{8}\right)$ because $\zeta_{8}=\frac{1+\sqrt{-1}}{\sqrt{2}}$. If p is odd, then recall from (a) that $G^{2}=\left(\frac{-1}{p}\right) p$, we have $\sqrt{p}=\sqrt{\left(\frac{-1}{p}\right)} G$. We know that $\sqrt{\left(\frac{-1}{p}\right)} \in \mathbb{Q}(\sqrt{-1})=\mathbb{Q}\left(\zeta_{4}\right)$ and $G \in \mathbb{Q}\left(\zeta_{p}\right)$, so $\sqrt{p}=\sqrt{\left(\frac{-1}{p}\right)} G \in \mathbb{Q}\left(\zeta_{4 p}\right)$.

Remark: Some of you mistakenly wrote $\sqrt{p}=G \in \mathbb{Q}\left(\zeta_{p}\right)$, which is not true in the case when $\left(\frac{-1}{p}\right)=-1$. Some of you forgot to consider $\mathbb{Q}(\sqrt{ \pm 2}) \subseteq \mathbb{Q}\left(\zeta_{8}\right)$.
Remark: The full form of Kronecker-Weber Theorem asserts that if L / \mathbb{Q} is a Galois extension such that $\Gamma(L / \mathbb{Q})$ is an abelian group, then L is contained in a cyclotomic extension over \mathbb{Q}. We can even find the smallest such cyclotomic extension. The theorem is highly non-trivial in algebraic number theory, and has many important consequences. For example, the above example of Kronecker-Weber Theorem implies the quadratic reciprocity:

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}
$$

for all distinct odd prime numbers p and q.

