
MATH 4E03/6E03 Galois Theory, Fall 2014

Homework 5 Solution

Total: 16 marks. No mark for any unjustified arguments using tables or calculators.

(1) Choose a root α of an irreducible quadratic polynomial over F3 = {0, 1, 2} and write down the cyclic
group structure of F×9 (similar to the example F×8 I did in class). (2 marks)

Answer: Choose X2 + X + 2 which is irreducible over F3 (since it has no root in F3.) We take
a root α and write

F×9 = {1, 2, α, α+ 1, α+ 2, 2α, 2α+ 1, 2α+ 2}.

If we take ζ = α, then we have

ζ = α,

ζ2 = α2 = −α− 2 = 2α+ 1,

ζ3 = α(2α+ 1) = 2(2α+ 1) + α = 2α+ 2,

ζ4 = α(2α+ 2) = 2(2α+ 1) + 2α = 2,

ζ5 = 2α = 2ζ,

ζ6 = 2ζ2 = α+ 2,

ζ7 = 2ζ3 = α+ 1,

ζ8 = 1.

(2) Using the method shown in class (Lemma 2 and 3), show that the discriminant of an irreducible cubic
polynomial of the form X3 + bX + c is equal to −4b3 − 27c2. (2 marks)

Answer: Using Lemma 2 in class, we have

∆ = det

[
λ0 λ1 λ2

λ1 λ2 λ3

λ2 λ3 λ4

]
,

where λi = αi1 + αi2 + αi3 the sum of ith powers of roots. To compute λi we apply Newton’s identities
(Lemma 3 in class):

λ0 = number of roots = 3,

λ1 = sum of roots = 0,

2b+ 0λ1 + λ2 = 0 ⇒ λ2 = −2b,

3c+ bλ1 + 0λ2 + λ3 = 0 ⇒ λ3 = −3c,

cλ1 + bλ2 + 0λ3 + λ4 = 0 ⇒ λ4 = 2b2,

Therefore

∆ = det

[
3 0 −2b
0 −2b −3c
−2b −3c 2b2

]
= −4b3 − 27b2.
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(3) Suppose char(K) 6= 2. Let f = X4 + pX2 + qX + r ∈ K[X] be an irreducible and separable quartic
polynomial, and L/K be its splitting field extension. Denote by ∆ = δ2 its discriminant, and assume
that δ /∈ K. Let g ∈ K[X] be the resolvent cubic of f , and assume it has one and only one root t ∈ K.
In this situation, I showed in class the following fact from Kappe-Warren,

Γ(L/K) ∼=

{
Z4 if both X2 + t and X2 − (p− t)X + r split over K(δ),

D8 otherwise.

The question is to refine the above conditions such that they only involve the base field K.

(a) Show that if an element a ∈ K is not a square but is a square in K(δ), then a = b2∆ for some
b ∈ K. (1 mark)

Answer: Let a = (c + bδ)2 = c2 + 2bcδ + b2∆ ∈ K, then we have 2bc = 0. In char(K) 6= 2, we
have bc = 0, and so either b = 0 or c = 0. If b = 0, then a = c2, which contradicts the assumption
that a is a non-square in K. Hence c = 0 and a = b2∆.

(b) Show that for each of the two quadratic polynomials above, its discriminant is either 0 or a non-
square in K. (1 mark)

Answer: We only prove the assertion for ∆1 = disc(X2 + t), while the proof for ∆2 = disc(X2 −
(p− t)X + r) is similar. Suppose that ∆1 6= 0, then the polynomial X2 + t has distinct roots, i.e.,
α1+α2 6= α3+α4. If ∆1 is a square in K, then the polynomial X2+t is reducible, i.e., α1+α2 ∈ K.
Now remember that in the given situation, the Galois group Γ(L/K) is isomorphic to either Z4 or
D8. Take σ = (1 3 2 4) ∈ Γ(L/K), then we have

α1 + α2 = σ(α1 + α2) = α3 + α4,

which is a contradiction. Therefore, ∆1 has to be non-square in K.

(c) Show that in the above setting, we have

Γ(L/K) ∼=

{
Z4 if both − 4t∆ and ((p− t)2 − 4r)∆ are squares in K,

D8 otherwise.

(1 mark)

Answer: We have to show that

X2 + t splits over K(δ) if and only if − 4t∆ is a square in K

and

X2 − (p− t)X + r splits over K(δ) if and only if ((p− t)2 − 4r)∆ is a square in K.

Again we only prove the first statement, while the proof of the another is similar. We seperate into
two cases.

• If ∆1 = −4t = 0, then t = 0 in char(K) 6= 2 and X2 + t = X2 clearly splits over K(δ). Also
−4t∆ = 0 is clearly a square in K.

• If ∆1 = −4t 6= 0, then notice that

X2 + t splits over K(δ) ⇔ ∆1 = −4t is a square in K(δ).

We know from (b) that −4t is a non-square in K, so by using (a) we have

∆1 = −4t is a square in K(δ) ⇔ −4t∆ is a square in K.
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(You may need to recall that, because we have set t = θ1 = (α1 + α2)(α3 + α4), the realization of Z4 is

{IdL, (1 3 2 4), (1 2)(3 4), (1 4 3 2)},

and the realization of D8 is

{IdL, (1 2), (3 4), (1 2)(3 4), (1 3 2 4), (1 4 3 2), (1 3)(2 4), (1 4)(3 2)},

both as subgroups permuting the roots.)

(4) (Garling Ex 15.3) If p is a prime, show that for every positive integer n,

Φpn(X) = 1 +Xpn−1

+X2pn−1

+ · · ·+X(p−1)pn−1

.

(2 marks)

Answer: Recall the definition for ΦN (X), that

ΦN (X) =
XN − 1∏

d|N but d6=N Φd(X)
.

When N = pn, the proper divisors of N are 1, p, p2, . . . , pn−1. Therefore ,we have

Φpn(X) =
Xpn − 1∏n−1
j=0 Φpj (X)

.

If we apply induction here, then by induction assumption the denominator is equal to Xpn−1 − 1. Hence

Φpn(X) =
Xpn − 1

Xpn−1 − 1
=

(Xpn−1

)p − 1

Xpn−1 − 1
.

If we write Y = Xpn−1

, then he above is equal to

Y p − 1

Y − 1
= 1 + Y + Y 2 + · · ·+ Y p−1 = 1 +Xpn−1

+X2pn−1

+ · · ·+X(p−1)pn−1

.

(5) (Garling Ex 15.6) Suppose that p is a prime number which does not divide a positive integer m. Let ζ
be a primitive mth root of unity over Zp.

(a) Show that [Zp(ζ) : Zp] is equal to the order of p in the multiplicative group

Z×m = {a ∈ Zm which is invertible} = {a ∈ Zm where (a,m) = 1}.

(1 mark)

Answer: Remember that every field extension of Zp must be of the form Fpk for a certain
positive integer k, and its multiplicative subgroup contains all (pk − 1)th roots of unity (not neces-
sarily primitive). Since Zp(ζ) is the smallest field extension of Zp containing the mth root of unity
ζ, the degree k = [Zp(ζ) : Zp] must be the smallest k such that ζ is a (pk − 1)root of unity. This
implies that

pk − 1 is a multiple of m, (1 mark for this key observation)

or pk ≡ 1 mod m, with k being the smallest positive integer satisfying this property. In other
words, k is the multiplicative order of p mod m.
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(b) Show that
the cyclotomic polynomial Φm is irreducible over Zp

if and only if
Z×m is a cyclic group generated by p.

(Notice here a group generated by p is the one of the form {p, p2, p3, . . . }.) (2 marks)

Answer: (⇒) Suppose that Φm is irreducible, then [Zp(ζ) : Zp] = deg Φm = φ(m) = #Z×m.
We know that Zp(ζ) is a splitting field of Xm = 1, so that Zp(ζ)/Zp is a Galois extension and so
#Γ(Zp(ζ)/Zp) = [Zp(ζ) : Zp] = #Z×m. Recall from Theorem 15.4 that Γ(Zp(ζ)/Zp) is isomorphic
to a subgroup of Z×m. The above equality of orders implies that indeed Γ(Zp(ζ)/Zp) is isomorphic
to Z×m. In particular, Z×m is cyclic, because it is the Galois group of an extension of a finite field.
We know it is generated by p from (a).
(⇐) Let mζ be the minimal polynomial of ζ over Zp. The aim is to show that degmζ = deg Φm =
φ(m). We know that degmζ = #Γ(Zp(ζ)/Zp). By (a), the order of the Galois group is the
multiplicative order of p in Zm. By the given condition, this multiplicative order is φ(m).

Remark: Some of you assume that Φm is irreducible throughout the solution, which is not true. Re-
member that Φm is irreducible in Q[X], but is not necessarily irreducible in Zp[X].

(6) Let p be an odd prime number, and denote the primitive pth root of unity ζp = e2πi/p ∈ C. Define the
following sum (an example of Gauss sum)

G =

p−1∑
a=1

(
a

p

)
ζap ,

where
(
a
p

)
is the Legendre symbol (not the rational number a

p ∈ Q), defined by

(
a

p

)
=

{
1 if a is a square in Zp,
−1 otherwise.

Hence a 7→
(
a
p

)
is indeed a function on Z×p ; in other words, we have

(
a+p
p

)
=
(
a
p

)
.

(a) Show that G2 =
(
−1
p

)
p (again

(
−1
p

)
is the Legendre symbol). (2 marks) (Hint: You may use the

fact that half of the elements in Z×p are squares, and another half are not.)

Answer: We compute directly that

G2 =

(
p−1∑
a=1

(
a

p

)
ζap

)(
p−1∑
b=1

(
b

p

)
ζbp

)
.

Since
(
a
p

)(
b
p

)
=
(
ab
p

)
, we have

G2 =

p−1∑
a=1

p−1∑
b=1

(
ab

p

)
ζa+bp .

We then change variable by writing b = ac for c = 1 · · · , p− 1, and rewrite the above sum as

p−1∑
a=1

p−1∑
c=1

(
a2c

p

)
ζa+acp =

p−1∑
a=1

p−1∑
c=1

(
c

p

)
ζa(1+c)p .
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We separate the sum by the conditions c = p− 1 and c 6= p− 1. When c = p− 1, the sum is equal
to

p−1∑
a=1

(
−1

p

)
ζa(1−1)p =

p−1∑
a=1

(
−1

p

)
=

(
−1

p

)
(p− 1).

For each c 6= p− 1, the sum is equal to

p−1∑
a=1

(
c

p

)
ζa(1+c)p =

(
c

p

) p−1∑
a=1

ζa(1+c)p . (1)

Notice that the set {ζa(1+c)p , where a = 1, · · · , p− 1} contains exactly all the pth roots of unity

except 1, so the sum is equal to −1. Therefore, the equation (1) above is equal to −
(
c
p

)
. Finally

we sum up all the terms with c = 1, . . . , p− 2, p− 1 and obtain

G2 = −
p−2∑
c=1

(
c

p

)
+

(
−1

p

)
(p− 1).

The first sum −
∑p−2
c=1

(
c
p

)
is equal to

(
−1
p

)
, since the given hint implies that

∑p−1
c=1

(
c
p

)
= 0.

Therefore,

G2 =

(
−1

p

)
+

(
−1

p

)
(p− 1) =

(
−1

p

)
p.

(b) Prove the following particular example of Kronecker-Weber Theorem: Every quadratic extension is
contained in a cyclotomic extension over Q. (2 marks)

Answer: Remember that every quadratic extension is of the form Q(
√
N) for some integer√

N . We can assume N is positive since we know that Q(
√
−1) is cyclotomic. Therefore, it is

enough to show that for each prime number p, we have
√
p ∈ Q(ζm) for some sufficiently large

integer m. If p = 2, then we know that
√

2 ⊆ Q(ζ8) because ζ8 = 1+
√
−1√
2

. If p is odd, then recall

from (a) that G2 =
(
−1
p

)
p, we have

√
p =

√(
−1
p

)
G. We know that

√(
−1
p

)
∈ Q(

√
−1) = Q(ζ4)

and G ∈ Q(ζp), so
√
p =

√(
−1
p

)
G ∈ Q(ζ4p).

Remark: Some of you mistakenly wrote
√
p = G ∈ Q(ζp), which is not true in the case when

(
−1
p

)
= −1.

Some of you forgot to consider Q(
√
±2) ⊆ Q(ζ8).

Remark: The full form of Kronecker-Weber Theorem asserts that if L/Q is a Galois extension such that
Γ(L/Q) is an abelian group, then L is contained in a cyclotomic extension over Q. We can even find
the smallest such cyclotomic extension. The theorem is highly non-trivial in algebraic number theory,
and has many important consequences. For example, the above example of Kronecker-Weber Theorem
implies the quadratic reciprocity: (

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 ,

for all distinct odd prime numbers p and q.
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