
MATH 4E03/6E03 Galois Theory, Fall 2014

Homework 6, Due Monday, December 8, 12:00 noon

Total: 16 marks. No mark for any unjustified arguments using tables or calculators.

(1) (Garling Ex 16.4) Suppose that q is a prime, that char(K) 6= q, and that Xq − θ is irreducible in K[X].
Let ω be a primitive qth root of unity and let j = [K(ω) : K]. Also let L/K be the splitting field
extension of Xq − θ. Show that the Galois group of can be generated by two elements σ and τ such that

the orders are given by σq = τ j = IdL, with relation σkτ = τσ,

where k ∈ Z×q whose multiplicative order is j. (2 marks)

Answer: Let L be the splitting field of Xq− θ, such that we have a tower K ↪→ K(ω) ↪→ L = K(ω, α),
where αn = θ and ω = ζq. We know from Theorem 15.4 that Γ(K(ω)/K) ↪→ Z×q . Since q is a prime,
we know that Z×q is a cyclic group of order q − 1, so Γ(K(ω)/K) is also cyclic if we view it as a sub-
group of Z×q . We choose a generator ρ ∈ Γ(K(ω)/K) and a number k ∈ Z×q with multiplicative order
j = #Γ(K(ω)/K) = [K(ω) : K]. The above isomorphism can be explicitly written as

Γ(K(ω)/K) ↪→ Z×q , ρ 7→ k,

which means that ρ(ω) = ωk. We then extend the automorphism ρ of K(ω) to an automorphism τ of L
by defining

τ |K(ω) = ρ and τ(α) = α,

so that τ also has order j.

Many of you did not mention that τ is an extension of ρ. To be rigorous, we have to do so because we
want τ to be an automorphism of L, while ρ is only an automorphism of the subfield K(ω).

Now we consider the Galois group Γ(L/K(ω)). It is given that Xq − θ is irreducible over K. Sup-
pose we know that Xq − θ is irreducible over K(ω) (which will be shown below), then by Theorem 16.1,
we know that Γ(L/K(ω)) is a cyclic group of order q. Explicitly, if we choose a generator σ ∈ Γ(L/K(ω)),
then we have σ(α) = ωα. Therefore, we know that (explained in class)

Γ(L/K) ∼= 〈σ〉o 〈τ〉 .

In class, I showed the conjugacy relation τστ−1 = σk. I now provide the argument again. It is enough
to show that τσ and σkτ define the same automorphism on L. Remember that L = K(ω, α), so we
compute directly that

τσ(ω) = τ(ω) = ωk, τσ(α) = τ(ωα) = ωkα;

and
σkτ(ω) = σk(ωk) = ωk, σkτ(α) = σk(α) = ωkα.

Therefore, we conclude that Γ(L/K) ∼=
〈
σ, τ where σq = 1, τ j = 1, and τστ−1 = σk

〉
.

To be rigorous, we have to show that Xq − θ is irreducible over K(ω). (I did not deduct any marks if
you did not show this.) The arguments proceed as follows. Suppose β is a root of Xq − θ and mβ is its
minimal polynomial over K(ω). Then [K(ω, β) : K(ω)] = degmβ > 1, but it must be a divisor of q by
Theorem 16.1. Hence degmβ = q and mβ must equal Xq − θ.
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(2) Let G be a finite group. We call G nilpotent if there is a finite series of subgroups

{1} = Gn ( Gn−1 ( · · · ( G0 = G

such that Gi is normal in G for all i and Gi/Gi+1 lies in the center of G/Gi+1 for all i. (Remark: It
seems that the definition of nilpotent groups in Ex 17.1 of the book is wrong or outdated. If you check
Dummit-Foote or some other algebra textbooks, you will find the definition the same as or equivalent
to the one above.)

(a) Show that if a finite group G is nilpotent, then it is solvable. (2 marks) (Hint: You may need to
know the structure of a finite abelian group.)

Answer: Suppose G is nilpotent, so there is a finite series of subgroups

{1} = Gn ( Gn−1 ( · · · ( G0 = G

such that Gi is normal in G for all i and Gi/Gi+1 lies in the center of G/Gi+1 for all i. Hence
Gi/Gi+1 is in particular abelian. By the Structure Theorem of finite abelian groups, we write

Gi/Gi+1
∼= Zd1 ⊕ · · · ⊕ Zdmi

.

Let Hi,j be an intermediate subgroup between Gi and Gi+1 such that

Hi,j/Gi+1
∼= Zdj+1 ⊕ · · · ⊕ Zdmi

.

Therefore, we have a tower of subgroups

Gi+1 = Hi,mi
( · · · ( Hi,1 ( Hi,0 = Gi

such that Hi,j/Hi,j+1
∼= Zdj is cyclic. The enlarged tower

{1} = Gn = Hn−1,mn−1
( Hn−1,mn−1−1 ( · · · ( Gi+1 = Hi,mi

(
· · · ( Hi,1 ( Hi,0 = Gi ( · · · ( H0,0 = G0 = G

implies that G is solvable.

(b) Give an example of a finite solvable group which is not nilpotent, and justify your answer. (1 mark)
(Hint: One example of such a group has order 6.)

Answer: The permutation group of 3 elements G0 = Σ3 is solvable but is not nilpotent. Notice
that the only normal subgroup of G0 is A3, so the only normal series of G0 = Σ3 is

G2 = {1} ( G1 = A3 ( G0 = Σ3.

However, G1/G2
∼= A3 is not contained in the center of G/G2 = Σ3, which is just trivial. Hence Σ3

is not nilpotent.

(c) (Garling Ex 17.2) Show that if the order of a group G is a power of a prime number, then G is
nilpotent. (2 marks) (Hint: Check one of the questions in Homework 1.)

Answer: In the simplest case if G has order p, then it must be isomorphic to the additive
cyclic group Zp, which is clearly nilpotent. In general, if the order of a group G is a power of a
prime number, say p, then the center ZG of G is non-trivial by one of the exercises in Homework 1,
and so it has order also a power of p. The quotient group Ḡ = G/ZG has order also a power of p,
but it strictly smaller than that of G. Hence we can apply induction and claim that Ḡ is nilpotent,
so by definition there is a tower of subgroups

{1} = Ḡn ( Ḡn−1 ( · · · ( Ḡ0 = Ḡ = G/ZG
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such that Ḡi is normal in Ḡ for all i and Ḡi/Ḡi+1 lies in the center of Ḡ/Ḡi+1 for all i. Now let Gi
be the subgroup of G whose quotient by ZG is Ḡi (such a subgroup exists by a consequence of the
Isomorphism Theorem in Group theory). Then Gn = ZG and we have a tower

{1} = Gn+1 ( ZG = Gn ( Gn−1 ( · · · ( G0 = G

such that Gi is normal in G for all i and Gi/Gi+1
∼= Ḡi/Ḡi+1 lies in the center of G/Gi+1

∼= Ḡ/Ḡi+1

for all i. Therefore, G is nilpotent by definition.

These questions are done poorly. I think the main reason is that I don’t have enough time in class to
cover the techniques about solvability. However, the questions reveal that a number of you do not have
solid background in group theory. There are a few serious mistakes (among others not listed).

• Many of you stated Sylow’s Theorem wrongly. Even though some of you could state the theorem
correctly, it was used in incorrect ways. (Actually, all the questions above have nothing to do with
Sylow’s Theorem.)

• Many of you defined some basic concepts (center of a group, normal subgroup, etc.) wrongly.
Something like G/Z(G) C G or Z(G/Z(G)) C Z(G) is unacceptable.

• Some of you wrote something like Σ3/Z2 and claim it is a group. Strictly speaking, there is no
relation between Σ3 and Z2. You should first realize Z2 as a subgroup of Σ3; but even though you
had done so, you cannot take quotient because there is no normal subgroup of Σ3 of order 2. This
is important, as we have seen that there are two realizations of V4 in Σ4 where one realizes V4 as a
normal subgroup of Σ4 and another does not.

Another problem is that many of you used definition of solvable group which is not covered in class, or
used definition of nilpotent group different from the given one (probably adopted from some textbooks
or some online texts). Many of you did not show that your definition is equivalent to the one given in
class or in the assignment, and I really doubt if you know how to show it.

(3) This question shows that the condition in Theorem 17.3, that char(K) does not divide Γ(L/K), is crucial.

(a) Show that f = Xp −X − 1 ∈ Zp[X] is irreducible. (Hint: Part of the hint is in Garling Ex 16.9.
Let β be a root of f and suppose that f = mβh, where mβ ∈ Zp[X] is the minimal polynomial of β
with deg(mβ) � deg(f). Consider the sum of roots of mβ and see if you can get a contradiction.)
(2 marks)

Answer: I first explain that if β is a root of f , then β + 1, β + 2, β + p − 1 are the remain-
ing roots of f . This comes from direct computation:

f(β + a) = (β + a)p − (β + a)− 1 = βp + ap − β − a− 1

since (β + a)p = βp + ap in char p.

Now a ∈ Zp, so ap = a. Also βp − β − 1 = 0. Therefore f(β + a) = 0.

Suppose that f = mβh, where mβ ∈ Zp[X] is the minimal polynomial of β with deg(mβ) =
d � deg(f). Consider the sum of roots of mβ , which is of the form

∑
(β + ki) = dβ + e for some

e ∈ Zp. Since d ∈ Z×p and the sum of roots is in Zp, this forces β ∈ Zp, a contradiction.

A few of you used an argument from HW3 Q3 that f = Xp−X−1 should break up into polynomials
of same degree, and since p is a prime, it either breaks up into linear factors or irreducible. This
argument is wrong. If you check the conditions from HW3 Q3, you need to have the irreducibility
of f in advance. This is what I ask you to show and you cannot assume it.

(b) Show that f is not solvable by radical, although its Galois group is solvable. (Hint: The second
statement is easy. The first statement may need some thinking. As a starting point: what if the
root of f depends on a radical α, so that αm ∈ Zp? What can be the possible m?) (3 marks)
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Answer: We know that every Galois group of a finite extension over a finite field is cyclic, hence
solvable. So the second statement is clear. For the first statement, suppose that the extension
L/K is solvable by radical, then by definition L/K lies in a tower of extensions by radicals as the
following diagram.

L

))Zp

55

// L1
// L2

// · · · // Lr

There are various arguments showing that this tower is problematic. Below is one of those. Since
[Lr : Zp] is divisible by [L : Zp] = p, there is an intermediate extension Li/Li−1 whose degree is
divisible by p. Let m = [Li : Li−1], so that Li = Li−1[α] with α /∈ Li−1 but αm ∈ Li−1. We
now apply a reduction: let L′i−1 = Li−1[αm/p], then we have the following tower of extensions by
radicals

Li−1 ↪→ L′i−1 = Li−1[αp] = Li = Li−1[α] = L′i−1[α].

It is clear that [L′i−1 : Li−1] = m/p and [Li : L′i−1] = p. We now look at the extension Li/L
′
i−1

and see how we get a contradiction. Since α /∈ L′i−1 but αp ∈ L′i−1, the minimal polynomial
mα ∈ L′i−1[X] is divisible by Xp − αp. But in characteristic p we have Xp − αp = (X − α)p.
Hence mα = X − α, i.e., the minimal polynomial is linear. It forces that α ∈ L′i−1 which is a
contradiction.

Remark: The given polynomial is called Artin-Schreier polynomial. You may check the Wikipedia entry
‘Artin-Schreier theory’ for more details.

(4) This question shows that even though a field extension is solvable, it may not be an extension by any
radicals, i.e. a field extension L of K is not of the form K(α) where α has some power in K, even though
Γ(L/K) is solvable.

(a) (Garling Ex 17.4) Let f be an irreducible cubic in K[X], where K is a subfield of R. Show that f
has three real roots if and only if its discriminant is positive. (2 marks)

Answer: This can be proved by direct calculation. If f has three distinct roots α1, α2, α3

which are all real, then δ = (α2 − α1)(α3 − α1)(α3 − α2) is real and ∆ = δ2 is clearly positive.
Otherwise, if α1 = c is real but α2 = a+ bi and α3 = a− bi are complex (with b 6= 0), then

δ = (α2 − α1)(α3 − α1)(α3 − α2) = (a+ bi− c)(a− bi− c)(a− bi− (a+ bi)).

The product of first two factors is positive as they are conjugates of each other. The last factor is
−2bi which is purely imaginary, so its square is negative.

(b) (Garling Ex 17.7) Give an example of a polynomial in Q[X] which is solvable by radicals, but its
splitting field is not an extension by radicals. Justify your answer. (2 marks) (You don’t need to
use Ex 17.5 or 17.6, but if you use them, you have to prove them.)

Answer: Take a cubic polynomial whose discriminant is a positive square, so that its Galois group
is a solvable group A3 and all roots of f are real by (a). Recall the formula: if f(X) = X3 + bX+ c,
then ∆ = −4b3−27c2. Take (b, c) = (−3, 1) for example, then f = X3−3X+1 is a required polyno-
mial, with ∆ = 81. (Another example, given by one of you, isX3−21X+7, with ∆ = 35721 = 1892.)

Now suppose that L/Q is an extension by radicals, i.e., there is a tower of extension generated by
radicals: Q ↪→ L1 ↪→ · · · ↪→ Lr = L. However, since ∆ is a square in Q, we have Γ(L/Q) ∼= A3 and
so [L : Q] = 3. This forces that r = 1 and Lr = L1 = L. Hence we suppose that L = Q(α) for some
α ∈ R such that θ = α3 is in Q. We know that the other two roots are e2πi/3α, e4πi/3α ∈ C − R,
but they are in the normal extension L which is totally real. We have a contradiction.

Suggested Exercises (no need to hand in): 16.1, 16.2, 16.3, 16.5, 16.9, 16.10, 16.11. 16.12, 16.13, 16.14, 16.15,
16.16, 17.3, 17.5, 17.6.
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