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» Here pand —1 < p < 1 are constants, a(-,-), b(-,-) are
deterministic functions, and W} and W? are independent one
dimensional P—Brownian motions.

» In addition, we assume the existence of a risk-free bank
account paying a constant interest rate r = 0.



Optimal Hedging and Investment

» We assume that, after selling an insurance contract Bt
maturing at a future time T, the insurance company tries to
solve the stochastic control problem

“B(X75,y, t) = sup EX,S,y,t [U <X¥,X,B>} ’
meA

where X8 is value of a selffinancing portfolio (including
short position in the contract B) with initial wealth x and 7,
dollars invested in the stock, with the remaining value
invested in the bank account.
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» We assume that, after selling an insurance contract Bt
maturing at a future time T, the insurance company tries to
solve the stochastic control problem

“B(X75,y, t) = sup EX,S,y,t [U <X¥,X,B>} ’
meA

where X8 is value of a selffinancing portfolio (including
short position in the contract B) with initial wealth x and 7,
dollars invested in the stock, with the remaining value
invested in the bank account.

» When B = 0, this reduces to the Merton problem:

uO(x,y, t) = sup EX¥'t [U (XT¥)]
Hem
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» The seller's indifference price for the claim B is the solution 7°
to the equation

uO(X7y7 t) = uB(X + P(X7 57.y7 t)757y7 t)

» From now on, we consider an exponential utility function of
the form:
Ux)=—e7, ~y>0.

» We can then write

WB(x,S,y,t) = —e *G(S,y,t) = —e Xed(S¥1)
UO(X7y7 t) = _e’YXF(y’ t) = _e_’YXeT/J(y,t)

» The indifference price is then given by

G(S,y,t)

Pl = lon (555

> - rly(gb(S,% t) — vy, 1))
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Equity—linked contracts

» Consider now an insurance contract that pays B(S;) at time 7
for some deterministic function B(-).

» In this case, the wealth process satisfies

dXs = msdSs = ms[(p — r)ds + o (s, Ys)dWs]
X =X —B(S,), 7<T
Xt =X

» To obtain the equation satisfied by u® in this case, consider
the interval [t, t 4+ h) and observe that,

uB(X7 5, t) > E[UB(Xt+h7 5t+h7 Yt+h7 t+ h)]p(h)
+E[W®(Xesn — B(Sen)s Yeun, t + h)lq(h)

where p(h) = P(7 > t+ h|7 > t) and g(h) =1 — p(h).



The HJB equation

» Using a function of the form u8(x,S,y,t) = —e X e?(Syt)
leads to

1 1 b
bt 50°S%0ss + pobSts + 380y + (3= "2 ),
2

1 ,
+o b1 = )8+ A(E) [1BFV 0 1] = 2%
o(y,S, T)=0

(1)

where, as it is well-known,

! IogEy’t[ I 202 ds]
— 2 ;

Y(y,t) =

with E[] denoting an expectation with respect to the minimal
martingale measure for this market.
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Optimal hedge

» In terms of ¢, the optimal portfolio is

B_ 1| n b(y,t)p
Ty [02()/) s a(y) ¢y]

» By comparison, the optimal Merton portfolio is

0 1[ p b(y, t)p%}

020 T o)

» Subtracting one from the other we obtain the excess hedge

b(y, t)p

Yo (y)

which has the form of a delta hedge plus a volatility
correction.

78 — 7% = Ps(S,y,t)S: + P,(S,y,t),
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Fast-mean reversion asymptotics

» Let us now take

dYt = a(m — Yt)dt + /B(det + v 1-— pdet)

and consider the regime é =e << 1, with 8 =+2v//c
where 12 is a fixed variance for the invariant distribution of Y;.

» We then look for expansion of the form

¢° = 0Oy, S, t) + VesD(y, S, t) + e6P(y, S, t) + ...
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Main result

» The insurer's indifference price satisfy:
P(y,S,t) = PO(S, 1) = Py, S, 1) = O(e)  (3)
where
Py, S,t) = —(T = 1)(v3S* Py + 1,52P(Y)

» Here P(O) satisfies

PO + % o2P® | MO Tae-pO) _q] g

2
PO(S, T)=0

where 02 = (52).
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Example

» Consider the contract

4,  if 0<S<50
g(S)=1{ 085, if 5<5<20
16, if 20 < S <100

» The mortality rate by Gompertz mortality,

1 X+t—m
A(t) = EE%’

with 3 = 8.75 and m = 92.63.

» The other model parameters are:

1
, p=-—02, p=0.2

a =200, m=log0.1, v=—
: V2



Price correction

6 T T T

premium in the market with stochastic volatility
premium in the market with constant volatility

premium
[
T

Figure: Premium for the equity linked contract in a market with constant
volatility ¢ = 0.165 and in the market with stochastic volatility for
T —t =15 years and v = 0.3.



Risk aversion
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Figure: Dependence with risk aversion



Hedge
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Figure: Hedge ratio for different risk aversion parameters
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Part 2: Stochastic Interest Rates

» Consider now the discounted price of a financial asset given by

dSs = (u — rs)Ssds + USdesl
St = 5

» We model the short rate as

{ drs = (ao(s)rs + bo(s))ds + \/c(s)rs + d(s)dZs

3
ry =r

where Z, = pW}! + /1 — p2dW2.
» It then follows that the price of a zero—coupon bond with
maturity T; is given by

—C(t,T:
For, = eA6T)-Ct TR,

for deterministic functions A(-,-) and C(-,-).
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Portfolio choice

» In this context, the insurance company can invest 7; dollars in
the stock S; and n; dollars in the bond F;1,, with the
remaining of its wealth in a bank account paying the interest
rate ry.

» We assume the market for bonds of different maturities has a
market price of risk of the form

(30(s) —a(Nrs + (bo(5) = B(s)) g
c(s)rs + d(s)

q(rs,s) =

» Under this assumption, one can show that the dynamics of
the discounted bond price is

d(e=Jo mduF 1y

T —C(s, T1) [(Aa(s)rs + Ab(s))dt

c(s)rs + d(s)dZs}
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» We consider path—dependent claims of the form
Bt = B(St, re, Vt), where

t
Vt—/ (Ss, rs,s)ds.
0

» In this case, the wealth process satisfies
_ o ds, o d(e BB E)
dXs = ms = + USTWFSHI
dXs = [rs(p — r) —nsC(s, T1)(Aa(s)rs + Ab(s))]ds

+rsodW? —nsC(s, T1)\/c(s)rs + d(s)dZs

X = T—_B(STvrTa VT)7 T<T
Xt:X
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The solution to Merton's Problem

» The Merton problem for the insurance company is now

WO(x,r,t) = sup EX"H[U(X7T)].
m,neA

» Using the same reasoning as before for the function
uO(x, r, t) = —e7%e¥("1) we arrive at the following PDE:

2
1 1fp—r— 2
et (ar+b),+ 5t {cr-+d) - (’”qu> +Z| =o.

2\ V/1-p20

subject to ¢(r, T) = 0.
» Using Feynmann-Kac we obtain that

T p-r—opq\ @
w r7 t = _/ Et7r Y —"_ A ?
(1) t 2y/1— p?c 2
where E[] denotes expectation with respect to the (unique)

martingale measure for bond prices defined by the market
price of risk g.
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The value function with the claim

» Similarly, the hedging problem for the insurance company is

now
uB(x,S,r v, t) = sup EXSTH[U(XT)]. (7)
m,neA
» For a function of the form uB(x, S,y,t)= —e X ed(S:rvit),

we obtain that ¢ satisfies the PDE

1 1
o1 + (ar + b)pr + S(cr + d)dr + pov/er +dSés, + 5025 pss
2
—r—o 2 -
b)) 1% | - - et -

(8)
subject to ¢(S,r,v, T) =0.

+f(5’ r, t)d)v -




Optimal hedge

> In terms of ¢, the optimizers for (7) are

1{pu—r—gqpo
B _ =
= y [(1 — rho?)o? +¢55]
1 —r) — qo?
B polp—r)=qo® s
= —Ver+do,
RTaV [ (1= )02 T
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Optimal hedge

> In terms of ¢, the optimizers for (7) are

1 o
B H — qp
= — |/ S
Tt [(1 — rho?)o? 2 s ]
1 —r)—
B po(p—r) —qo® _JaTd }
= cr +
= e | o
» By comparison, the optimal Merton portfolio is
0 _ lip=r—gpo
t v (1 — rho?)o?

0o _ 1 pa(u—r)—q -
L 7Cﬁcr+d[ (e "’}

» Subtracting one from the other we obtain the excess hedge

870 = Ps(S,r,v,t)S
1

77tB_77? = —EP,(S,r,V,t)
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The pricing equation and integral representation

» Therefore, P satisfies the following nonlinear PDE:

1 1
P: + (ar + b)Pr + ~(cr + d)Py + pov/cr + dSPs, + 50252P55
+(S,r,t)P, — 2 (1 - eBP) =0
P(S,r,T)=0

» This leads to an integral representation of the premium as
follows:

1 Q T 7‘[‘5 Ysksdu
P(S,r,V,t) = —sup [Ets Y [/ g(S,V,r t)e e v ys)\sds}
Y y>0 e t

-
1 1 SYS)\sd
—EQ [/ ( (1—In >> Ase It “ds”
Vi) \ys v)) %

(9)




