

Inventory growth cycles with debt-financed investment

M. R. Grasselli

Introduction Full model Special cases Long-run Short-run

Inventory growth cycles with debt-financed investment

M. R. Grasselli

Mathematics and Statistics, McMaster University Joint with A. Nguyen Huu (Montpellier)

EPOG Seminar Paris Nord, November 18, 2016

Inventory Cycles

Inventory growth cycles with debt-financed investment

M. R. Grasselli

Introduction

Full model

Special cases

Long-run

Short-run

• Small fraction of output (about 1% in the U.S.) but *major* fraction of changes in output (about 60% for postwar recession in the U.S.)

 Table 1

 Inventory Investment and Postwar Recessions

GNP Peak to Trough	Change in ^a Real GNP	Change in ^a Inventory Investment	Change in Inventory Investment As a Percentage of Change in Real GNF	
1948 : 4-1949 : 4	- 22.2	- 28.2	127%	
1953 : 2-1954 : 2	-43.7	-18.4	42%	
1957:3-1958:1	- 55.4	-21.7	39%	
1960 : 1-1960 : 4	-17.5	-40.6	232%	
1969:3-1970:4	-19.4	- 28.2	145% ^b	
1973 : 4-1975 : 1	-120.1	-78.1	65%	
1980 : 1-1980 : 2	-76.4	-1.8	2%	
1981:3-1982:3	-110.1	-45.1	41% ^c	
			Average: 87%	

^aBillions of 1982 Dollars

^b72% if trough is 1970:2

^c90% if trough is 1982 : 4

Figure: Blinder and Mancini (1991)

Stylized facts

Inventory growth cycles with debt-financed investment

M. R. Grasselli

- Introduction Full model
- Special cases
- Long-run
- Short-run

- Inventory investment is more volatile than output.
- Inventory investment is strongly countercyclical at very high frequencies (e.g., 2 - 3 quarters per cycle) but procyclical at business-cycle frequencies (e.g., 8 - 40 quarters per cycle).
- Production is less volatile than sales around the high frequencies; it is more volatile than sales only around business-cycle or lower frequencies.
- Most of the variance of inventory investment is concentrated around high frequencies rather than around business-cycle frequencies (unlike capital investment and GDP).

Theoretical models

Inventory growth cycles with debt-financed investment

M. R. Grasselli

Introduction

Full model Special cases Long-run

Short-run

- Micro theories view inventories primarily as a *stabilizing* factor (e.g production-smoothing).
- Incorporating inventories into fully micro-founded DSGE models is akin to incorporating money and finance.
- Earlier Keynesian model by Metzler (1941), further developed by Franke (1996) provides a more promising starting point.
- Heterodox (e.g stock-flow consistent) models emphasize the role of inventories, but fully developed models are rare and tend to be overcomplicated.

Contributions of this paper

Inventory growth cycles with debt-financed investment

M. R. Grasselli

Introduction Full model Special cases

- Long-run
- Short-run

- Combines the Franke (1996) model for inventory fluctuations with Goodwin (1967) model for labor market dynamics.
- Provides the first stock-flow consistent extension of the Keen (1996) model where both consumption and (debt-financed) investment are independently specified.
- Identifies and analyses two important sub-models: (i) the long-run model is a version of the Keen model with non-trivial effective demand, whereas (ii) the short-run model gives rise to Kitchin cycles (1923).

Notation

Inventory growth cycles with debt-financed investment

M. R. Grasselli

- Introduction
- Full model
- Special cases
- Long-run
- Short-run

- Potential output: $Y_p = K/\nu$
- Actual output: $Y = Y_e + I_p$
- Capacity utilization: $u = Y/Y_p$
- Capital accumulation: $\dot{K} = I_k \delta(u)K$
- Demand: $Y_d = C + I_k$
- Change in inventories: $\dot{V} = I_p + I_u = Y Y_d$
- Unplanned changes: $I_u = Y Y_d I_p = Y_e Y_d$.
- Gross investment: $I = Y C = Y Y_d + I_k = I_p + I_u + I_k$

Cost, prices, and financial balances

Inventory growth cycles with debt-financed investment

M. R. Grasselli

Introduction

Full model

Special cases

Long-run

Short-run

- Productivity: $a = Y/\ell$ (assume $\frac{\dot{a}}{a} = \alpha$)
- Employment rate: $\lambda = \ell/N = Y/(aN)$ (assume $\frac{N}{N} = \beta$)
- Wage rate: $w = W/\ell$
- Unit labour cost: c = W/Y = w/a.
- Nominal output: $Y_n = pC + pI_k + c\dot{V}$.
- Profits: $\Pi = Y_n W rD p\delta K$
- Change in debt for firms:

$$\dot{D} = p(I_k - \delta K) + c\dot{V} - \Pi = pI_k + c\dot{V} - \Pi_p,$$

where $\Pi_p = Y_n - W - rD$.

SFC Table

Inventory
growth cycles
with
debt-financed
investment

M. R. Grasselli

Introduction

Full model

Special cases

Long-run

Short-run

	Households		Firms	Banks	Sum
Balance Sheet					
Capital stock			+pK		+pK
Inventory			+cV		+cV
Deposits	+M			-M	0
Loans			-D	+D	0
Sum (net worth)	X _h		X _f	X _b	X
Transactions		current	capital		
Consumption	$-pC_h$	+pC		$-pC_b$	0
Capital Investment		$+pI_k$	$-pI_k$ $-c\dot{V}$		0
Change in Inventory		$+c\dot{V}$	$-c\dot{V}$		0
Accounting memo [GDP]		$[Y_n]$			
Wages	+W	-W			0
Depreciation		$-p\delta K$	$+p\delta K$		0
Interest on deposits	$+r_m M$			$-r_m M$	0
Interest on loans		-rD		+rD	0
Profits		-Π	$+\Pi$		0
Financial Balances	Sh	0	$S_f - p(I_k - \delta K) - c\dot{V}$	Sb	0
Flow of Funds					
Change in Capital Stock			$+p(I_k - \delta K) + c\dot{V}$		$+p(I_k - \delta K) + c \dot{V}$
Change in Inventory			$+c\dot{V}$		$+c\dot{V}$
Change in Deposits	$+\dot{M}$			$-\dot{M}$	0
Change in Loans			$-\dot{D}$	$+\dot{D}$	0
Column sum	Sh		S _f	Sb	$p(I_k - \delta K) + c\dot{V}$
Change in net worth	$\dot{X}_h = S_h$	Ż,	$\dot{r} = S_f + \dot{p}K + \dot{c}V$	$\dot{X}_b = S_b$	×

Behavioural rules - firms

Inventory growth cycles with debt-financed investment

M. R. Grasselli

Introduction Full model

Special cases

Long-run

Short-run

Define

$$\pi_e = \frac{Y_{ne} - W - rD}{pY} = y_e(1 - \omega) - rd,$$

where $y_e = Y_e/Y$, $\omega = W/(pY)$ and d = D/(pY).

We assume that sales expectations evolve as

$$\dot{Y}_e = g_e(u, \pi_e) Y_e + \eta_e(Y_d - Y_e)$$

• Let $V_d = f_d Y_e$ for a constant f_d and assume that

$$I_{\rho} = g_e(u, \pi_e)V_d + \eta_d(V_d - V).$$

• Moreover, take

$$I_k = \frac{\kappa(u, \pi_e)}{\nu} K.$$

Behavioural rules - banks and households

- Inventory growth cycles with debt-financed investment
- M. R. Grasselli
- Introduction
- Full model
- Special cases
- Long-run
- Short-run

We assume that

$$C=\theta(\omega,d)Y.$$

This includes the case

$$pC_h = c_{ih}[W + r_m M] + c_{wh}M,$$

$$pC_b = c_{ib}[rD - r_m M] + c_{wb}(D - M).$$

• In particular, we can have

$$pC = c_1W + c_2D \quad \Rightarrow \theta(\omega, d) = c_1\omega + c_2d.$$

• Total demand is then given by

$$pY_d = pC + pI_k = p\theta(\omega, d)Y + p\frac{\kappa(u, \pi_e)}{\nu}K,$$

so that

$$y_d = rac{Y_d}{Y} = heta(\omega, d) + rac{\kappa(u, \pi_e)}{u}.$$

Behavioural rules - wages and prices

Inventory growth cycles with debt-financed investment

M. R. Grasselli

Introduction

Full model

Special cases

Long-run

Short-run

• We assume that prices follow

$$\frac{\dot{p}}{p} = \eta_p \left(m \frac{c}{p} - 1 \right) - \eta_q \frac{Y_e - Y_d}{Y} \qquad (1)$$

$$= \eta_p \left(m \omega - 1 \right) + \eta_q (y_d - y_e) := i(\omega, y_d, y_e).$$

• The dynamics for nominal wages is

$$\frac{\dot{w}}{w} = \Phi(\lambda) + \gamma \frac{\dot{p}}{p}, \qquad (2)$$

Inventory

growth cycles with debt-financed investment M. R. Grasselli Introduction Full model Special cases Long-run Short-run

The main dynamical system

The full model is described by

$$\begin{split} \dot{\omega} &= \omega \left[\Phi(\lambda) - \alpha - (1 - \gamma)i(\omega, y_d, y_e) \right] \\ \dot{\lambda} &= \lambda \left[g(u, \pi_e, y_d, y_e) - \alpha - \beta \right] \\ \dot{d} &= d \left[r - g(u, \pi_e, y_d, y_e) - i(\omega, y_d, y_e) \right] + \omega - \theta(\omega, d) \\ \dot{y}_e &= y_e \left[g_e(u, \pi_e) - g(u, \pi_e, y_d, y_e) \right] + \eta_e(y_d - y_e) \\ \dot{u} &= u \left[g(u, \pi_e, y_d, y_e) - \frac{\kappa(u, \pi_e)}{\nu} + \delta(u) \right] \end{split}$$

where

$$i(\omega, y_d, y_e) = \eta_p (m\omega - 1) + \eta_q (y_d - y_e)$$

and

$$g(u, \pi_e, y_d, y_e) = \left[f_d(g_e(u, \pi_e) + \eta_d) + 1\right] \left(y_e g_e(u, \pi_e) + \eta_e(y_d - y_e)\right) + \eta_d(y_d - 1)$$

Interior equilibrium

Inventory growth cycles with debt-financed investment

- M. R. Grasselli
- Introduction
- Full model
- Special cases
- Long-run
- Short-run

• It follows from the second equation that

$$g(\overline{u}, \overline{\pi}_e, \overline{y}_d, \overline{y}_e) = \alpha + \beta.$$

- Inserting this in the fourth equation gives $\overline{y}_d = \overline{y}_e$ and $g_e(\overline{u}, \overline{\pi}_e) = \alpha + \beta.$
- Substitution in the definition of g then gives $\overline{y}_d = \overline{y}_e = \frac{1}{1 + (\alpha + \beta)f_d}.$
- Moreover, it follows that $\overline{v} = f_d \overline{y}_e$, so that the equilibrium level of inventory is the desired level $V_d = f_d \overline{y}_e Y$.
- Furthermore, we see from the definition of *i* that

$$i(\overline{\omega}, \overline{y}_d, \overline{y}_e) = i(\overline{\omega}) = \eta_p(m\overline{\omega} - 1).$$

Interior equilibrium - continued

Inventory growth cycles with debt-financed investment

M. R. Grasselli

Introduction Full model

Special cases

Long-run

Short-run

• From the third equation, we see that:

$$\overline{d} = \frac{\overline{\omega} - \theta(\overline{\omega}, \overline{d})}{\alpha + \beta + i(\overline{\omega}) - r}.$$
(3)

• From the last equation, we obtain:

$$\kappa(\overline{\pi}_{e},\overline{u}) = \nu[\alpha + \beta + \delta(\overline{u})], \qquad (4)$$

which can be inserted in the demand function to give

$$\overline{u} = \frac{\nu[\alpha + \beta + \delta(\overline{u})](1 + (\alpha + \beta)f_d)}{1 - \theta(\overline{\omega}, \overline{d})(1 + (\alpha + \beta)f_d)}$$

- We can then obtain the values of $(\overline{\omega}, \overline{d})$ by solving (3)-(4).
- Finally, the first equation gives

$$\Phi(\overline{\lambda}) = \alpha + (1 - \gamma)i(\overline{\omega}).$$

Goodwin model

- Inventory growth cycles with debt-financed investment
- M. R. Grasselli
- Introduction
- Full model
- Special cases
- Long-run
- Short-run

- Model in real terms: $\eta_p = \eta_q = \gamma = 0$, p = 1.
- No inventories: $f_d = \eta_d = V_d = I_p = 0$
- Output equals demand: $\eta_e o \infty$, $Y_e = Y_d = Y$
- Constant capital-to-output ratio: u = 1.
- Constant depreciation: $\delta(u) = \delta > 0$.
- Investment equals profits: $\kappa(u, \pi_e) = \pi_e = 1 \omega rd$.
- No banks: $\dot{D} = 0$, take $d = D_0 = 0$.
- All wages are consumed: $c_{ih} = c_1 = 1$ (and $c_2 = r$).
- This leads to

$$\begin{cases} \dot{\omega} = \omega \left[\Phi(\lambda) - \alpha \right] \\ \dot{\lambda} = \lambda \left[\frac{1 - \omega}{\nu} - \alpha - \beta - \delta \right], \end{cases}$$
(5)

Franke model

Inventory growth cycles with debt-financed investment

M. R. Grasselli

Introduction

Full model

Special cases

Long-run

Short-run

• Model in real terms: $\eta_p = \eta_q = \gamma = 0$ and p = 1

- Variables normalized by K instead of Y, resulting in the intensive variables: u^F := Y/K = u/ν, z^F := Y_e/K = y_eu^F, v^F =: V/K = vu^F.
- Constant wage share ω : $\dot{\omega} = 0$.
- Second equation in our system decouples.
- No banks: $\dot{d} = 0$.
- Constant long-run expected growth: $g_e(u, \pi_e) = \alpha + \beta$.
- Investment as function of utilization: $\kappa(u, \pi_e) = \nu h(u^F)$.
- Excess demand as a function of u^F : $y^d = e(u^F) + 1$.
- We then obtain the same system as in Franke (1996) from our fourth and fifth equations, leading to

$$v^F = rac{f_d \overline{u}^F}{1 + (\alpha + \beta)f_d} = \overline{v} \, \overline{u}^F, \quad \overline{z}^F = rac{\overline{u}^F}{1 + (\alpha + \beta)f_d} = \overline{y}_e \overline{u}^F.$$

Keen model

Inventory growth cycles with debt-financed investment

M. R. Grasselli

Introduction

Full model

Special cases

Long-run

Short-run

- Model in real terms: $\eta_{p} = \eta_{q} = \gamma = 0$ and p = 1
- Same as Goodwin for production and inventories:
 - $f_d = \eta_d = V_d = I_p = 0, \ \eta_e \to \infty, \ Y_e = Y_d = Y, \ u = 1, \ \delta(u) = \delta.$
- Investment as function of profits: is now given by $\kappa(u, \pi_e) = \kappa(\pi_e) = \kappa(1 \omega rd).$
- Accommodating consumption: $C = Y_d - I_k = (1 - \kappa(\pi_e))Y, \ \theta(\omega, d) = 1 - \kappa(1 - \omega - rd).$
- With these parameter choices, the system reduces to

$$\begin{cases} \dot{\omega} = \omega \left[\Phi(\lambda) - \alpha \right] \\ \dot{\lambda} = \lambda \left[\frac{\kappa(\pi_e)}{\nu} - \alpha - \beta - \delta \right] \\ \dot{d} = d \left[r - \frac{\kappa(\pi_e)}{\nu} - \delta \right] + \omega - 1 + \kappa(\pi_e) \end{cases}$$

Monetary Keen model

Inventory growth cycles with debt-financed investment

M. R. Grasselli

Introduction Full model Special cases Long-run

20116 1011

Short-run

- As shown in Grasselli Nguyen-Huu (2015), it is easy to incorporate inflation in the original Keen model.
- Adopting all the parameter choices and functional forms of the previous section (including η_q = 0) with the exception of arbitrary constants η_p and γ, we find

$$\begin{aligned}
\dot{\omega} &= \omega \left[\Phi(\lambda) - \alpha - (1 - \gamma)i(\omega) \right] \\
\dot{\lambda} &= \lambda \left[\frac{\kappa(\pi_e)}{\nu} - \alpha - \beta - \delta \right] \\
\dot{d} &= d \left[r - \frac{\kappa(\pi_e)}{\nu} - \delta - i(\omega) \right] + \omega - 1 + \kappa(\pi_e)
\end{aligned}$$
(6)

where $\pi_e = 1 - \omega - rd$ and $i(\omega) = \eta_p(m\omega - 1)$.

Long-run dynamics

- Inventory growth cycles with debt-financed investment
- M. R. Grasselli
- Introduction Full model Special cases Long-run

Short-run

- Take $\eta_e = \eta_d = f_d = 0$ so that $Y = Y_e$.
- We then have $g(u, \pi_e, y_d, y_e) = g_e(u, \pi_e)$.
- The system then becomes

$$\begin{cases} \dot{\omega} = \omega \left[\Phi(\lambda) - \alpha - (1 - \gamma)i(\omega, y_d) \right] \\ \dot{\lambda} = \lambda \left[g_e(u, \pi_e) - \alpha - \beta \right] \\ \dot{d} = d \left[r - g_e(u, \pi_e) - i(\omega, y_d) \right] + \omega - \theta(\omega, d) \\ \dot{u} = u \left[g_e(u, \pi_e) - \frac{\kappa(u, \pi_e)}{\nu} + \delta(u) \right], \end{cases}$$

where
$$\pi_e = 1 - \omega - rd$$
 and
 $i(\omega, y_d) = \eta_p(m\omega - 1) + \eta_q(y_d - 1).$

In the special case g_e(u, π_e) = α + β (as in the Franke model), we have λ = 0, so the interior equilibrium can only be achieved if λ₀ = Φ⁻¹(α + (1 − γ)ω).

Keen model with inventories - real version

Inventory growth cycles with debt-financed investment

M. R. Grasselli

Introduction Full model Special cases

Long-run

Short-run

• Take $\eta_e = \eta_d = f_d = 0$ so that $Y = Y_e$ as in the long-run dynamics above, so that $g(u, \pi_e, y_d, y_e) = g_e(u, \pi_e)$.

• In addition, consider the model in real terms, that is $\eta_p = \eta_q = \gamma = 0$ and p = 1.

• Setting $g_e(u, \pi_e) = \frac{\kappa(u, \pi_e)}{\nu} - \delta(u)$ leads to

$$\begin{cases} \dot{\omega} = \omega \left[\Phi(\lambda) - \alpha \right] \\ \dot{\lambda} = \lambda \left[\frac{\kappa(u_0, \pi_e)}{\nu} - \delta(u_0) - \alpha - \beta \right] \\ \dot{d} = d \left[r - \frac{\kappa(u_0, \pi_e)}{\nu} + \delta(u_0) \right] + (1 - c_1)\omega - c_2 d, \end{cases}$$

where we took $\theta(\omega, d) = c_1 \omega + c_2 d$.

• This is the closest model to the original Keen model but with $y_d = c_1 \omega + c_2 d + \frac{\kappa(u_0, \pi_e)}{u_0}$ and

$$\dot{\mathbf{v}} = \left(1 - c_1 \omega - c_2 d - \frac{\kappa(u_0, \pi_e)}{u_0}\right) - \left(\frac{\kappa(u_0, \pi_e)}{\nu} - \delta(u_0)\right) \mathbf{v}.$$

Keen model with inventories - monetary version

Inventory growth cycles with debt-financed investment

M. R. Grasselli

Introduction Full model Special cases Long-run Short-run • Using (1)-(2) as the price-wage dynamics leads to the following monetary version of the model of the previous section

$$\begin{aligned} \dot{\omega} &= \omega \left[\Phi(\lambda) - \alpha - (1 - \gamma)i \right] \\ \dot{\lambda} &= \lambda \left[\frac{\kappa(u_0, \pi_e)}{\nu} - \delta(u_0) - \alpha - \beta \right] \\ \dot{d} &= d \left[r - \frac{\kappa(u_0, \pi_e)}{\nu} + \delta(u_0) - i \right] + (1 - c_1)\omega - c_2 d \end{aligned}$$

where

$$i(\omega, d) = \eta_p (m\omega - 1) + \eta_q (y_d - 1)$$

• As before, we regard this as the closest model to the monetary Keen model in (6), but with a non-trivial effective demand and fluctuating inventory levels.

Short-run dynamics

Inventory growth cycles with debt-financed investment

M. R. Grasselli

Introduction Full model Special cases Long-run

Short-run

- Suppose now that $\alpha + \beta = 0$, $g_e(u, \pi_e) = 0$ (no growth)
- Assume further that $\kappa(u, \pi_e) = \nu \delta(u)$.
- This leads to

$$\begin{aligned} \mathbf{v} &= \frac{[1+f_d\eta_d]\mathbf{y}_e - 1}{\eta_d},\\ \mathbf{g}(\mathbf{y}_e, \mathbf{y}_d) &= \eta_e(1+f_d\eta_d)(\mathbf{y}_d - \mathbf{y}_e) + \eta_d(\mathbf{y}_d - 1), \end{aligned}$$

and the main system reduces to

$$\begin{cases} \dot{\omega} = \omega [\Phi(\lambda) - (1 - \gamma)i(\omega, y_d, y_e)] \\ \dot{\lambda} = \lambda g(y_e, y_d) \\ \dot{d} = d[r - g(y_e, y_d) - i(\omega, y_d, y_e)] + \omega - \theta(\omega, d) \\ \dot{y}_e = -y_e g(y_e, y_d) + \eta_e(y_d - y_e) \\ \dot{u} = ug(y_e, y_d) \end{cases}$$

Planar dynamics

Inventory growth cycles with debt-financed investment

M. R. Grasselli

Introduction Full model Special cases Long-run Short-run • Assume now that $\eta_{p}=0$ and $\Phi(\cdot)\equiv 0$, so that

$$i(\omega, y_d, y_e) = i(y_d, y_e) = \eta_q(y_d - y_e).$$

• Moreover, let $\delta(u) = \delta u$ for $\delta > 0$ and

$$\theta(\omega, d) = c_1 \omega + c_2 d = c_1 \omega$$
 (i.e. $c_2 = 0$) (7)

• This gives $y_d = c_1 \omega + \nu \delta$ so the system decouples and we can focus on

$$\begin{cases} \dot{y}_d = -(1-\gamma)y_d\eta_q(y_d - y_e)\\ \dot{y}_e = \eta_e(y_d - y_e) - y_eg(y_e, y_d) \end{cases}$$
(8)

with (ω, λ, d) satisfying a subordinated system that can be solved after.

Equilibrium analysis

Inventory growth cycles with debt-financed investment

M. R. Grasselli

Introduction Full model Special cases Long-run Short-run

- The previous system admits the equilibria (1,1), (0,0) and $(+\infty,+\infty).$
- The equilibrium (1, 1) is locally stable provided $\gamma < \gamma_0 := 1 \eta_e \eta_d f_d / \eta_q.$
- At $\gamma = \gamma_0$ there is a sub-critical Andronov-Hopf bifurcation and for $\gamma \geq \gamma_0$ the equilibrium is unstable.
- The equilibrium (0,0) is unstable provided $\eta_d > \eta_e$ and fails to be asymptotically stable, even if $\eta_d < \eta_e$.
- The equilibrium $(+\infty, +\infty)$ is characterized by a finite-time blow-up with $y_d/y_e \rightarrow 0$ for a large set of initial conditions.

M. R. Grasselli

Introduction Full model Special cases Long-run Short-run

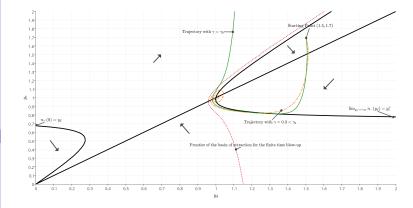


Figure: Short-run dynamics with $i(\omega, y_d, y_e) = i(y_d, y_e) = \eta_q(y_d - y_e)$

Kitchin cycles

Inventory growth cycles with debt-financed investment

M. R. Grasselli

Introduction Full model Special cases

Long-run

Short-run

• Consider now

$$rac{\dot{p}}{p} = \eta_p \left(m rac{c}{p} - 1
ight) - \eta_q rac{V_d - V}{Y}$$

which, along with previous assumptions, provides the inflation rate $i(y_e) = \eta_q (1 - y_e) / \eta_v$.

This now leads to

$$\begin{cases} \dot{y}_{d} = -(1-\gamma)y_{d}\frac{\eta_{q}}{\eta_{v}}(1-y_{e}) \\ \dot{y}_{e} = \eta_{e}(y_{d}-y_{e}) - y_{e}g(y_{e},y_{d}), \end{cases}$$
(9)

• The slight difference with the latter concerns the first equation, for which the isocline is given by $\{y_e = 1\}$ instead of $\{y_d = y_e\}$.

Equilibrium analysis

Inventory growth cycles with debt-financed investment

M. R. Grasselli

Introduction Full model Special cases

Long-run

Short-run

- The new system also admits the equilibria (1,1), (0,0) and $(+\infty,+\infty)$.
- The equilibrium (1, 1) is now locally unstable for all parameters.
- On the other hand, the equilibrium (0,0) is locally stable provided $\eta_d < \eta_e$.
- The finite-time blow-up is similar to the previous case.

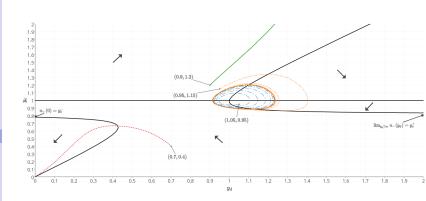


Figure: Short-run dynamics with $i(\omega, y_d, y_e) = i(y_d, y_e) = \eta_q (1 - y_e)/\eta_v$

Concluding remarks

Inventory growth cycles with debt-financed investment

M. R. Grasselli

Introduction Full model Special cases Long-run Short-run

- We have introduced a stock-flow consistent model for inventory growth cycles with debt-financed investment.
- The model unifies features of several simpler models previously proposed in the heterodox economics literature (Goodwin, Franke, Keen).
- We identified the interior equilibrium of the full model and analyzed in detail the stability of two classes of sub-models.
- The long-run dynamics arising from ignoring short-run fluctuations can be regarded as a Keen model with inventories.
- The short-run dynamics arising solely from tracking inventory fluctuations in an imperfect information setting can be regarded as a formalization of Kitchin cycles.

Inventory growth cycles with debt-financed investment

M. R. Grasselli

Introduction

Full model

Special cases

Long-run

Short-run

Thank you!