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Market Model

I We consider two factor stochastic volatility models of the
form:

dSt = µStdt + σ(t,Yt)StdW 1
t ]

dYt = a(t,Yt)dt + b(t,Yt)[ρdW 1
t +

√
1− ρ2dW 2

t ]

I Here µ and |ρ| < 1 are constants, a, b are deterministic
functions, and W 1

t and W 2
t are independent one dimensional

P–Brownian motions.

I In addition, we assume the existence of a risk-free bank
account paying a constant interest rate r = 0.
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Optimal Hedging and Investment

I We assume that, after selling an insurance contract BT

maturing at a future time T , the insurance company tries to
solve the stochastic control problem

us(x ,S , y , t) = sup
H∈A

E
[
U

(
XH,x

T − BT

)
|Xt = x ,St = S ,Yt = y

]
,

where XH,x
T is the terminal value of a self–financing portfolio

with initial wealth x and consisting of holding Ht units of the
stock with the remaining value invested in the bank account.

I When B = 0, this reduces to the Merton problem:

u0(x , y , t) = sup
H∈A

E
[
U

(
XH,x

T

)
|Xt = x ,Yt = y

]
.
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Utility based pricing

I The seller’s indifference price for the claim B is the solution
πs to the equation

u0(x , y , t) = us(x + πs(x ,S , y , t),S , y , t).

I From now on, we consider an exponential utility function of
the form:

U(x) = −e−γx , γ > 0.

I We can then write

us(x ,S , y , t) = −e−γxG (S , y , t) = −e−γxeφ(S ,y ,t)

u0(x , y , t) = −e−γxF (y , t) = −e−γxeψ(y ,t)

I The indifference price is then given by

πs(S , y , t) =
1

γ
log

G (S , y , t)

F (y , t)
=

1

γ
(φ(S , y , t)− ψ(y , t)).
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The solution to Merton’s problem

I It is well-known that the power transformation
F (y , t) = f (y , t)1/1−ρ

2
leads to the linear equation

ft +

[
a − bρµ

σ

]
fy +

1

2
b2fyy =

(1− ρ2)µ2

2σ2
f ,

subject to f (y ,T ) = 1.

I Using Feynman–Kac, we obtain

f (t, y) = Ẽt,y

[
e
−

R T
t

(1−ρ2)µ2

2σ2(s,Ys )
ds

]
, (1)

where

dYs =

[
a − bµρ

σ

]
ds + b

[
ρdW̃ 1

s +
√

1− ρ2dW̃ 2
s

]
,

with dW̃ 1
t = dW 1

t + λ̃1
t dt and dW̃ 2

t = dW 2
t .

I Therefore, whenever σ2
t is the reciprocal of an affine process,

the solution to Merton’s problem can be calculated explicitly.
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[
e
−

R T
t

(1−ρ2)µ2

2σ2(s,Ys )
ds

]
, (1)

where

dYs =

[
a − bµρ

σ

]
ds + b

[
ρdW̃ 1

s +
√

1− ρ2dW̃ 2
s

]
,

with dW̃ 1
t = dW 1

t + λ̃1
t dt and dW̃ 2

t = dW 2
t .

I Therefore, whenever σ2
t is the reciprocal of an affine process,

the solution to Merton’s problem can be calculated explicitly.



Life insurance

I Consider now a claim of the form BT = 1{τ≤T}.

I Here τ is the arrival time of the first jump of an
inhomogeneous Poisson process with intensity λ(t), that is

P(τ > t) = e−
R t
0 λ(s)ds .

I Crucially, we assume that τ is independent of (W1,W2).
I In this case, we have

us(x + πs) = sup
H∈A

E
[
−e−γ(x+πs+

R T
0 HsdSs+BT

]
= e−γπ

s
E

[
eγBT

]
sup
H∈A

E
[
−e−γx−γ

R T
0 HsdSs

]
= e−γπ

s
E

[
eγBT

]
u0(x , y , t)

I Therefore, the indifference price in this case is given by

πs =
1

γ
log E

[
eγBT

]
.
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Random horizon

I To obtain a nontrivial indifference price for contracts that are
independent of the financial market, we need to consider the
following modified problem:

u0(x , y , t) = sup
H∈A

E [U(Xτ∧T )]

= sup
H∈A

E

[∫ ∞

0
U(Xt∧T )dΦ(t)

]
= E

[
U(XT )(1− Φ(T )) +

∫ T

0
U(Xu)dΦ(u)

]
where

Φ(t) = P[τ ≤ t] = 1− e−
R t
0 λ(s)ds .



Solution to Merton’s problem - uncorrelated volatility

I Using dynamic programming, we find that the value function
u0(x , y , t) = −e−γF (y , t) for the random horizon satisfies the
HJB equation

Ft +

[
a − bρµ

σ

]
Fy +

1

2
b2Fyy

−
(
µ2

2σ2
+ λ(t)

)
F + λ(t) =

1

2
b2ρ2 F 2

y

F
,

subject to F (y ,T ) = e−
R T
0 λ(t)dt .

I Unfortunately, the power transformation used before does not
lead to a linear equation. To proceed, we take ρ = 0 and
obtain

F (y , t) = e−
R T
0 λ(s)ds Ẽt,y

[
e
−

R T
t

„
µ2

2σ2(s,Ys )
+λ(s)

«
ds

]

+

∫ T

t
Ẽt,y

[
λ(s)e

−
R s
t

„
µ2

2σ2(u,Yu)
+λ(u)

«
du

]
ds
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Continuous life annuity - random horizon

I In the setting of the previous two slides, consider an insurance
contract that pays a continuous annuity at a rate of 1 unit per
period of time until τ ∧ T .

I It turns out that the value function us(x , y , t) in this case
satisfies the same HJB equation satisfied by u0(x , y , t), expect
for an extra term of the form γG (y , t).

I Therefore, still in the case ρ = 0, we have

G (y , t) = e−
R T
0 λ(s)ds Ẽt,y

[
e
−

R T
t

„
µ2

2σ2(s,Ys )
+λ(s)−γ

«
ds

]

+

∫ T

t
Ẽt,y

[
λ(s)e

−
R s
t

„
µ2

2σ2(u,Yu)
+λ(u)−γ

«
du

]
ds
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Equity–linked contracts

I For an indifference price that genuinely depends on the
underlying market, consider the an insurance contract of the
form BT = g(Sτ , τ)1{τ≤T}.

I In this case, inserting us(x ,S , y , t) = −e−γxeφ(S ,y ,t) into the
corresponding HJB leads to

φt +

(
a − µbρ

σ(y)

)
φy +

1

2
σ2(y)S2φSS + ρσ(y)bSφSy +

1

2
b2φyy

+
1

2
b2(1− ρ2)φ2

y =
µ2

2σ2(y)
+ λ(t)

[
1− eγg(S ,t)+ψ−φ

]
,

subject to φ(S , y ,T ) = 1.
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Fast-mean reversion asymptotics

I Let us now take

dYt = α(m − Yt)dt + β(ρdW 1
t +

√
1− ρ2dW 2

t )

and consider the regime α = 1/ε, 0 < ε << 1, with
β =

√
2ν/

√
ε, where ν2 is a fixed variance for the invariant

distribution of Yt .

I We then look for expansion of the form

φ(S , y , t) = φ(0)(S , y , t)+
√
εφ(1)(S , y , t)+εφ(2)(S , y , t)+ · · ·
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Operators

I The previous PDE can be rewritten in compact notation as

Lεφ+
ν2

ε
(1− ρ2)φ2

y =
µ2

2σ2(y)
+ λ(t)

[
1− eγg(S ,t)+ψ−φ

]
,

where Lε = 1
εL

0 + 1√
ε
L1 + L2.

I Here

L0 = ν2 ∂
2

∂y2
+ (m − y)

∂

∂y

L1 =
√

2ρν

(
σ(y)S

∂2

∂S∂y
− µ

σ(y)

∂

∂y

)
L2 =

∂

∂t
+

1

2
σ(y)2S2 ∂

2

∂S2

I Collecting terms O(ε−1), O(ε−1/2) and O(1) lead us to
formal expressions for φ(0), φ(1), etc.
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I The previous PDE can be rewritten in compact notation as

Lεφ+
ν2

ε
(1− ρ2)φ2

y =
µ2

2σ2(y)
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[
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]
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0 + 1√
ε
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Zeroth and First Order terms

I Proposition: The first two terms in the expansion for φ are

φ(0) = γπ(0)(S , t)− µ2

2σ2
∗
(T − t)

φ(1) = −γ(T − t)

[
c1S

3π
(0)
SSS(S , t) + c2S

2π
(0)
SS (S , t) +

µ3c3

γ

]
and satisfy

|φ(S , y , t)− (φ(0)(S , t) +
√
εφ(S , t)| = O(ε).

I Here π(0) is the indifference price for the same contract under
a constant volatility σ̄2 = 〈σ2〉, where 〈·〉 denotes the mean
with respect to the invariant distribution of Yt .



Zeroth and First Order terms

I Proposition: The first two terms in the expansion for φ are

φ(0) = γπ(0)(S , t)− µ2

2σ2
∗
(T − t)

φ(1) = −γ(T − t)

[
c1S

3π
(0)
SSS(S , t) + c2S

2π
(0)
SS (S , t) +

µ3c3

γ

]
and satisfy

|φ(S , y , t)− (φ(0)(S , t) +
√
εφ(S , t)| = O(ε).

I Here π(0) is the indifference price for the same contract under
a constant volatility σ̄2 = 〈σ2〉, where 〈·〉 denotes the mean
with respect to the invariant distribution of Yt .


