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» We consider two factor stochastic volatility models of the
form:

dS; = pSidt +o(t, Y:)S:dWE
dY; = a(t,Y:)dt + b(t, Yy)[pdWE + /1 — p2dW?]

» Here 11 and |p| < 1 are constants, a, b are deterministic
functions, and W} and W? are independent one dimensional
P—Brownian motions.

» In addition, we assume the existence of a risk-free bank
account paying a constant interest rate r = 0.
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with initial wealth x and consisting of holding H; units of the
stock with the remaining value invested in the bank account.
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maturing at a future time T, the insurance company tries to
solve the stochastic control problem

u(x,S,y,t) = sup E [U (X?’X . BT) X; =x,5: =S, Ye = y] ,
HeA

where X.,':”X is the terminal value of a self—financing portfolio
with initial wealth x and consisting of holding H; units of the
stock with the remaining value invested in the bank account.

» When B = 0, this reduces to the Merton problem:

WO (x,y, t) = ZZZE [U (X?’X> |X: = x, Yy = y} .



Utility based pricing

» The seller's indifference price for the claim B is the solution
7° to the equation

W(x,y,t) = v’ (x +7°(x,5,y,1),5,y, t).



Utility based pricing

» The seller's indifference price for the claim B is the solution
7° to the equation

W(x,y,t) = v’ (x +7°(x,5,y,1),5,y, t).

» From now on, we consider an exponential utility function of
the form:
U(x) = —e 7%, v > 0.



Utility based pricing

» The seller's indifference price for the claim B is the solution
7° to the equation

W(x,y,t) = v’ (x +7°(x,5,y,1),5,y, t).

» From now on, we consider an exponential utility function of
the form:
U(x) = —e 7%, v > 0.

» We can then write

u(x,S,y,t) = —e *G(S,y,t) = —e eV
UO(X7y7 t) - _e'i’yxl:(y7 t) = —ef'yxe"/}(}’:t)



Utility based pricing
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7° to the equation
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» From now on, we consider an exponential utility function of
the form:
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» We can then write

u(x,S,y,t) = —e *G(S,y,t) = —e eV
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» The indifference price is then given by

G(S,y,t) 1

wo(S.5.1) = 2 log 25 Y = 2000~ 0.0,
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» It is well-known that the power transformation
F(y,t) = f(y, t)Y/1=#" leads to the linear equation

(1—p?)u? ¢
202 ’
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subject to f(y, T) = 1.
» Using Feynman—Kac, we obtain

~ _ T =P
f(t’y) = Et,y [e ft 2U2€S,Z)dsl s (1)

where

b N —

dY, = [a . W’] ds + b [,odWsl +V/1- p2dvv3} ,

o
with dW} = dW} + Aldt and dW2 = dW?2.

> Therefore, whenever o2 is the reciprocal of an affine process,
the solution to Merton's problem can be calculated explicitly.
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Consider now a claim of the form Bt = 1,<7}.
Here 7 is the arrival time of the first jump of an
inhomogeneous Poisson process with intensity A(t), that is

v

P(r > t) = e s 6)ds,

» Crucially, we assume that 7 is independent of (W, W5).
» In this case, we have
v(x+7m°) = supE [_E*V(H“S*fOT HsdserBT}
HeA
— e VTFE [EWBT} sup E [_e_fyx_'yfoT Hsdss}
HeA
= e ™E {ewBT} uO(x,y, t)
» Therefore, the indifference price in this case is given by

1
7w = =logE [eVBT} .
Y



Random horizon

» To obtain a nontrivial indifference price for contracts that are
independent of the financial market, we need to consider the
following modified problem:

UO(Xayv t) = Ssup E[U(XT/\T)]
HeA

I [ /0 ” U(xm)dw)}

HeA

- E [U(XT)(l —o(T)) + /OT U(xu)dq»(u)}

where )
O(t) = Plr < t] =1 — e Jo M),



Solution to Merton's problem - uncorrelated volatility

» Using dynamic programming, we find that the value function
uO(x,y,t) = —e 7F(y, t) for the random horizon satisfies the
HJB equation
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» Using dynamic programming, we find that the value function

uO(x,y,t) = —e 7F(y, t) for the random horizon satisfies the
HJB equation

bpu
Fe + [a—:|F+ ~b’F,
g

2 2
<2M2+>\( )>F+>\( ) = b2p2FFy

.
subject to F(y, T) = e~ Jo ADdt,
» Unfortunately, the power transformation used before does not

lead to a linear equation. To proceed, we take p = 0 and
obtain

Fly,t) = e fOT A(S)dSEt,y [ ft (202(5\/ (5))515]

T _ — 7 —=E——+\(v) )du
+f B [Ns)e Hitirrocs) ]ds
t
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» In the setting of the previous two slides, consider an insurance
contract that pays a continuous annuity at a rate of 1 unit per
period of time until 7 A T.

> It turns out that the value function u*(x, y, t) in this case
satisfies the same HJB equation satisfied by u®(x, y, t), expect
for an extra term of the form vG(y, t).

» Therefore, still in the case p = 0, we have

G(y,t) = e_foTA(s)dSEt,y[ E (202(5\/ +A(s)— 7) ]

T B (. A(u
+/ Et’y [/\(s)e ft (20‘2(UY + ( ) 'Y> ] ds
t
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Equity—linked contracts

» For an indifference price that genuinely depends on the
underlying market, consider the an insurance contract of the

form Br = g(5:, 7)<y

> In this case, inserting u(x, S, y, t) = —e~7¥e?(5¥:1) into the
corresponding HJB leads to

b
o + (a ”(p))<z>y (y)52<z>ss+pa(y)b5<z>sy+%bquyy

1
+§b2( 2)¢y

+ A(£) |1 — g8+

20 (y)

subject to ¢(S,y, T) = 1.
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distribution of Y;.
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» Let us now take
dY, = a(m — Y;)dt + B(pdW} + /1 — p2dW?)

and consider the regime o = 1/¢, 0 < e << 1, with
B = \2v/\/e, where 12 is a fixed variance for the invariant
distribution of Y;.

» We then look for expansion of the form

¢(5ay7 t) = ¢(0)(57y7 t)+\/g¢(1)(57y7 t)+€¢(2)(5,y, t)+' o
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Operators

» The previous PDE can be rewritten in compact notation as

2

L6+ —(1-p*)s] =

+ A(t) |1 — er8(S)+v—9

U() ’
where L = %EO + %Ll + L2
» Here
9?2 0
o _ 207 N9
0? w0
cto= \fl/< )
702558y ~ o(y) ay
o 1 9?2
2 _ o 1 2
L= 5t 5

> Collecting terms O(c~1), O(¢71/2) and O(1) lead us to
formal expressions for ¢(©), ¢(1) etc.
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Zeroth and First Order terms

» Proposition: The first two terms in the expansion for ¢ are

2
© — ~xO(s. - P (T—
3
oD = (T —t)|aS*t0(S, ) + S?rQ(s, 1) + L= ;3

and satisfy

[6(S, v, 1) = (#V(S, £) + VEH(S, 1)] = O(e).

» Here (% is the indifference price for the same contract under
a constant volatility 52 = (o), where (-) denotes the mean
with respect to the invariant distribution of Y;.



