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Abstract

We generalize the stock-flow consistent agent-based macroeconomic model pro-
posed in [7] to the case of state-dependent transition probabilities between types of
agents. We then propose a mean-field approximation, obtain the master equation
associated with it, and the corresponding first and second order terms in a series ex-
pansion with respect to an appropriate scaling of the total number of agents. The first
order term corresponds to the ordinary differential equation governing the determin-
istic mean of the fraction of agents of one type, whereas the second order term is the
partial differential equation satisfied by the density of random perturbations around
the mean. We perform numerical experiments to test the accuracy of the approxima-
tion and give examples of sensitivity analyses with respect to some of the parameters.
We then use the model to investigate the relationship between stock markets with low
returns and high volatility and the proportion of firms with fragile financial positions.

Keywords: stock-flow consistency, macroeconomics, mean-field approximation, master
equation.

1 Introduction

Stock-flow consistent agent-based models (SF-ABM) are rapidly gaining popularity in the
economic literature as a way to obtain more realistic macroeconomic models than the
dominant Dynamic Stochastic General Equilibrium (DGSE) approach [2]. One practi-
cal limitation of this approach is its reliance on numerical simulations that can become
prohibitively time-consuming in the interesting cases where the number of agents is very
large. An appealing alternative to agent-based models for a large number of agents con-
sists in the use of methods inspired by statistical physics as pioneered by [6] and further
developed in [1]. In the specific context of SF-ABM, these techniques were used in [3] and
[4] based on earlier work in [5].

Recent work in [7] uses a mean-field approximation to obtain fast and accurate simu-
lations of a stock-flow consistent agent-based model that is inspired by [3] and [4], yet it is
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significantly different, both with respect to the assumptions for agent behaviour and the
solution method. The model in [7] assumes that firms can be classified as either aggres-
sive (Type 1) or conservative (Type 2) depending on their investment elasticity to past
profits, whereas households can be classified as either non-investors (Type 1) or investors
(Type 2) depending on whether or not they invest a portion of their wealth in the stock
market. By contrast, the households in [3] are classified as borrowing and non-borrowing,
depending on their financial position at the end of each time period, and firms in [4] are
classified as speculative or hedge, again depending on their financial position at the end of
each time period. Crucially, transitions between types occur independently and according
to exogenously given constant transition rates in [7], whereas they depend on endogenous
thresholds in [3] and [4].

The purpose of this paper is to generalize the results of [7] for the case where transition
rates depend on the fraction of agents (i.e firms or households) of a given type (say Type 1
for concreteness), thereby introducing dependence between the agents, since each firm or
household is affected by the state of all other firms or households, as well as endogeneity in
the determination of the transition rates. Section 2 briefly recalls the stock-flow consistent
agent-based model of [7] and introduces the state-dependent transition rates in equations
(5) and (6).

Section 3 generalizes the mean-field approximation for this class of rates along the lines
developed in [1]. In particular, we show that, if we write the fraction of firms of type 1 as
a deterministic trend φ(t) plus stochastic fluctuations of the form ξ(t)/

√
N and perform

a series expansion of corresponding master equation, then we can obtain the ordinary
different equation (69) for φ and the partial differential equation (72) for the density of
ξ(t), both in terms of the functions entering the specification of the transition probabilities.
The general forms of these differential equation obtained here were not presented in [1],
where only a few special cases are discussed, which we reproduce in Examples 1 to 3.

In Section 4 we elaborate on a class of transition probabilities discussed in [1], namely
the state-dependent transition probabilities that arise when agents try to evaluate the
relative merits of being of one type instead of another. If agents estimate that, when the
fraction of agents of type 1 is x, the gains for being of type 1 are normally distributed with
mean g(x) and variance 2/(πβ2), then the probability of positive gains can be approxi-
mated by the function η1(x) given in (89). Adopting this function in the specification of
the transition probabilities in (5) means that agents will be more likely to switch to type
1 when their estimate of the probability of positive gains for being in this class is higher.
We investigate this class of transition probabilities for four different specifications of the
function g(x) and discuss the qualitative aspects of the dynamics that they generate.

Section 5 explores numerical examples for some of the transition rates discussed through-
out the paper. We first show that the mean-field (MF) approximation gives rise to accurate
proportions of the number of agents of each time when compared with the proportions
obtained in the full agent-based model (ABM). Moreover, the MF approximation is also
accurate for the calculation of aggregate variables such as equity prices and total economic
output. We then use the MF approximation to explore the parameter space in a way that
would be prohibitively slow with the ABM simulations. Namely we test the sensitivity
of the growth rate of equity prices and output with respect to two parameters that are
difficult to estimate directly and therefore are likely to be obtained in practice through
calibration, which is exactly where fast approximations are most needed.

We conclude the paper with a practical illustration of the use of the model in an in-
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depth exploration of a specific research question, namely the relationship between macroe-
conomic financial stability and the financial health of individual firms. More concretely,
we recast Minskys classification of firms as hedge, speculative, and Ponzi in terms of our
model and ask whether it is the case that periods of financial instability coincide with an
increase in the proportion of Ponzi firms. The answer provided by the model is unequiv-
ocally positive, as can be seen in Figures 11 and 12. We conclude the paper in Section 5
with suggestions for further generalizations of the model and the approach, in particular
by introducing a higher degree of interaction between agents through transition rates that
also depend on mean-field variables.

2 The agent-based model

We follow the setup of [7] closely and refer to it for any unexplained notation. The economy
consists of a bank, N firms and M households. Letting a denote a constant productivity
per unit of labour and c denote a constant labour cost per unit of output, the output Qt
produced by firms determines the labour demand Lt = Qt/a and the wage bill Wt = cQt.
With a constant markup χ ≥ 1 over unit cost, the price of each unit of output is given by

pt = χc, (1)

so that the wage share of output is constant and given by ω = Wt
pQt

= 1
χ , and consequently

the profit share of output is also constant and given by π = 1 − ω = χ−1
χ . Finally,

each household supplies Lt/M units of labour at time t, thereby receiving a wage rate
wt = Wt

M = caLt
M , which we assume to be the same for all households.

Firm n = 1, . . . , N has capital with nominal value pknt , net debt with nominal value bnt
and εnt shares at average price pent . Treating the shares as liabilities leads to a net worth
equal to vnt = pknt − bnt − pent εnt , whereas considering only debt as a liability leads to a
shareholder equity (i.e “book value”) equal to En = pknt − bnt .

Similarly, household m = 1, . . . ,M has assets consisting of emt shares at average price
pemt and cash balances dmt deposited at the bank, leading to a net worth vmt = pemt emt +dmt .
Finally, the assets of the bank consist of the aggregate net borrowing by firms

Bt =
N∑
n=1

bnt , (2)

plus cash reserves Rt, whereas its liabilities consist of aggregate net deposits of households

Dt =
M∑
m=1

dmt , (3)

leading to a net worth of the form V b
t = Bt +Rt −Dt.

Regarding equities, assume a homogenous behaviour for firms with respect to dividend
payments and share issuance and buyback. Assume further that, instead of trading in
shares for individual companies, investors buy and sell shares of an aggregated fund at a
common price pet , which in turn buys and sells shares from firms. The price pet is then
determined by an equilibrium condition for the supply and demand for equities under the
constraint that

N∑
n=1

ent = Et =
M∑
m=1

emt . (4)
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We use znt ∈ {1, 2} and ζmt ∈ {1, 2} to denote the type for firm n and household m
at time t, respectively. Accordingly, we denote by N1

t and M1
t the number of firms and

households of type 1 at time t and by n1
t = N1

t /N and m1
t = M1

t /M the corresponding
proportions.

We further introduce the vectors kt, bt, εt, zt ∈ RN to denote the capital, debt, num-
ber of issued shares, and type of the N firms at time t and dt, et, ζt ∈ RM to de-
note the deposits, number of owned shares, and type of the M households at time
t. The agent-based model in [7] then consists of rules for updating the state variables
(Qt, p

e
t ,kt, bt, εt, zt,dt, et, ζt), assuming that firms and households change their types ac-

cording to constant, exogenously given probabilities.
In this paper, we drop the constraint of constant transition probabilities and assume

instead that firm n changes type at time t according to the following probabilities:

P (znt+1 = 1|znt = 2) = λf := Ψf (N)λ̄fηf1
(
n1
t

)
P (znt+1 = 2|znt = 2) = 1− λf

P (znt+1 = 2|znt = 1) = µf := Ψf (N)µ̄fηf2
(
n1
t

)
P (znt+1 = 1|znt = 1) = 1− µf

(5)

where λ̄f and µ̄f are constants, ηf1 (·), ηf2 (·) are functions of the current fraction of firms
of type 1, and Ψf (N) is a scaling factor. In other words, each firm decides to change type
according to probabilities that are the same across all firms, but depend on the overall
size of the system through the function Ψf (·) and current state of the system through the
proportion of aggressive firms n1

t .
Similarly, household m changes type at time t according to the following probabilities:

P (ζnt+1 = 1|ζmt = 2) = λh := Ψh(M)λ̄hηh1
(
m1
t

)
P (ζmt+1 = 2|ζmt = 2) = 1− λh

P (ζmt+1 = 2|ζmt = 1) = µh := Ψh(M)µ̄hηh2
(
m1
t

)
P (ζmt+1 = 1|ζmt = 1) = 1− µh

(6)

where λ̄h and µ̄h are constants, ηh1 (·), ηh2 (·) are functions of the current fraction of house-
holds of type 1, and Ψh(M) is a scaling factor. In other words, each household decides
to change type according to probabilities that are the same across all households, but
depend on the overall size of the system through the function Ψh(·) and current state of
the system through the proportion of non-investor households m1

t . Observe that setting
ηf1 = ηf2 = Ψf ≡ 1 and Ψh = ηh1 = ηh2 ≡ 1 leads to the model with constant transition
probabilities analyzed in [7].

For the rest of the model, namely the stock-flow dynamics of the balance-sheet variables
of firms and households, we adopt the same specifications as in [7]. Namely, let αz, β and
γ denote, respectively, the sensitivity of investment by firms to gross profits, capacity
utilization, and current level of debt, so that the investment demand of firm n at t+ 1 is
given by

int+1 = (αznt π + β)pqnt − γbnt , (7)

where it is assumed that the portion of total production Qt allocated to firm n is

qnt =
knt∑N
n=1 k

n
t

Qt, (8)
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that is, firms with higher capital attract a larger portion of total demand. It is further
assumed that α1 > α2, that is to say, investment by aggressive firms is more sensitive to
gross profits than for conservative ones. We then have that the capital for firm n at time
t+ 1 is given by

pknt+1 = int+1 + (1− δ)pknt , (9)

where δ is a constant depreciation rate.
Denote further by syζ , s

w
ζ ∈ [0, 1] the saving rates from income and wealth for a house-

hold of type ζ, so the amount saved by household m in the period [t, t+ 1] is

smt+1 = ymt+1 − cmt+1 = syζmt
ymt+1 − (1− svζmt )vmt , (10)

where

ymt+1 = (1− π)p
Qt+1

M
+ rdmt + δepete

m
t , (11)

is the income received by household m when total production is equal to Qt+1. As can
be seen in the expression above, this income consists of wages (calculated by dividing
the total wage bill (1 − π)Qt+1 among M households), plus interest income on deposits
(calculated by multiplying a constant interest rate r by the value of deposits held at time
t), plus dividend income on shares (calculated by multiplying a constant dividend yield δe

by the value of shares held at time t). We assume that sy1 ≤ s
y
2 and sv1 ≤ sv2, so that non-

investor households spend a higher proportion of both income and wealth than investor
households.

Consider next the following aggregate variables:

Kt =
N∑
n=1

knt , Q1
t =

∑
{znt =1}

qnt , Q2
t =

∑
{znt =2}

qnt , (12)

D1
t =

∑
{ζmt =1}

dmt , D2
t =

∑
{ζmt =2}

dmt , S2
t+1 =

∑
{ζmt+1=2}

smt+1 (13)

D2,t+1
t =

∑
{ζmt+1=2}

dmt , E2,t+1
t =

∑
{ζmt+1=2}

emt (14)

In these expressions, notice that the lower time index refers to the time in which the
summands are evaluated, whereas the upper time index refers to the time in which the
type zmt+1 is evaluated. When these two times are equal we suppress the upper index. For

example, Q1
t denotes the total production of firms of type 1 at time t, whereas D2,t+1

t is
the sum of deposits that were held at time t by households that are of type 2 at time t+1.
Finally, define the auxiliary variables

It+1 = πp(α1Q
1
t + α2Q

2
t ) + βpQt − γBt (15)

At+1 = πpQt+1 − rBt − δpKt − δepetEt (16)

Ft =πp(α1Q
1
t + α2Q

2
t ) + βpQt − γBt + (1− sy1)rD1

t + (1− sv1)D1
t

+ (1− sy2)(rD2
t + δepetEt) + (1− sv2)(D2

t + petEt). (17)

Using the same arguments as in [7], it follows that if we know the time-t values of the types
zt, ζt, total production Qt, equity price pet and balance sheet variables kt, bt, εt,dt, et, then
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the types at time (t+ 1) are obtained according to the transition probabilities in (5) and
(6), that is:

znt+1|znt =2 =

{
1 with probability λf

2 with probability 1− λf (18)

znt+1|znt =1 =

{
1 with probability 1− µf
2 with probability µf

(19)

ζmt+1|ζmt =2 =

{
1 with probability λh

2 with probability 1− λh (20)

ζmt+1|ζmt =1 =

{
1 with probability 1− µh
2 with probability µh

(21)

(22)

wheres the time-(t+1) values of the other variables can be obtained sequentially as follows:

Qt+1 =
Ft/p

1− (1− π)[(1− sy1)m1
t + (1− sy2)m2

t ]
(23)

pet+1 =
ϕ
(
D2,t+1
t + S2

t+1

)
− (1−$) [It+1 − δpKt −At+1]

Et − ϕE2,t+1
t

(24)

knt+1 = (αznt π + β)
knt
Kt
Qt − γ

bnt
p

+ (1− δ)knt (25)

bnt+1 = [1 +$(r − γ)]bnt +$[(αznt π + β)p
knt
Kt
Qt − πp

knt+1

Kt+1
Qt+1 + δepet ε

n
t ] (26)

εnt+1 = εnt +
(1−$)[(αznt π + β)p

knt
Kt
Qt − πp

knt+1

Kt+1
Qt+1 + (r − γ)bnt + δepet ε

n
t ]

pet+1

(27)

dmt+1 =

{
vmt + smt+1 + (pet+1 − pet )emt if zmt+1 = 1
(1− ϕ)(vmt + smt+1 + (pet+1 − pet )emt ) if zmt+1 = 2

(28)

emt+1 =

{
0 if zmt+1 = 1
ϕ[vmt +smt+1+(pet+1−pet )emt ]

pet+1
if zmt+1 = 2

(29)

3 Mean-Field Approximation

As can be seen from (18)-(22) and (23)-(29), the agent-based model (ABM) of the previous
section requires the computation of four variables (the type z, capital k, debt b, and
equity ε) for each firm and three variables for each household (the type ζ, deposits d,
and share holdings e) for each household, in addition to the total production Q and
equilibrium stock price pe. Naturally, the model becomes very computationally intensive
for a realistic number of firms and households. The purpose of this section is to extend
the mean-field (MF) approximation introduced in [7] to the case of the state-dependent
transition probabilities in (5) and (6). This then allows for much faster simulations of the
model, which are particularly useful for the kind of exploration of the parameter space
that is necessary in the absence of close-form analytic expressions to calibrate the model.

The key idea of the MF approximation consists of dividing the entire population of
firms into two classes according to their type, namely aggressive and conservative, and
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only keep track of the average value of the variables of interest across each of the classes,
with a similar procedure used for households.

Denote the mean-field value of a variable x for agents of type z at time t by xzt , obtained
by dividing the aggregate value of x for all agents of type z by the number of agents of
type z. Its time evolution requires two steps: we first compute the deterministic value
x̃zt+1 before agents change type at time t+ 1 and then calculate the new mean-field value
xzt+1 taking into account the changes in type. This is necessary because agents carry their
balance sheet items with them when they change type.

For example, the deterministic evolution of capital for firms of type z is assumed to
be given by the mean-field analogue of equation (25), namely:

k̃zt+1 = (αzπ + β)
k
z
t

Kt
Qt − γ

b
z
t

p
+ (1− δ)kzt , (30)

where k
z
t and b

z
t are the mean-field capital and debt for firms of type z at time t. Now, since

the expected value of the number of firms changing from type 2 to type 1 is λf (N −N1
t )

(namely the transition probability for each firm multiplied by the number of firms of type
2 at time t) and the expected value of the number of firms changing from type 1 to type 2
at time t+ 1 is µfN1

t , we see that the expected aggregate capital of firms of type 1 after
the change of type is

λf (N −N1
t )k̃2

t+1 + (1− µf )N1
t k̃

1
t+1, (31)

whereas the expected aggregate capital of firms of type 2 after the change of type is

µfN1
t k̃

1
t+1 + (1− λf )(N −N1

t )k̃2
t+1. (32)

We then declare that the mean-field values of capital at time t+ 1 to be these aggregate
values divided by the realized number of firms of each type at time t+ 1.

To summarize, we set the mean-field values of x for firms of type z after a change of
type at time t+ 1 as

x1
t+1 =

λf (N −N1
t )x̃2

t+1 + (1− µf )N1
t x̃

1
t+1

N1
t+1

(33)

and

x2
t+1 =

µfN1
t x̃

1
t+1 + (1− λf )(N −N1

t )x̃2
t+1

N −N1
t+1

. (34)

Similar expressions hold for mean-field variables for households, with M ζ
t and M ζ

t+1 re-
placing N z

t and N z
t+1.

Analogously to what we did in the previous section, we want to show that given the
time t values for the number of firms and households of each type, the total production

Qt, equity price pet and mean-field balance sheet variables k
1
t , k

2
t , b

1
t , b

2
t , ε

1
t , ε

2
t for firms and

d
1
t , d

2
t , e

2
t for households (notice that e1

t = 0 for all t from the definition of a household of
type 1), we can obtain their time (t + 1) values through appropriately modified versions
of (18) to (29). As a first step, we let the change in type still be given by (18)–(22) and
focus on the evolution of the other variables.

Start with the analogue of (10) for the mean-field savings for each type of households
before a change of type at time t+ 1, namely:

s̃ζt+1 = syζ ỹ
ζ
t+1 − (1− svζ)v

ζ
t , (35)
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where the mean-field income for the two types of households before a change of type is
given by

ỹ1
t+1 = (1− π)pQ̃t+1/M + rd

1
t (36)

ỹ2
t+1 = (1− π)pQ̃t+1/M + rd

2
t + δepet

Et
M −M1

t

. (37)

Observe that households of type 1 (non-investors) only receive income from wages and
interest on deposit, whereas households of type 2 (investors) receive dividend income
calculated as the total amount of dividends paid by firms δepetEt divided by the number
of investor households (M −M1

t ). Accordingly, the mean-field wealth for the two types of
households before changing type at t+ 1 are given by wealth at time t, plus savings, plus
capital gains, that is

ṽ1
t+1 = v1

t + s̃1
t+1 (38)

ṽ2
t+1 = v2

t + s̃2
t+1 + (pet+1 − pet )

Et
M −M1

t

. (39)

Next, compute the values v1
t+1 and v2

t+1 according to the rebalancing rules (33) and (34)
(suitably modified for households instead of firms). Finally, define the mean-field analogues
of (12) and (14) as

Kt = N1
t k

1
t + (N −N1

t )k
2
t , Q1

t =
k

1
t

Kt
QtN

1
t , Q2

t =
k

2
t

Kt
Qt(N −N1

t ) (40)

D1
t = d

1
tM

1
t , D2

t = d
2
t (M −M1

t ), S2
t+1 = s2

t+1(M −M1
t+1) (41)

D2,t+1
t = d

1
tµ

hM1
t + d

1
t (1− λh)(M −M1

t ), (42)

E2,t+1
t = (1− λh)Et, (43)

which can be used to define the mean-field analogue of expression (15) to (17).
Using the same arguments as in [7], it follows that total production, equity price and

mean-field balance sheet variables for households at time t+ 1 can be obtained as

Qt+1 =
Ft/p

1− (1− π)[(1− sy1)m1
t + (1− sy2)(1−m1

t )]
(44)

pet+1 =
ϕ
(
D2,t+1
t + S2

t+1

)
− (1−$) [It+1 − δpKt −At+1]

[1− ϕ(1− λh)]Et
(45)

d
1
t+1 = v1

t+1, d
2
t+1 = (1− ϕ)v2

t+1, e2
t+1 =

ϕv2
t+1

pet+1

(46)

Similarly, the capital, debt, and equity for firms before a change of type can be obtained
as

k̃zt+1 = (αzπ + β)
k
z
t

Kt
Qt − γ

b
z
t

p
+ (1− δ)kzt (47)

b̃zt+1 = [1 +$(r − γ)]b
z
t +$[(αzπ + β)p

k
z
t

Kt
Qt − πp

k̃zt+1

Kt+1
Qt+1 + δepet ε

z
t ] (48)

ε̃zt+1 = εzt +
(1−$)[(αzπ + β)p k

z
t
Kt
Qt − πp

k̃zt+1

Kt+1
Qt+1 + (r − γ)b

z
t + δepet ε

z
t ]

pet+1

(49)
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from which we can obtain k
z
t+1, b

z
t+1, ε

z
t+1 by using the rebalancing rules (33) and (34).

The mean-field dynamics (44)-(49) is already considerably simpler than the agent-
based dynamics (23)-(29). Further simplification can be achieved by treating the number
of firms and households of each type as a continuous-time Markov chain, instead of keeping
track of individual transitions for each agent as in (18)-(22). For this, consider the two-
dimensional continuous-time Markov chain with state (N1

t ,M
1
t ), that is, the numbers of

aggressive firms and non-investor households at time t, and state space {0, 1, . . . , N} ×
{0, 1, . . . ,M}. Accordingly, we assume that the Markov chain at state (n,m) can jump to
one of four neighbouring states (n± 1,m± 1) with transition rates given by

bf (n) = Ψf (N)λ̄fηf1
(
n
N

)
(N − n), df (n) = Ψf (N)µ̄fηf2

(
n
N

)
n

bh(m) = Ψh(M)λ̄hηh1
(
m
M

)
(M −m), dh(m) = Ψh(M)µ̄hηh2

(
m
M

)
m

(50)

In other words, a jump from n to n + 1, corresponding to the “birth” of a type 1 firm,
occurs in an small time interval dt with probability bf (n)dt obtained as the probability
λf of an individual firm to transition from type 2 to type 1 multiplied by the number
(N − n) of firms of type 2. Similarly, a jump from n to n − 1, corresponding to the
“death” of a type 1 firm, occurs in an small time interval dt with probability df (n)dt
obtained as the probability µf of an individual firm to transition from type 1 to type 2
multiplied by the number n of firms of type 1. The death and birth transition rates for
households are obtained analogously. Observe that these calculations for transition rates
assume that the change in type for different firms and households are independent random
events, thus the multiplication of each individual transition probability by the number of
agents undergoing that transition. Each firm, however, takes into account the size of the
system through the function Ψf (·) and the choices of the other firms through the functions

ηf1 (·) and ηf2 (·). A similar effect of the population of households on the decision of each
household is modelled through the functions Ψh(·), ηh1 (·) and ηh2 (·).

The state of the Markov chain above is characterized by the joint probability

P (n,m; t) = Prob
(
N1
t = n,M1

t = m
)
. (51)

It follows from the Markov property that P (n,m; t) satisfies the following so-called master
equation (ME)

∂P (n,m; t)

∂t
= df (n+ 1)P (n+ 1,m; t) + bf (n− 1)P (n− 1,m; t)

+ dh(m+ 1)P (n,m+ 1; t) + bh(m− 1)P (n,m− 1; t)

− [df (n) + bf (n) + dh(m) + bh(m)]P (n,m; t), (52)

with the obvious modifications at the boundaries n = m = 0, n = N , and m = M . Exact
solutions of (52) are rarely available, and asymptotic approximations relying on the large
number of agents are often used in practice. An approximation of this type was proposed
in [5], based on a method adapted from [1] and earlier references, for the case of two types
of firms and homogenous households. This was extended in [7] for the case of two types of
firms and two types of households, but restricted to constant transition probabilities. In
what follows, we adjust the method to the case of the more general transition probabilities
in (5) and (6).

Assuming that firms and households choose their type independently from each other,
we have that

P (n,m; t) = P (n, t)P (m, t), (53)

9



where P (n, t) = Prob
(
N1
t = n

)
and P (m, t) = Prob

(
M1
t = m

)
. Substituting (53) on

both sides of (52) and assuming further that P (n, t) 6= 0 and P (m, t) 6= 0 for all n,m, we
find that (52) decouples into the following equations:

∂P (n, t)

∂t
= df (n+ 1)P (n+ 1, t) + bf (n− 1)P (n− 1, t)

− [df (n) + bf (n)]P (n, t), (54)

∂P (m, t)

∂t
= dh(m+ 1)P (m+ 1, t) + bh(m− 1)P (m− 1, t)

− [dh(m) + bh(m)]P (m, t), (55)

which are identical to the master equation analyzed in [5]. We proceed the analysis in
terms of firms, with the results for households following from obvious modifications. To
simplify the notation, we set d := df , b := bf , λ̄ := λ̄f , µ̄ := µ̄f , η1 := ηf1 , η2 := ηf2 and
g := Ψf .

As in [5], for a generic function a(n) define the lead and lag operators as

L[a(n)] = a(n+ 1), L−1[a(n)] = a(n− 1), (56)

so that we can rewrite (54) as

∂P (n, t)

∂t
= (L− 1)[d(n)P (n, t)] + (L−1 − 1)[b(n)P (n, t)]. (57)

Applying Taylor expansions to a(n+1) and a(n−1) at n we find that the operators (L−1)
and (L−1 − 1) can be written as:

(L− 1)[a(n)] = a(n+ 1)− a(n) =
∞∑
k=1

1

k!

dka(n)

dnk
(58)

and

(L−1 − 1)[a(n)] = a(n− 1)− a(n) =

∞∑
k=1

(−1)k

k!

dka(n)

dnk
. (59)

We now make the ansatz that the numbers of firms of type 1 at time t can be written as

N1
t = Nφ(t) +

√
Nξ(t), (60)

for a determinist function φf (t) corresponding to its trends and a stochastic processes
ξf (t) describing random fluctuations around the trend, we will now rewrite (57) in terms
of φ(t) and ξ(t). Observe first that, since φ(t) is assumed to be deterministic, we can write

P (n, t) = Q(ξ, t) = Q(ξ(t), t), (61)

where Q(ξ, t) is the distribution of the stochastic process ξ(t). This leads to

∂P (n, t)

∂t
=
∂Q(ξ, t)

∂t
+
∂Q(ξ, t)

∂ξ

dξ

dt
=
∂Q(ξ, t)

∂t
−
√
N
∂Q(ξ, t)

∂ξ

dφ

dt
, (62)

where we differentiated the relation (60) at constant N1
t = n to obtain dξ

dt = −
√
N dφ

dt .
Rescaling time by τ = Ψ(N)t, we obtain

∂P

∂t
=
∂Q

∂τ

dτ

dt
−
√
N
∂Q

∂ξ

dφ

dτ

dτ

dt
= Ψf (N)

∂Q

∂τ
−Ψf (N)

√
N
∂Q

∂ξ

dφ

dτ
. (63)
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Next observe that the transition probabilities can be expressed as

b(n) = b(ξ, τ) = λ̄ · η1

(
φ(τ) +

ξ√
N

)
· (N −Nφ(τ)−

√
Nξ) ·Ψ(N) (64)

d(n) = d(ξ, τ) = µ̄ · η2

(
φ(τ) +

ξ√
N

)
· (Nφ(τ) +

√
Nξ) ·Ψ(N). (65)

Finally, using the fact that da(n)
dn = 1√

N

da(ξ)
dξ , we can re-write (58) and (59) as

(L− 1)[a(ξ)] =
∞∑
k=1

1

k!N
k
2

dka(ξ)

dξk
(66)

(L−1 − 1)[a(ξ)] =
∞∑
k=1

(−1)k

k!N
k
2

dka(ξ)

dξk
(67)

Inserting (62) in the left-hand side of (57) and (65)-(67) in the right-hand side we
obtain

Ψ(N)
∂Q

∂τ
−Ψ(N)

√
N
∂Q

∂ξ

dφ

dτ
= (L− 1)[d(ξ, t)Q(ξ, τ)] + (L−1 − 1)[b(ξ, τ)Q(ξ, τ)] (68)

=

( ∞∑
k=1

1

k!N
k
2

dk

dξk

)[
µ̄ · η2

(
φ(τ) +

ξ√
N

)
· (Nφ(t) +

√
Nξ) ·Ψ(N) ·Q(ξ, τ)

]

+

( ∞∑
k=1

(−1)k

k!N
k
2

dk

dξk

)[
λ̄ · η1

(
φ(τ) +

ξ√
N

)
· (N −Nφ(t)−

√
Nξ) ·Ψ(N) ·Q(ξ, τ)

]

Collecting terms of order O(Ψ(N)
√
N) in the equation above leads to

dφ

dτ
= F (φ), (69)

where
F (x) = λ̄η1(x)(1− x)− µ̄η2(x)x. (70)

We see that (69) has an equilibrium at φ∗ satisfying F (φ∗) = 0, which is equivalent to

η1(φ∗)

η2(φ∗)
=

µ̄φ∗

λ̄(1− φ∗)
. (71)

Similarly, collecting terms of order O(Ψ(N)) in (68) leads to

∂Q

∂τ
=
{
λ̄[η1(φ)− η′1(φ)(1− φ)] + µ̄[η2(φ) + η′2(φ)φ]

}∂(ξQ)

∂ξ

+
λ̄η1(φ)(1− φ) + µ̄η2(φ)φ

2

∂2Q

∂ξ2
. (72)

We see that (69) is the ordinary differential equation providing the dynamics of the de-
terministic trend for the fraction of firms of type 1, whereas (72) is the partial differential
equation providing the dynamics of the distribution of fluctuations around the trend,
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known as the Fokker-Planck equation. At the equilibrium φ∗, we find that the stationary
solution to (72) is a Gaussian distribution with mean zero and variance

σ2 =
1

2

λ̄η1(φ∗)(1− φ∗) + µ̄η2(φ∗)φ∗

λ̄[η1(φ∗)− η′1(φ∗)(1− φ∗)] + µ̄[η2(φ∗) + η′2(φ∗)φ∗]
(73)

It follows that the fraction n1
τ = N1

τ /N of firms of type 1 can be approximated by a
OrnsteinUhlenbeck process ñ1

τ of the form

dñ1
τ = κou

(
φ∗ − ñ1

τ

)
dτ + σoudWτ , (74)

where the parameters κou and σou are chosen to match the variance σ2/N , that is to say,
satisfying

σ2
ou

2κ
=
σ2

N
. (75)

Example 1. As we mentioned in Section 2, choosing η1(x) = η2(x) = 1 and Ψ(N) = 1
leads to the constant transition rates considered in [7], namely

b(n) = λ̄(N − n), d(n) = µ̄n. (76)

In other words, with constant transition probabilities for individual agents in (5) and (6),
the aggregate birth rate is a linear decreasing function of the current proportion of agents
of type 1, wheres the aggregate death rate is a linear increasing function of n/N . In this
case, the equation for the deterministic trend reduces to

dφ

dt
= λ̄(1− φ)− µ̄φ, (77)

whose solution is

φ(t) =
λ̄

λ̄+ µ̄
+ e−(λ̄+µ̄)t

(
φ(0)− λ̄

λ̄+ µ̄

)
(78)

and converges asymptotically to the equilibrium

φ∗ =
λ̄

λ̄+ µ̄
. (79)

We then find that the stationary solution to (72) is a Gaussian distribution with mean
zero and variance

σ2 =
µ̄λ̄

(µ̄+ λ̄)2
. (80)

Example 2. If we take η1(x) = η2(x) = x and Ψ(N) = 1, the transition rates take the
more interesting form 1

b(n) = λ̄
n(N − n)

N
, d(n) = µ̄

n2

N
. (81)

1Replacing the factor n2 in d(n) by n(n− 1) and the scaling function does Ψ(N) = 1 by Ψ(N) = 1/N
doe not change the asymptotic approximation (apart from a re-scaling of time) and leads to the same
model considered on page 35 of [1], where a justification for these transition probabilities is given in terms
of population dynamics.
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We find that the equation for the deterministic trend becomes

dφ

dt
= λ̄φ(1− φ)− µ̄φ2. (82)

whose solution is the logistic curve

φ(t) =
λ̄

λ̄+ µ̄− ce−βt
, (83)

with c = 1− λ̄
φ(0)(λ̄+µ̄)

and β = (µ̄+λ̄)2

λ̄
, which also converges asymptotically to the equilib-

rium φ∗ = λ̄
λ̄+µ̄

. We find that the stationary solution is also a Gaussian distribution with

the same variance as in the previous example, namely σ2 = µ̄λ̄
(µ̄+λ̄)2

Example 3. Next, consider η1(x) = x/(1 − x) and η2(x) = x and Ψ(N) = 1. In this
case2, the transition rates take the form

b(n) = λ̄n, d(n) = µ̄
n2

N
. (84)

We then find that the equation for the trend becomes

dφ

dt
= λ̄φ− µ̄φ2, (85)

whose equilibrium is φ∗ = λ̄
µ̄ . In this case the stationary solution to (72) is a Gaussian

distribution with mean zero and variance σ2 = λ̄/µ̄.

4 Evaluating Alternatives

The simple examples at the end of the previous section lead to aggregate dynamics with
essentially the same asymptotic properties of the case with constant transition probabili-
ties. In this section, we explore a more elaborate example described in detail in [1, Section
5.3], where the transition probabilities reflect the perceived advantage between the two
classes of agents. As before, we describe the results in terms of firms, with the results for
households being obtained through obvious modifications.

Start by observing that the (54) admits a stationary solution of the form

p(n) = p0

(
λ̄

µ̄

)n
N !

n!(N − n)!

n∏
k=0

η1

(
k
N

)
η2

(
k
N

) , (86)

where p0 is a normalization constant obtained from the condition
∑N

n=0 p(n) = 1. This
is a complicated expression, and the purposes of the ansatz (60) and the corresponding
series expansion techniques introduced in the previous section is to provide an accurate
yet tractable approximation to it. We now introduce a different approximation based on
the binomial coefficient appearing in (86).

2Taking Ψ(N) = 1/N instead of Ψ(N) = 1 does not change the asymptotic approximation (apart from
re-scaling time) and leads to the the model presented on page 37 of [1] as an example with a nonlinear
death rate.
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If we rewrite (86) as

p(n) =
1

Z
e−βNU( n

N ), (87)

for a potential functions U , parameters β > 0 and normalization constant Z, we find that

−βNU
( n
N

)
− logZ = log p0 +n log

(
λ̄

µ̄

)
+log

(
N !

n!(N − n)!

)
+

n∑
k=0

log

(
η1

(
k
N

)
η2

(
k
N

)) . (88)

This is still a complicated expression, so we make the additional assumption that

η1(x) =
eβg(x)

eβg(x) + e−βg(x)
(89)

η2(x) =
e−βg(x)

eβg(x) + e−βg(x)
= 1− η1(x) (90)

for some function g. Using Stirling’s approximation for the binomial coefficient, we obtain
from (88) that the potential function can be written as

U
( n
N

)
= − 2

N

n∑
k=0

g

(
k

N

)
− 1

β

[
H
( n
N

)
− n

N
log

(
λ̄

µ̄

)]
+O

(
logN

N

)
, (91)

where H(x) = −x log x− (1−x) log(1−x) is an entropy function. For N sufficiently large,
we see that (91) can be approximated by the following expression

U(x) = −2

∫ x

0
g(s)ds− 1

β

[
H(x)− x log

(
λ̄

µ̄

)]
. (92)

Differentiating this expression and setting the derivative equal to zero we see that the
potential has a critical point at x∗ satisfying

e2βg(x∗) =
µ̄x∗

λ̄(1− x∗)
. (93)

Recalling that (69) has a stationary solution for φ∗ satisfying (71), we see that, when
η1 and η2 are given by (89) and (90), the stationary solution of the dynamics for the trend
φ and the critical points of the potential U(x) coincide. We see that this corresponds to
the fraction of agents of type 1 for which the stationary probability p(k) has a maximum,
corresponding to the minimum of the potential U(x). This in turn is compatible with the
ansatz (60), which is expected to approximate well the fraction of agents of type 1 when
the probability P (n, t) has a well-defined peak of order N and fluctuations of order

√
N ,

as is the case near a stationary distribution of the form (86).
Apart from this a posteriori justification of the ansatz (60), the choice of functions

η1 and η2 in (89) and (90) allow us to interpret the transition probabilities in terms of
how the agents perceive the comparative advantages of belonging to each class. For this,
suppose that the gain G(x) from being an agent of type 1 instead of type 2 conditional
on a fraction x of agents of type 1 is given by a normal random variable with mean g(x)
and variance 2/(πβ2). If we then compute the probability that this gain is positive for a
given value of x we find

Prob[G(x) ≥ 0] =
1

2
[1 + erf(u)], (94)
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where we used the error function

erf(G) =
2√
π

∫ u

0
e−y

2
dy, (95)

for u = βg(x)
√
π/2. Using the approximation erf(x) ≈ tanh(2x/

√
π) we find that

Prob[G(x) ≥ 0] ≈ eβg(x)

eβg(x) + e−βg(x)
= η1(x). (96)

In other words, for a given fraction x of agents of type 1, the higher the probability of
realizing a positive gain by being of type 1, the higher the transition rate from type 2
to type 1. Moreover, the parameter β measures the degree of confidence that agents
have in assessing the advantage of being of one type over another: a small variance in
the distribution of gains from being of type 1 means a large value of β and consequently
a larger value of η1(x) whenever g(x) > 0. Conversely, near total ignorance about the
distribution of gains means β ≈ 0 and η1(x) ≈ η2(x) ≈ 1/2.

Pursuing this interpretation further, for large values of β we see from (92) that

U ′(x) ≈ −2g(x),

so that the critical points of the potential U(x) are close to the zeros of the function g(x).
In other words, a maximum of the stationary distribution (86) corresponds to a fraction
x∗ of agents of type 1 for which the agents are indifferent between the two types.

Observe further that the function g(x) can be used to investigate the stability of the
equilibrium of (69). Namely, recalling (70) and using the expression

g(x) =
1

2β
log

(
η1(x)

η2(x)

)
(97)

together with the equilibrium condition (71) we find that

F ′(x) =
λ̄η1(x)

x

[
2βx(1− x)g′(x)− 1

]
, (98)

from which we conclude that the condition for local stability of an equilibrium for (69) is

2βx(1− x)g′(x) < 1. (99)

In Figures 4 to 3 we explore four examples based on different specifications of the
function g. We take λ̄ = µ̄ = 0.5 in all cases, so that there is no exogenous bias towards
either type of agent. The equilibrium condition (71) is then equivalent to

φ∗ = η1(φ∗) =
eβg(φ

∗)

eβg(φ∗) + e−βg(φ∗)
, (100)

which we recognize as a Gibbs distribution for a two-level system. The stationary solution
to (72) in this case has variance

σ2 =
φ∗(1− φ∗)
1− η′1(φ∗)

. (101)

We take β = 10, so that the standard deviation in the agents’ perception of gains from
being in a given class is approximately 0.08.
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Example 4. For g(x) = x − 0.2 we see that the function η(x) takes the form of the
logistic curve shown in Figure 2: when x → 0 (most agents are of type 2), we have that
g(x)→ −0.2 (there are significant perceived losses associated with being an agent of type
1) and η1(x)→ 0 (the individual transition probability from type 2 to type 1 is negligible).
Conversely, when x → 1 (most agents are of type 1), we see that g(x) → 0.8 (there are
significant perceived gains associated with being an agent of type 1) and η1(x) → 1 (the
individual transition probability from type 2 to type 1 is at its maximum). There is an
equilibrium at φ∗1 = 0.0369 and another at φ∗2 = 0.727. Using (99), we can easily determine
that the first equilibrium stable whereas the second is unstable, as we can confirm from
the corresponding graph of the function F (x) on Figure 3.

Example 5. The opposite situation arises when g(x) = −x+ 0.8, with the function η(x)
taking the form of the reversed logistic curve shown in Figure 2, that is to say, decreasing
from η1(x)→ 1 when x→ 0 to η1(x)→ 0 when x→ 1. The equilibrium fraction of agents
of type 1 is now reached at φ∗ = 0.7461, which is seen to be stable according to (99), as
can be confirmed from the graph of the function F (x) on Figure 3.

Example 6. Consider next the function g(x) = −x2 + x− 0.16. In this case, the agents
are indifferent between the two types when the fraction of agents of type 1 is either x = 0.2
or x = 0.8. As we can see in Figure (4), the solutions to x = η1(x), which correspond
to the equilibria of (69), converge to these values when β → ∞. When β < β̄ ≈ 13, the
equilibrium for (69) is unique. For β = 10, we can see in Figure 2 that η1(x) peaks around
x = 0.5, where the perceived advantage of being an agent of type 1 is the largest, and
decreases as x approaches either 0 or 1, where it is advantageous to be an agent of type
2. The unique equilibrium in this case is φ∗ = 0.7117, which is easily seen to be stable
according to (99), as we can confirm from the graph of the function F (x) in Figure 3.

Example 7. Conversely, for g(x) = x2−x+ 0.16, Figure 2 shows that the function η1(x)
has a minimum at x = 0.5, where agents deem to be least advantageous to be of type 1.
The equilibrium in this case is reached at φ∗ = 0.2883 and is also stable as can be seen
from the graph of the function F (x) in Figure 3.

5 Numerical Experiments

In this section we illustrate the properties of the model by simulating both the full agent-
based model and the mean-field approximation for different specifications of the transition
probabilities. We use the base parameters described in Table 1, which were chosen con-
sistently with the assumption that the discrete-time equations in the model correspond
to ∆t = 0.25 years. In particular, the one-period depreciation rate δ, the dividend yield
δe, and the interest rate r were chosen consistently with annualized rates of 4% for each
variable. As in [7], we perform the agent-based simulations with p ≡ 1.4, pe0 = 1 and
initialize the aggregate balance sheet items for firms at pK0 = 1400, B0 = 667, E0 = 333,
leading to initial aggregate net worth of the firm sector equal to V F

0 = 400, and aggre-
gate balance sheet items the household sector at D0 = 1067 and pe0E0 = 333, leading to
initial aggregate net worth of the household sector equal to V H

0 = 1400. We also assume
a constant level of cash reserves for the bank R0 = 400, so that the initial net worth of
the bank implied by the aggregate balance sheets of firms and households is V B

0 = 0. We
then assume these aggregate amounts are uniformly distributed among individual firms
and households respectively.
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Symbol Value Description

N 1000 number of firms
M 4000 number of households
a 1 labour productivity
c 1 unit labour cost
χ 1.4 markup factor
α1 0.575 profit elasticity of investment for aggressive firms
α2 0.4 profit elasticity of investment for conservative firms
β 0.16 utilization elasticity of investment
γ 0.05 debt elasticity of investment
r 0.01 one-period interest rate on loans and deposits
δ 0.01 one-period depreciation rate
δe 0.01 one-period dividend yield
sy1 0.15 propensity to save from income for non-investors
sy2 0.4 propensity to save from of income for investors
sv1 0.85 propensity to save from wealth for non-investors
sv2 0.85 propensity to save out of wealth for investors
µ̄f 0.6 transition probability from aggressive to conservative type for firms
λ̄f 0.4 transition probability from conservative to aggressive type for firms
µ̄h 0.2 transition probability from non-investors to investors type for households
λ̄h 0.3 transition probability from investors to non-investor type for households
$ 0.6 proportion of external financing for firms obtained issuing new debt
ϕ 0.5 proportion of investor household wealth allocated to stocks

Table 1: Baseline parameter values

5.1 Accuracy of the approximation and parameter sensitivity

In [7], the accuracy of the approximation for constant transition rates is tested by com-
paring the number of firms and households of each type obtained from the agent-based
simulation and the mean-field approximation. We perform the same comparison for the
transition probabilities in Examples 2 and 3 in Section 3 and two different specifications
of the function g(x) in Section 4, namely Examples 5 and 6. The results are shown in
Figure 5, where we focus on the number of firms only and omit the analogous results for
the number of households for the sake of brevity. As we can see in the graphs, in both
the ABM simulation and the MF approximation the proportions of aggressive and con-
servative firms oscillate around the asymptotic limit φ∗ with variance σ2/N as expected.
In Figure 6, we compute the time evolution for equity prices for the same examples and
observe a close match between the computationally intensive agent-based model and its
mean-field approximation.

Next in Figures 7 to 8 we focus on two specifications of the transition probabilities,
namely the cases g(x) = x − 0.8 and g(x) = −x2 + x − 0.16 in Section 4, and use the
mean-field approximation to perform sensitivity tests with respect to the discretionary
parameters $ and ϕ. The results for the proportion $ of external financing that firms
raised through new debt confirm the findings of [7] for constant transition probabilities,
namely that the average growth rates of both equity prices and output are increasing
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functions of $ and tend to flatten out around the base value $ = 0.6 adopted in Table 1.
Regarding ϕ, we see in Figures 7 to 8 that the average growth rate of output increases

with ϕ, similarly to what was reported in [7] for constant transition probabilities, albeit
with an increasing standard deviation, whereas [7] found that the standard deviation of
output growth decreases with ϕ. Similarly, we find that the average growth rate of equity
prices increases with ϕ, although less steeply that in [7]. Finally, in accordance with [7],
equity prices become more volatile as ϕ approaches either zero or one.

5.2 Exploration: the Financial Instability Hypothesis

In the previous section, we presented evidence that the baseline parameters in Table 1
lead to plausible simulation outcomes. Moreover, for some of the parameters that are
least likely to be directly estimated from observed data, such as $ and ϕ, we showed
how perturbations from the baseline values affect aggregate variables such as equity prices
and nominal output. In this section, we use the model to explore the consequences of
heterogeneity in firms and households on one particular macroeconomic aspect: the link
between equilibrium equity prices and the financial fragility of firms. As we mentioned in
the Introduction, this is motivated by Minsky’s Financial Instability Hypothesis (FIH),
according to which periods of financial turmoil are predicated on a higher proportion of
financially fragile firms (see for example [8]).

Accordingly, we begin by defining the usual Minsky classes of firms - namely hedge,
speculative, and Ponzi - in the context of our model. In Minsky’s classification, hedge
firms are those for which profits are enough to meet all financial obligations and still
decrease the amount of net debt. In our model, this corresponds to a situation where
retained profits, defined as

ant+1 = πpqnt+ 1− rbnt − knt − δepetent (102)

being larger than net investment, that is,

ant+1 > int+1 − δpknt , (103)

as this would lead to a reduction in debt according to (26). Conversely, Ponzi firms are
those that need to borrow even to meet their basic financial obligations, such as paying
interest on debt or agreed dividends. We interpret this in our model as as situation in
which

ant+1 < 0, (104)

so that debt increases even at the level of zero net investment, that is int+1 = δpknt . The
intermediate class consists of speculative firms, namely firms for which

0 ≤ ant+1 ≤ int+1 − δpknt , (105)

so that their debt increases if they choose to invest more than their level of retained profits,
presumably in the expectation that demand, and therefore profits, will increase in future.

In the context of our model, the equilibrium equity price is an indicator of overall
financial stability in the market, with stable periods corresponding to moderate growth
and low volatility and unstable ones characterized by boom and busts and higher volatility.
As an implication of the FIH, one can then conjecture that the overall proportion of Ponzi
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firms tends to be higher around unstable periods. To test this conjecture, we perform
ABM simulations of the model for three different specifications of transition probabilities.

Experiment 1: Consider transition probabilities as in Example 1, namely corresponding
to the constant transition probabilities used in [7]. We begin by noticing that the baseline
scenario obtained from the parameters in Table 1 corresponds to the quite stable equilib-
rium equity prices reproduced at the top-left panel of Figure 9. The overall proportion
of hedge, speculative, and Ponzi firms in the entire population are shown in the top-right
panel. As one can see, speculative firms are the dominant group, with Ponzi and hedge
firms representing much smaller fractions. The bottom panels in Figure 9 show that these
proportions are largely unchanged if one considers only aggressive or conservative firms.

To obtain a less stable scenario, we change the values for the fraction of external
financed raised from debt and the fraction of household wealth invested in stock to $ = 0.3
and ϕ = 0.3 respectively. As discussed in connection with Figures 4 and 5 of [7], the
predicted effect of each of these changes is to lower the returns and increase volatility
of stock prices. This is confirmed in the top-left panel of Figure 10, where we see an
equilibrium stock price initially increasing, followed by a prolonged downturn with higher
volatility. In the top-right corner of the figure we can see that, in accordance with the
FIH, this is accompanied by a much higher proportion of Ponzi firms in the population,
namely around 40% versus less than 10% in Figure 9. Moreover, the onset of the decline
in stock prices coincide with a precipitous drop in the proportion of hedge firms. As
in the previous case, the bottom panels show that these proportions are not affected by
considering only aggressive or conservative firms.

We extend this analysis to six additional scenarios described in Table 2, where we
explore different degrees of heterogeneity in the populations of firms and households. In
each scenario the average values for profit elasticity α and propensity to save from income
sy are kept constant and equal to the averages obtained from the baseline parameters in
Table 1. For example, for Scenario 1 we have

α =
λ̄f

µ̄f + λ̄f
α1 +

µ̄f

µ̄f + λ̄f
α2 = (0.4) · (0.575) + (0.6) · (0.4) = 0.47

and

sy1 =
λ̄h

µ̄h + λ̄h
sy1 +

µ̄h
µ̄h + λ̄h

sy2 = (0.2) · (0.05) + (0.8) · (0.3) = 0.25,

where we recall that
λ̄f

µ̄f+λ̄f
and λ̄h

µ̄h+λ̄h
are the long-term proportions of firms and house-

holds of type 1 (respectively, aggressive firm and non-investor household) in the popula-
tion. The differences between the scenarios are the corresponding spreads in α and sy

implied by the transition probabilities and profit elasticity and propensity to save for each
type. For example, we see that the standard deviation in profit elasticity decreases from
0.0857 to 0.035 as we move from Scenario 1 to 6 in Table 2, corresponding to a decrease
of heterogeneity in the population of firms. Similarly, we see that the standard devia-
tion in propensity to save from income is relatively high for Scenarios 1 to 4, moderate
for Scenario 5, and much smaller in Scenario 6 (namely decreasing from around 0.1 to
0.0131).

The resulting equilibrium stock prices and proportions of hedge, speculative, and Ponzi
firms are shown in Figures 11 and 12. The remarkable pattern we observe is that in the
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scenarios where the stock price displays decent growth and low volatility, namely Scenarios
1 and 4, the proportion of Ponzi firms in the economy remains very low, namely around
10%, whereas in all the scenarios with lower growth and higher volatility the proportion
of Ponzi firms is much higher, namely around 50%. In each case we have also calculated
the corresponding proportions within the subgroups of aggressive and conservative firms
and found that they remain largely unaffected, which indicates that the classification
according to financial health (that is, hedge, speculative, and Ponzi) is independent from
firm type with respect to investment demand as defined in this paper (namely aggressive
and conservative).

Scenario µ̄f λ̄f α1 α2 σα µ̄h λ̄h sy1 sy2 σsy

1 0.6 0.4 0.575 0.4 0.0857 0.8 0.2 0.05 0.3 0.1
2 0.6 0.4 0.575 0.4 0.0857 0.3 0.7 0.1857 0.4 0.0982
3 0.5 0.5 0.54 0.4 0.07 0.3 0.7 0.1857 0.4 0.0982
4 0.3 0.7 0.5 0.4 0.0458 0.4 0.6 0.15 0.4 0.1224
5 0.3 0.7 0.5 0.4 0.0458 0.7 0.3 0.1333 0.3 0.0764
6 0.2 0.8 0.4875 0.4 0.035 0.3 0.7 0.2414 0.27 0.0131

Table 2: Scenarios for Figures 11 and 12.

Experiment 2: We now consider state-dependent transition probabilities as Examples 5
and 6 and focus on Scenario 3 of Table 2. The corresponding equity prices and proportions
of hedge, speculative, and Ponzi firms are shown in Figure 13 and confirm the pattern
observe in Figures 11 and 12, namely with the proportion of Ponzi firms rising when the
stock markets undergoes periods of low growth and high volatility. Observe that in both
cases the equilibrium stock price collapses to zero much faster than in the corresponding
scenario with constant transition probabilities, namely the bottom row of Figure 11, in-
dicating that actively choosing a type based on relative performance can exacerbate the
negative effects of a period of crisis.

6 Concluding remarks and further work

The framework introduced in Sections 2 and 3 significantly expands the domain of ap-
plicability of the mean-field approximation to stock-flow consistent models with state-
dependent transition probabilities. In particular, the explicit form of the differential
equation (69) in terms of the functions η1(x) and η2(x) allow modellers to explore more
complex specifications of transition probabilities that lead to multiple equilibria with many
different stability properties. More specifically, the functional form presented in Section 4
gives rise to a rich set of dynamic behaviour depending on how agents value the relative
gains from being of one type or another. The numerical experiments in Section 5 confirm
the accuracy of the mean-field approximation and show how it can be used to explore the
parameter space in a way that would be impossible in practice with agent-based models
alone.

Once reasonable parameters are selected, one can then return to the more detailed
description provided by agent-based models to investigate other questions, some of which

20



require keeping track of features of the agents that are neglected in the mean-fields ap-
proximation. We provided an example of such detailed investigation in the context of
Minsky’s Financial Instability Hypotheses, where we simulated different scenarios for the
agent-based model and found that whenever the stock market undergoes periods of low
growth and high volatility we observe a corresponding increase in the proportion of Ponzi
firms, that is to say, firms that need to increase their borrowing even to meet basic financial
obligations.

Further dependence between agents can be achieved if we allow, for example, the
transition probabilities for firms to depend on the current fractions of firms and households
of each type (and similarly for the transition probabilities for households). Economically
this means that firms will based their behaviour on the aggregate behaviour of both
their competitors and their consumers, which is not at all unrealistic. Mathematically
this means that the mean-field approximation will lead to a two-dimensional system of
coupled differential equations for the trends φf (t) and φh(t) of the fraction of firms and
households of type 1. Accordingly, the monotone convergence to a stable equilibrium or
divergence from an unstable one might be replaced by more interesting dynamics, such as
the appearance of limit cycles for the two coupled state variables.
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Figure 1: Mean g(x) of the perceived gain for being an agent of type 1 when the fraction
of agents of type 1 is x.
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Figure 2: Function η1(x) appearing in the transition probability from type 2 to type 1
given in (5) when the fraction of agents of type 1 is x. For a function of the form (89),
this is approximately equal to the probability that the perceived gain from being of type 1
is positive. Each graph corresponds to a different function g(x) according to the legend in
Figure 4. The intersection with the line y = x denotes the equilibrium point x∗ = η1(x∗)
for (69).
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Figure 3: Function F (x) appearing on the right-hand side of (69). Each graph corresponds
to a different function g(x) according to the legend in Figure 4. The equilibrium point x∗

is characterized by F (x∗) = 0 and the condition for stability is F ′(x∗) < 0.
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Figure 4: Function η1(x) in (89) for g(x) = −x2 + x− 0.16 and different values of β. As
β increases, the function η1(x) approaches a step function rapidly increasing from zero to
one near x = 0.2 and then dropping from one to zero near x = 0.8. The intersection of
the functions η1(x) with the line y = x correspond to the equilibrium points of (69).
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(a) Example 2 with φ∗ = 0.4 and σ√
N

= 0.0155 (b) Example 3 with φ∗ = 0.67 and σ√
N

= 0.0155

(c) Example 5 with φ∗ = 0.75 and σ√
N

= 0.0089 (d) Example 6 with φ∗ = 0.71 and σ√
N

= 0.0122

Figure 5: Proportions of firms of each type obtained from ABM simulations and the MF
approximation for different specifications of state-dependent transition probabilities.
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(a) Example 2 (b) Example 3

(c) Example 5 (d) Example 6

Figure 6: Aggregate output from ABM simulations and the MF approximation for different
specifications of state-dependent transition probabilities.
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Figure 7: Sensitivity of equity price and aggregate output to the proportion $ of external
financing raised by debt (top row) and the fraction ϕ of household wealth invested in the
stock market (bottom row) for transition probabilities as in Example 5.
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Figure 8: Sensitivity of equity price and aggregate output to the proportion $ of external
financing raised by debt (top row) and the fraction ϕ of household wealth invested in the
stock market (bottom row) for transition probabilities as in Example 6.

Figure 9: Equity price and proportions of hedge, speculative, and Ponzi firms in a scenario
of high growth and low volatility. Parameter values are as described in Table 1.
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Figure 10: Equity price and proportions of hedge, speculative, and Ponzi firms in a scenario
of low growth and high volatility. Parameter values are as described in Table 1, with the
exception of $ = 0.3 and ϕ = 0.3.
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Figure 11: Equity price and proportions of hedge, speculative, and Ponzi firms for Sce-
narios 1 (top row) to 3 (bottom row) from Table 2. All other parameter values are as
described in Table 1, with the exception of $ = 0.3 and ϕ = 0.3.
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Figure 12: Equity price and proportions of hedge, speculative, and Ponzi firms for Sce-
narios 4 (top row) to 6 (bottom row) from Table 2. All other parameter values are as
described in Table 1, with the exception of $ = 0.3 and ϕ = 0.3.
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Figure 13: Equity price and proportions of hedge, speculative, and Ponzi firms for Sce-
narios 3 and transition probabilities as in Examples 5 (top row) and 6 (bottom row). All
other parameter values are as described in Table 1, with the exception of $ = 0.3 and
ϕ = 0.3.
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