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bUniversité de Montpellier, Montpellier, France

Abstract

We propose a continuous-time stock-flow consistent model for inventory dynamics in an economy with firms, banks,
and households. On the supply side, firms decide on production based on adaptive expectations for sales demand and a
desired level of inventories. On the demand side, investment is determined as a function of utilization and profitability
and can be financed by debt, whereas consumption is independently determined as a function of income and wealth.
Prices adjust sluggishly to both changes in labour costs and inventory. Disequilibrium between expected sales and
demand is absorbed by unplanned changes in inventory. This results in a five-dimensional dynamical system for wage
share, employment rate, private debt ratio, expected sales, and capacity utilization. We analyze two limiting cases:
the long-run dynamics provides a version of the Keen model with effective demand and varying inventories, whereas
the short-run dynamics gives rise to behaviour that we interpret as Kitchin cycles.

Keywords: macroeconomic dynamics, business cycles, inventories, disequilibrium analysis
JEL: C61, E12, E20, E32

1. Introduction

Inventory fluctuations have been known for a long time to be a major component of the business cycle [1]. Ac-
cording to [2], even though investment in inventory accounts for a very small fraction of output (about 1 percent in
the U.S.), changes in inventory investment account for a disproportionately large fraction of changes in output over
the cycle (about 60 percent on average for seven postwar recessions in the U.S.). Nevertheless, inventory dynamics
has received relatively little attention in the theoretical literature. A review of earlier models is provided in [3], where
it is observed that, whereas “the prevailing micro theory viewed inventories as a stabilizing factor”, the data shows
that output is more volatile than final sales (namely output less inventory investment), suggesting a destabilizing role
for inventories in macroeconomics. The landscape has not changed significantly since then, with a few recent papers
focussed on incorporating inventories in fully micro founded general equilibrium models [17, 18]. As remarked in
these papers, explaining inventories in a frictionless general equilibrium model is as challenging as explaining money,
forcing this type of analysis to rely on frictions, such as delivery costs and stockout-avoidance motives, akin to the
attempts to incorporate a financial sector into DSGE models. In this paper, we follow an alternative approach based
on disequilibrium models where sluggish adjustment, adaptive expectations, and sectoral averages replace market
clearing, rational expectations, and representative agents [7].

Our starting point is the growth cycles model proposed in [6] along the lines originally formulated in [13]: in-
vestment in inventory adjusts to a desired inventory-to-expected-sales ratio, whereas expected sales themselves adapt
taking into account fluctuating demand. As shown in [6], the interplay between the long-run growth trend and short-
run adjustment of inventory stock and expected sales determine the stability of the model. Whereas sufficiently
sluggish adjustments promote stability, the model exhibits dynamic instability if the adjustment speeds exceed certain
thresholds. Moreover, a flexible inventory adjustment speed can lead to persistent cyclical behaviour. The model
in [6] is described by means of a two-dimensional dynamical system with normalized expected sales and inventory
levels (or equivalently, capacity utilization) as state variables and therefore necessarily neglects several other macroe-
conomic dynamic feedback channels. In particular, the model takes the wage share of the economy as constant, so
that endogenous cycles arising from distributional conflict à la Goodwin [8] are not considered. Moreover, in the
absence of an explicit financial sector, there is no role in the model for the kind of Minskyan instability [14] arising
from debt-financed investment.
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In this paper, we present in Section 2 a unified model with both inventory and labour market dynamics, as well
as allowing for financial considerations to play a role in investment decision through profits net of debt servicing.
The resulting dynamics leads to the five-dimensional system derived in Section 3, with the traditional wage share and
employment rate variables of the Goodwin model [8] augmented by the debt ratio of firms as in the Keen model [11],
in addition to the expected sales and capacity utilization variables of the Franke model [6] mentioned above. Global
analysis of such high-dimensional nonlinear system is beyond the scope of current techniques, and even local analysis
of the interior equilibrium proves to be laborious and not very illuminating. In the remainder of the paper we opt
instead to investigate two well defined limiting cases.

In Section 4 we consider the type of long-run dynamics that arises when firms have no planned investment in
inventory and make no adjustments for short term fluctuations in inventory and expected sales. The resulting model
is thus four-dimensional, as the ratio of expected sales to output is now constant. Further simplification is achieved
by specifying the long-run growth rate of expected sales. When this is chosen to be a constant as in [6], we find
that the labour market part of the model only achieves equilibrium for a particular initial condition for employment.
Alternatively, choosing the long-run growth rate of expected sales to be the same as the instantaneous growth rate of
capital leads to a three-dimensional model for wage share, employment rate, and debt ratio, with a constant capital
utilization. The non-monetary version of this model is very similar to the original Keen model, but now with a non-
trivial effective demand and fluctuating inventories. As in the Keen model, an equilibrium with infinite debt ratio is
also possible but highly problematic in this model, because it leads to infinitely negative inventory levels. When the
model is cast in nominal terms, we find that the equilibrium with explosive debt is no longer possible, essentially
because the positive wealth effect in the consumption function raises demand and consequently the inflation rate. On
the other hand, in addition to a deflationary state first observed in [10], a new type of debt crisis corresponding to
vanishing wage share and employment rate but with a finite debt ratio arises as a possible stable equilibrium.

In Section 5 we turn our attention to the opposite limiting case, namely a no-growth regime where the only drivers
of expected sales and inventory investment are short-run fluctuations in demand. Further ignoring the wealth effect
in the consumption function allows us to focus exclusively on a reduced two-dimensional describing the relationship
between demand and expected sales. This fascinating system undergoes a bifurcation from a locally stable equilibrium
in which demand equals expected sales to an unstable limit cycle. We find that the higher the adjustment speeds of
inventory and expected sales, the harder it is to achieve stability. On the other hand, stability is enhanced when
prices react faster to mismatch between demand and expected sales. The interplay between supply, demand, and
prices is even more involved when we consider an alternative model in which prices adjust indirectly through the
mismatch between actual and desired inventory levels, rather then directly through changes in inventory. In this case,
the increased information lags give rise to stable limit cycles that strongly resemble the Kitchin cycles first reported
in [12].

2. The General Model

2.1. Accounting structure
We consider a three-sector closed economy consisting of firms, banks, and households. The firm sector produces

one homogeneous good used both for consumption and investment.

Capital and utilization. Denote the total stock of capital in the economy in real terms by K and assume that it
determines potential output Yp according to the relationship

Yp =
K
ν
, (1)

where ν is a constant capital-to-output ratio. The actual output produced by firms Y is assumed to consist of expected
sales Ye plus planned inventory changes Ip, that is,

Y = Ye + Ip, (2)

and in turn determines capacity utilization as

u =
Y
Yp
. (3)
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Finally, capital is assumed to change according to

K̇ = Ik − δ(u)K, (4)

where Ik denotes capital investment in real terms and δ(u) is a depreciation rate expressed as a function of capital
utilization u.

Effective demand and inventories. Denote total real consumption by banks and households by C, which together with
capital investment Ik determine total sales demand

Yd = C + Ik, (5)

also in real terms. The difference between output and demand determines actual changes in the level of inventory held
by firms. In other words,

V̇ = Ip + Iu = Y − Yd, (6)

where V denotes the stock of inventories and V̇ denotes investment in inventory, which consists of both planned and
unplanned changes in inventory, denoted by Ip and Iu respectively. Substituting (2) into (6), we see that unplanned
changes in inventory are given by

Iu = V̇ − Ip = (Y − Yd) − (Y − Ye) = Ye − Yd, (7)

and therefore accommodate any surprises in actual sales compared to expected sales. Finally, total real investment in
the economy is given by I = Y −C = Y −Yd + Ik = Ip + Iu + Ik, that is, it consists of changes in inventory, both planned
and unplanned, plus capital investment.

Labor cost and employment. Let the nominal wage bill be denoted by W, the total workforce by N and the number of
employed workers by `. We then define the productivity per worker a, the employment rate λ and the nominal wage
rate as

a =
Y
`
, λ =

`

N
=

Y
aN

, w =
W
`
, (8)

whereas the unit cost of production, defined as the wage bill divided by quantity produced, is given by

c =
W
Y

=
w
a
. (9)

We will assume throughout that productivity and workforce grow exogenously according to the dynamics

ȧ
a

= α,
Ṅ
N

= β. (10)

Nominal quantities. Denoting the unit price level for the homogenous good by p, it is clear that the portion of
the nominal output consisting of sales should be given by pYd = pC + pIk. Accounting for inventory changes is
less straightforward, as there can be many alternative definitions of the cost of inventory. We follow [7] and value
inventory changes at cost c, as this is what is incurred by the acquisitions department of a firm (represented by the
term −cV̇ under the capital account in Table 1) in order to purchase unsold goods from the production department
(represented by a revenue +cV̇ in the current account).

We therefore find that nominal output is given by 1

Yn = pC + pIk + cV̇ = pYd + cV̇ = pYd +
d(cV)

dt
− ċV. (11)

In other words, nominal output consists of nominal sales plus change in value of inventory minus an inventory value
adjustment term ċV . It is important to emphasize that even though total output in real terms satisfies Y = Yd + V̇
according to (6), nominal output is given by Yn = pYd + cV̇ . In other words, the relationship Yn = pY is true if and
only if either p = c or V̇ = 0.

1This corresponds to equations (8.24) and (8.25) in [7].
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Households Firms Banks Sum
Balance Sheet
Capital stock +pK +pK
Inventory +cV +cV
Deposits +M −M 0
Loans −D +D 0
Sum (net worth) Xh X f Xb X
Transactions current capital
Consumption −pCh +pC −pCb 0
Capital Investment +pIk −pIk 0
Change in Inventory +cV̇ −cV̇ 0
Accounting memo [GDP] [Yn]
Wages +W −W 0
Depreciation −pδK +pδK 0
Interest on deposits +rmM −rmM 0
Interest on loans −rD +rD 0
Profits −Π +Π 0
Financial Balances S h 0 S f − p(Ik − δK) − cV̇ S b 0
Flow of Funds
Change in Capital Stock +p(Ik − δK) +p(Ik − δK)
Change in Inventory +cV̇ +cV̇
Change in Deposits +Ṁ −Ṁ 0
Change in Loans −Ḋ +Ḋ 0
Column sum S h S f S b pIk + cV̇
Change in net worth Ẋh = S h Ẋ f = S f + ṗK + ċV Ẋb = S b Ẋ

Table 1: Balance sheet and transactions flows.

Financial Balances. Further denoting household deposits by M and loans to firms by D, we arrive at the balance sheet,
transactions, and flow of funds described in Table 1 for this economy. Notice that we are assuming, for simplicity,
that households do not borrow from banks and firms do not keep positive deposits, preferring to use any balances to
repay their loans instead.

It follows from Table 1 that the net profit for firms, after paying wages, interest on debt, and accounting for
depreciation (i.e consumption of fixed capital) is given by

Π = Yn −W − rD − pδK.

Observe that, even though changes in inventory add to profits, sales constitute the only way for firms to have positive
gross profits (i.e before interest and depreciation) since

Yn −W = pC + pIk + cV̇ −W = pYd + c(V̇ − Y) = (p − c)Yd.

It is also assumed in Table 1 that all profits are reinvested, that is, Π = S f . The financial balances row on
Table 1 corresponds to the following ex post accounting identity between total nominal savings and investment in the
economy:

S = S h + S f + S b = p(Ik − δK) + cV̇ . (12)

In particular for the firm sector we have

Ḋ = p(Ik − δK) + cV̇ − Π = pIk + cV̇ − Πp, (13)

where Πp = Yn −W − rD denotes the pre-depreciation profit.
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Intensive variables. To obtain a steady state in a growing economy, we normalize real variables by dividing them by
total output Y , namely

ye =
Ye

Y
, yd =

Yd

Y
, v =

V
Y
, (14)

and nominal variables by dividing them by pY (even though this is not equal to nominal output according to the
remark following (11)), that is

ω =
W
pY

=
c
p

=
w
pa

, d =
D
pY

. (15)

We use ω and d as proxies for the actual wage share W/Yn and debt ratio D/Yn, which case can readily be obtained
by dividing the expressions above by

Yn

pY
=

pYd + c(Y − Yd)
pY

=
(p − c)Yd

pY
+

c
p

= (1 − ω)yd + ω. (16)

2.2. Behavioural Rules
We now specify the behavioural rules for firms, banks, and households. Namely, for given values of the state

variables, firms decide the level of capital investment Ik, planned changes in inventory Ip, and expected sales Ye,
whereas banks and households decide the level of consumption Cb and Ch. This in turn determines capital by (4),
output by (2), utilization by (3), sales demand by (5), and unplanned changes in inventory by (7). Consequently, since
productivity and workforce growth are exogenous, the level of output Y in turn gives the number of employed workers
` and the employment rate λ by (8). Further specification of the dynamics for the nominal wage rate w and prices p
then completes a model.

Firms. We start by assuming that firms forecast the long-run growth rate of the economy to be a function ge(u, πe) of
utilization u and (pre-depreciation) expected profitability πe defined as

πe =
Yne −W − rD

pY
, (17)

where Yne = pYe + cIp denotes the expected nominal output. Inserting (14) and (15) and into (17), we find that the
expected profitability can be expressed as

πe = ye(1 − ω) − rd . (18)

In addition to taking into account the long-run growth rate ge(u, πe), firms adjust their short-term expectations
based to the observed level of demand. This leads to the following dynamics for expected demand:

Ẏe = ge(u, πe)Ye + ηe(Yd − Ye) , (19)

for a constant ηe ≥ 0, representing the speed of short-term adjustments to observed demand. We assume further that
firms aim to maintain inventories at a desired level

Vd = fdYe , (20)

for a fixed proportion 0 ≤ fd ≤ 1. While this means that the long-term growth rate of desired inventory level should
also be ge(u, πe), we assume again that firms adjust their short-term expectations based on the observed level of
inventory. This leads to the following expression for planned changes in inventory:

Ip = ge(u, πe)Vd + ηd(Vd − V), (21)

for a constant ηd ≥ 0, representing the speed of short-term adjustments to observed inventory.
To complete the specification of firm behavior, we assume that investment is given by

Ik =
κ(u, πe)
ν

K , (22)

for a function κ(·, ·) capturing explicitly the effects of both capacity utilization and expected profits. Based on (4), this
leads to the following dynamics for capital,

K̇
K

=
κ(u, πe)
ν

− δ(u). (23)
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Banks and Households. We assume that total consumption is given by

C = θ(ω, d)Y, (24)

for a function θ of the wage and debt ratios ω and d. This includes, for example, the usual case where nominal
consumption of households and banks is assumed to be given by constant fractions of income and wealth, namely,

pCh = cih[W + rmM] + cwhM, (25)
pCb = cib[rD − rmM] + cwb(D − M). (26)

Under the additional simplifying assumption that cih = cib = ci and cwh = cwb = cw, we have

pC = c1W + c2D, (27)

with c1 = ci and c2 = cw + cir. Alternatively, we can follow [16] and assume that D = Mh and r = rMh , that is, banks
have zero net worth and charge zero intermediation costs (and therefore have no consumption), in which case (27)
holds with c1 = cih and c2 = cwh + rcih. In either case, we see that (27) is an example of (24) with

θ(ω, d) = c1ω + c2d, (28)

for non-negative constants c1 and c2. We then find that nominal demand is given by

pYd = pC + pIk = pθ(ω, d)Y + p
κ(u, πe)
ν

K, (29)

from which we obtain the auxiliary variable

yd = yd(ω, d, ye, u) =
Yd

Y
= θ(ω, d) +

κ(u, πe)
u

. (30)

Price and wage dynamics. For the price dynamics we assume that the long-run equilibrium price is given by a
constant markup m ≥ 1 times unit labor cost c, whereas observe prices converge to this through a lagged adjustment
with speed ηp > 0. A second component with adjustment speed ηq > 0 is added to that dynamics to take into account
short-term considerations regarding unplanned changes in inventory volumes:

ṗ
p

= ηp

(
m

c
p
− 1

)
− ηq

Ye − Yd

Y
= ηp (mω − 1) + ηq(yd − ye) := i(ω, yd, ye). (31)

We assume that the wage rate w follows
ẇ
w

= Φ(λ) + γ
ṗ
p
, (32)

for a constant 0 ≤ γ ≤ 1. The assumption states that workers bargain for wages based on the current state of the
labour market, but also take into account the observed inflation rates. The constant γ represents the degree of money
illusion, with γ = 1 corresponding to the case where workers fully incorporate inflation in their bargaining.

3. The main dynamical system

Combining (20) and (21), we see that output is given by

Y = Ye + Ip =
[
fd(ge(u, πe) + ηd) + 1

]
Ye − ηdV , (33)

so that the inventory-to-output ratio v is given by

v =
V
Y

=
[1 + fd(ge(u, πe) + ηd)]ye − 1

ηd
. (34)
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Differentiating (33) and using (19) and (6), we obtain the following dynamics for output

Ẏ
Y

=
[
fd(ge(u, πe) + ηd) + 1

](
yege(u, πe) + ηe(yd − ye)

)
+ ηd(yd − 1) =: g(u, πe, yd, ye) (35)

The dynamics for the wage share ω = w/(pa) follows from (32) and (31):

ω̇

ω
=

ẇ
w
−

ȧ
a
−

ṗ
p

= Φ(λ) − α − (1 − γ)i(ω, yd, ye), (36)

where the inflation rate is defined in (31). For the employment rate λ = Y/(aN), we use (35) and (10) to obtain

λ̇

λ
=

Ẏ
Y
−

ȧ
a
−

Ṅ
N

= g(u, πe, yd, ye) − α − β . (37)

For the debt ratio d = D/(pY), using the expression for debt change in (13), we find that

ḋ
d

=

[
Ḋ
D
−

ṗ
p
−

Ẏ
Y

]
=

[
pIk + cV̇ − (Yn −W − rD)

D

]
− i(ω, yd, ye) − g(u, πe, yd, ye)

=

[
W + rD − pC)

D

]
− i(ω, yd, ye) − g(u, πe, yd, ye)

=

[
ω + rd − θ(ω, d))

d

]
− i(ω, yd, ye) − g(u, πe, yd, ye). (38)

Similarly, for the expected sales ratio ye = Ye/Y , we use (19) to obtain

ẏe

ye
=

Ẏe

Ye
−

Ẏ
Y

= ge(u, πe) + ηe

(
yd

ye
− 1

)
− g(u, πe, yd, ye). (39)

Finally, for the capacity utilization u = νY/K, using (23) we find

u̇
u

=
Ẏ
Y
−

K̇
K

= g(u, πe, yd, ye) −
κ(u, πe)
ν

+ δ(u). (40)

Since yd is expressed in (30) as a function of (ω, d, πe, u) and and πe is given in (18) as a function of (ω, d, ye),
we see that the model can be completely characterized by the state variables (ω, λ, d, ye, u) satisfying the following
system of ordinary differential equations:

ω̇ = ω
[
Φ(λ) − α − (1 − γ)i(ω, yd, ye)

]
λ̇ = λ

[
g(u, πe, yd, ye) − α − β

]
ḋ = d

[
r − g(u, πe, yd, ye) − i(ω, yd, ye)

]
+ ω − θ(ω, d)

ẏe = ye
[
ge(u, πe) − g(u, πe, yd, ye)

]
+ ηe(yd − ye)

u̇ = u
[
g(u, πe, yd, ye) − κ(u,πe)

ν
+ δ(u)

] (41)

where i(ω, yd, ye) is given by (31) and g(u, πe, yd, ye) is given by (35).
To obtain an interior equilibrium point (ω, λ, d, ye, u), observe that the second equation in (41) requires that

g(u, πe, yd, ye) = α + β , (42)

which when inserted in the forth equation leads to yd = ye and

ge(u, πe) = α + β (43)

at equilibrium. Using this and (42) in (35) therefore gives

yd = ye =
1

1 + (α + β) fd
. (44)
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Inserting (44) into (34) implies that v = fdye, so that the equilibrium level of inventory is the desired level Vd = fdyeY .
Substituting yd = ye into (31) leads to an equilibrium inflation of the form

i(ω, yd, ye) = i(ω) = ηp(mω − 1), (45)

that is, without any inventory effects. Using the third equation in (41) we see that the debt ratio at equilibrium satisfies

d =
ω − θ(ω, d)

α + β + i(ω) − r
. (46)

Moving to the last equation in (41), we obtain that the investment function at equilibrium satisfies

κ(πe, u) = ν[α + β + δ(u)], (47)

which can be inserted in (30) to yield the equilibrium capacity utilization as the solution to

u =
ν[α + β + δ(u)](1 + (α + β) fd)

1 − θ(ω, d)(1 + (α + β) fd)
. (48)

We can then obtain the values of (ω, d) by solving (46)-(47) with πe defined from (18). Finally, returning to the first
equation in (41) we find the equilibrium employment rate by solving

Φ(λ) = α + (1 − γ)i(ω). (49)

We therefore see that existence and uniqueness of the interior equilibrium depends on properties of the functions κ
and θ, which need to be asserted in specific realizations of the model.

To summarize, an interior equilibrium of (41) is characterized by a constant growth rate of output equal to α + β,
constant capacity utilization, expected sales equal to demand, and the level of inventory equal to a constant proportion
of expected sale. The present model is nevertheless highly complex. It needs the specification of at least fourteen
parameters in addition to three behavioural functions. The exploration of other possible equilibrium points is consid-
erably involved, and any local stability analysis will reveal to be a cumbersome and non-intuitive exercise.

In order to build intuition about the system, we follow the strategy of considering the lower-dimensional subsys-
tems that arise in some limiting cases for the model parameters and behavioural functions. We start with a few special
cases corresponding to known models in the literature.

3.1. The Goodwin model
The simplest special case of (41) consists of the model proposed in [8]. The original Goodwin model is formulated

in real terms, which we can easily reproduce by setting ηp = ηq = γ = 0, meaning that the rate of inflation is zero,
and setting p = 1. It also makes no reference to inventories, thereby implicitly assuming that output equals demand.
We can recover this from the general model of the previous section by assuming that fd = ηd = 0, meaning that
there is no desired inventory level (Vd = 0) or planned investment in inventory (Ip = 0), and that ηe → ∞, meaning
that firms have perfect forecast of demand and set Ye = Yd = Y at all times. In addition, Goodwin adopts a constant
capital-to-output ratio, which we can recover by setting u = 1. Finally, although not explicitly mentioned in [8], we
adopt a constant depreciation rate δ(u) = δ > 0 for the Goodwin model.

The only explicit assumption of the Goodwin model regarding the behaviour of firms is that investment is equal
to profits, which in the present setting corresponds to

κ(u, πe) = πe = 1 − ω − rd,

since ye = Ye/Y = 1 in (18). The model is also silent about banks, but it follows from (13) and the investment rule
above (recalling that V̇ = 0) that Ḋ = 0 at all times, so we assume for simplicity that d = D0 = 0. Alternatively we
could adopt an arbitrary constant level of debt D0, observing that, in a growing economy, d = D0/Y → 0.

Regarding households, the assumption in [8] is that all wages are consumed, namely cih = c1 = 1 in the notation
of (25). For consistency, we set c2 = r, even though this is not relevant when D = 0.
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For the growth rate, observe that we can no longer obtain it by simply differentiating (33), since (19) is degenerate
in the limit case ηe → ∞. Instead, since u = 1, we can use the fact that Y = K

ν
to obtain

Ẏ
Y

=
K̇
K

=
1 − ω
ν
− δ. (50)

With these parameter choices, the system (41) reduces to the familiar form{
ω̇ = ω [Φ(λ) − α]
λ̇ = λ

[
1−ω
ν
− α − β − δ

]
,

(51)

discussed, for example, in [9]. The solutions of (51) are closed periodic orbits around the non-hyperbolic equilibrium
point

ω = 1 − ν(α + β + γ), λ = Φ−1(α), (52)

which we recognize as special cases of (47) and (49), respectively.

3.2. The Franke model
As mentioned in Section 1, our proposed dynamics for inventories follows closely the Metzlerian model formal-

ized in [6]. The Franke model is also formulated in real terms, so we maintain the choice of ηp = ηq = γ = 0 and
p = 1 from the previous section, and normalizes all variables by dividing them by K instead of Y , resulting in the
intensive variables

uF := Y/K = u/ν, zF := Ye/K = yeuF , vF =: V/K = vuF .

Crucially, the model in [6] implicitly assumes a constant wage share ω (see, for example, footnote 9 on page 246), so
that the first equation in (41) is simply ω̇ = 0. The second equation in (41) then decouples from the rest of the system
and simply provides the employment rate along the solution path, in particular leading to a constant employment rate
at equilibrium. As with the Goodwin model, the Franke model is also silent about banks, implicitly assuming that
firms can raise the necessary funds for investment through retained profits and savings from households, which we
reproduce here by setting ḋ = 0 in (41).

The behaviour of firms, on the other hand, is almost identical to the one adopted here, with our equations (19),
(20), and (21) corresponding directly to equations (7), (2), and (3) in [6], respectively, provided we take

ge(u, πe) = α + β (53)

as the long-run growth rate of expected sales. For the investment function, we recover the assumption in [6] by setting

κ(u, πe) = νh(uF), (54)

for an increasing function h(·). Regarding effective demand, instead of modelling consumption and investment sepa-
rately, the assumption in [6] is that demand in excess of output is given directly in terms of utilization, which we can
reproduce in our model by setting

yd = e(uF) + 1, (55)

for a decreasing function e(·). With these choices, it is a simple exercise to verify that the fourth and fifth equations in
(41) are equivalent to equations (9)-(10) for vF and zF in [6], with equilibrium values given by

vF
=

fduF

1 + (α + β) fd
= v uF , zF

=
uF

1 + (α + β) fd
= yeuF . (56)

It is shown in [6] that this equilibrium is locally asymptotically stable provided the speed of adjustment of inventories
ηd is sufficiently small. For ηd above a certain threshold, however, local stability can only be asserted when the speed
of adjustment of expected sales ηe is sufficiently small. The main innovation in [6] consists of adopting a variable
speed of adjustment ηd = ηd(zF) and investigate its effects on the stability of the equilibrium. It is then shown that
even in the unstable case, namely when both ηd(zF) and ηe are large enough so that the equilibrium is locally repelling,
global stability can be achieved provided ηd(zF) decreases fast enough away from the equilibrium. As stated in [6],
the equilibrium is “locally repelling, but it is attractive in the outer regions of the state space”, giving rise to periodic
orbits.
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3.3. The original Keen model
The model proposed in [11] is based on the same assumptions of the Goodwin model regarding the price-wage

dynamics (ηp = ηq = γ = 0 and p = 1), desired inventory level ( fd = ηd = Vd = Ip = 0), expected sales (ηe → ∞ and
Ye = Yd = Y), constant capital-to-output ratio with full utilization (u = 1), and constant depreciation rate (δ(u) = δ).
The innovation in the model is that investment is now given by

κ(u, πe) = κ(πe) = κ(1 − ω − rd), (57)

where we used the fact that ye = Ye/Y = 1 in (18). Moreover, the identity Yd = Y implies that

C = Yd − Ik = (1 − κ(πe))Y, (58)

that is, θ(ω, d) = 1 − κ(1 −ω − rd) in (24). In other words, in the absence of either price or quantity adjustments, total
consumption plays the role of an accommodating variable in the model.

Since (19) is degenerate in the limit case ηe → ∞, we again use Y = K
ν

instead of (33) to obtain the growth rate of
the economy as

Ẏ
Y

=
K̇
K

=
κ(πe)
ν
− δ. (59)

With these parameter choices, the system (41) reduces to
ω̇ = ω [Φ(λ) − α]
λ̇ = λ

[
κ(πe)
ν
− α − β − δ

]
ḋ = d

[
r − κ(πe)

ν
− δ

]
+ ω − 1 + κ(πe)

(60)

where πe = 1 − ω − rd. It is then easy to see that (46), (47) and (49) reduce to

d =
ω − 1 + ν(α + β + δ)

α + β − r
, κ(πe) = ν(α + β + δ), Φ(λ) = α, (61)

from where we obtain the interior equilibrium point (ω1, λ1, d1) found in [9], which is shown to be locally stable
provided the investment function κ(·) is sufficiently increasing at equilibrium, but does not exceed the amount of net
profits by too much.

Apart from the interior equilibrium, [9] established that the system (60) admits an equilibrium characterized by
(ω2, λ2, d2) = (0, 0,+∞), which is locally asymptotically stable provided

lim
πe→−∞

κ(πe) < ν(r + δ) (62)

a condition that is likely to be satisfied for typical parameters.

3.4. Monetary Keen model
As shown in [10], it is relatively straightforward to incorporate the price-wage dynamics in (31)-(32) in the original

Keen model. Adopting all the parameter choices and functional forms of the previous section (including ηq = 0) with
the exception of arbitrary constants ηp and γ, we find that (41) reduces to the three-dimensional system

ω̇ = ω
[
Φ(λ) − α − (1 − γ)i(ω)

]
λ̇ = λ

[
κ(πe)
ν
− α − β − δ

]
ḋ = d

[
r − κ(πe)

ν
− δ − i(ω)

]
+ ω − 1 + κ(πe)

(63)

where πe = 1−ω− rd and i(ω) = ηp(mω−1). Solving (46), (47) and (49) for this system gives an interior equilibrium
(ω1, λ1, d1) analogous to that of the original Keen model. Apart from it, [10] showed that the system (63) also admits
the equilibrium (ω2, λ2, d2) = (0, 0,+∞), as well as a new class equilibria of the form (ω3, 0, d3) or (ω3, 0,+∞) where

ω3 =
1
m

+
Φ(0) − α

mηp(1 − γ)
(64)

is a wage share satisfying i(ω3) < 0 (deflation) and d3 is a finite debt ratio obtained as the solution of a non-linear
equation. The stability of all three types of equilibrium is analyzed in detail in [10], with the overall conclusion that
“money emphasizes the stable nature of asymptotic states of the economy, both desirable and undesirable.”
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4. Long-run dynamics

As mentioned in Section 2.2, the core dynamics for expected sales and inventories in the model consists of the
interplay between long-run expectations and short-run fluctuations characterized by equations (19)-(21). It is therefore
instructive to investigate the properties of the sub-models that arise when each of these effects is considered separately.
We start with case where short-run fluctuations are ignored by firms, namely when ηe = ηd = 0. In addition, we assume
that there are no planned changes in inventories, namely that fd = 0, so that Y = Ye and any discrepancy between
supply and demand is absorbed by unplanned inventory changes V̇ = Y − Yd.

Observe that, in this case, the growth rate of the economy is given by

g(u, πe, yd, ye) = ge(u, πe), (65)

as there is no feedback channel from the demand yd on either expected sales Ye or planned inventories Ip, and conse-
quently no impact of demand on output Y , which is therefore solely determined by the expected long-run growth rate
of the economy. Consequently, the fourth equation in (41) is identically zero, which is consistent with the fact that
ye = Ye/Y = 1, and the system reduces to

ω̇ = ω
[
Φ(λ) − α − (1 − γ)i(ω, yd)

]
λ̇ = λ

[
ge(u, πe) − α − β

]
ḋ = d

[
r − ge(u, πe) − i(ω, yd)

]
+ ω − θ(ω, d)

u̇ = u
[
ge(u, πe) − κ(u,πe)

ν
+ δ(u)

]
,

(66)

where πe = 1 − ω − rd and i(ω, yd) = ηp(mω − 1) + ηq(yd − 1). Notice also that the inventory-to-output ratio can no
longer be determined by (34) (since ηd = 0), but should instead be found from the auxiliary equation

v̇ = (1 − yd) − ge(u, π)v. (67)

The interior equilibrium for (66) is obtained from (46)-(49) with ηe = ηd = fd = 0. In particular, since yd = 1, this
equilibrium implies that v → v = 0 according to (67), which is consistent with (44) and v = fdye with fd = 0. This
is the analogue of the good equilibrium for the original Keen model, corresponding to a finite debt ratio and non-zero
wage share and employment rate.

Observe that in the special case ge(u, πe) = α + β, that is, a constant long-run growth rate for expected sales
corresponding to the model proposed in [6], we find that the employment rate in (66) is constant, as should be
expected in a model where the output growth rate is identical to the sum of population and productivity growth rates.
But this immediately implies that the interior equilibrium in (46)-(49) can only be achieved for the initial condition
λ0 = Φ−1(α + (1 − γ)ω), with any smaller initial employment rate leading to ω → 0 and any bigger one leading to
ω→ ∞. We therefore do not pursue this special case further.

Alternatively, the special case

ge(u, πe) =
κ(u, πe)
ν

− δ(u) (68)

is conceptually much closer to the original Keen model in [11], in that expected sales (and therefore output) grow
at the same rate as capital. In this case, capacity utilization is given by a constant u0, as the fourth equation in (66)
vanishes and the model reduces to a three-dimensional system for (ω, λ, d), which we now consider in its real and
monetary versions.

4.1. Real version

Consider first the model in real terms, that is to say, with the wage-price parameters set to ηp = ηq = γ = 0 and
p = 1 as in the original Goodwin and Keen models. We then obtain that the system (66), with ge(u, πe) given by (68),
reduces to 

ω̇ = ω [Φ(λ) − α]
λ̇ = λ

[
κ(u0,πe)

ν
− δ(u0) − α − β

]
ḋ = d

[
r − κ(u0,πe)

ν
+ δ(u0)

]
+ (1 − c1)ω − c2d,

(69)
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where πe = 1 − ω − rd as before, and we have adopted a consumption function of the form θ(ω, d) = c1ω + c2d. We
regard this as the closest model to the original Keen model in (60), but with a non-trivial effective demand of the form

yd = c1ω + c2d +
κ(u0, πe)

u0
(70)

and fluctuating inventory levels given by

v̇ =

(
1 − c1ω − c2d −

κ(u0, πe)
u0

)
−

(
κ(u0, πe)

ν
− δ(u0)

)
v. (71)

The system (69) also admits a bad equilibrium of the form (ω, λ, d) = (0, 0,+∞). Nevertheless, for c2 > 0 (or
any other consumption function that includes a positive wealth effect), this equilibrium implies that yd → +∞ and
consequently v → −∞, which is not economically meaningful. For this reason, in the next section we investigate a
monetary version of the model where inflation becomes infinite as yd → +∞ in accordance with the price dynamics
(31) with ηq > 0. Interestingly, the system (69) also admits a bad equilibrium of the form (ω, λ, d) = (0, 0, 0), which
was not possible in the original Keen model. Nevertheless, it is easy to see that this equilibrium is unstable provided

ge(u0, 1) > α + β, (72)

a condition that is likely to be satisfied in practice.

4.2. Monetary version

Using (31)-(32) as the price-wage dynamics leads to the following monetary version of the model of the previous
section 

ω̇ = ω
[
Φ(λ) − α − (1 − γ)i(ω, d)

]
λ̇ = λ

[
κ(u0,πe)

ν
− δ(u0) − α − β

]
ḋ = d

[
r − κ(u0,πe)

ν
+ δ(u0) − i(ω, d)

]
+ (1 − c1)ω − c2d

(73)

where πe = 1 − ω − rd and

i(ω, d) = ηp (mω − 1) + ηq(yd − 1) = ηp (mω − 1) + ηq

(
c1ω + c2d +

κ(u0, πe)
u0

− 1
)
. (74)

As before, we regard this as the closest model to the monetary Keen model in (63), but with a non-trivial effective
demand given by (70) and fluctuating inventory levels given by (71).

In what follows, we denote δ(u0) = δ > 0 and κ(u0, πe) = κ(πe) for convenience. Let J(ω, λ, d) be the Jacobian
matrix of (73), given by 

J1,1(ω, d) ωΦ′(λ) J1,3(ω, d)

−
λ

ν
κ′(πe)

κ(πe)
ν
− α − β − δ −

rλ
ν
κ′(πe)

J3,1(ω, d) 0 J3,3(ω, d)

 (75)

with

J1,1(ω, d) = Φ(λ) − α − (1 − γ)i(ω, yd) − (1 − γ)ω
[
ηpm + ηq

(
c1 −

κ′(πe)
u0

)]
(76)

J1,3(ω, d) = −(1 − γ)ωηq

(
c2 − r

κ′(πe)
u0

)
(77)

J3,1(ω, d) = d
[
κ′(πe)
ν
− ηpm − ηq

(
c1 −

κ′(πe)
u0

)]
+ (1 − c1) (78)

J3,3(ω, d) =

[
r − c2 −

κ(πe)
ν

+ δ − i(ω, yd)
]

+ d
[
κ′(πe)
ν
− ηq

(
c2 − r

κ′(πe)
u0

)]
. (79)
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Under technical conditions similar to those found in [9, 5, 10] we shall establish that the model (73) exhibits three
meaningful types of equilibrium points, analogous to those described in [10]. The first one is a good equilibrium,
corresponding to a desirable situation with finite debt and positive wages and employment. The second one is a
debt crisis equilibrium corresponding to a finite level of debt and vanishing wages and employment. The third one
is a deflationary state that can either accept credit explosion or not, which appears with the introduction of price
dynamics. A fourth situation corresponding to the trivial equilibrium (ω, λ, d) = (0, 0, 0) is theoretically possible, but
always unstable and therefore irrelevant in the present context. The following results rely on a standard equilibrium
analysis with Hartman-Grobman theorem and can be skipped at first reading.

We start by assuming that κ′(πe) > 0 for all πe ∈ R and satisfies

lim
πe→−∞

κ(πp) = κ0 < ν(α + β + δ) < lim
πe→+∞

κ(πe). (80)

We assume further that
Φ′(λ) > 0 on (0, 1), Φ(0) < α. (81)

Trivial equilibrium. At the equilibrium point (ω, λ, d) = (0, 0, 0), the Jacobian (75) becomes
J1,1(0, 0) 0 0

0 κ(1)
ν
− α − β − δ 0

1 − c1 0 J3,3(0, 0)


We therefore see that this point is unstable provided (72) holds, which is likely to be true in practice, as already
observed in Section 4.1.

Steady growth equilibrium. Following [9], we call the equilibrium with finite debt and positive wages and employ-
ment rate the good equilibrium for (73). We can see from the second equation in (73) that this is characterized by

κ(1 − ω1 − rd1) = ν(α + β + δ), (82)

which can be uniquely solved for π1 = 1 − ω1 − rd1 because of condition (80). This corresponds to a steady state
where the growth rate equals α + β, the natural growth rate of the economy. Accordingly, d1 is a root of the following
quadratic equation:

A1d2 + A2d + A3 = 0 (83)

where

A1 = ηprm, A2 = ηp(1 − m(1 − π1)) − ηqν(α + β + δ) + (ηq − 1)(c1r − c2), A3 = (1 − π1)(1 − c1(ηq + 1)).

Provided ∆ := A2
2 − 4A1A3 ≥ 0, there is at least one real solution to (83) given by

d
±

1 =
−A2 ±

√
∆

2ηprm
. (84)

It is rather difficult to get information out of this expression, and one shall study the above value numerically.
We shall impose d1 < (1 − π1)/r, in order to ensure that ω1 > 0. Given ω1, we obtain

λ1 = Φ−1
(
α + (1 − γ)i(ω1, d1)

)
, (85)

which, on account of (81), always exists provided i(ω1, d1) > 0. At the point (ω1, λ1, d1), the Jacobian (75) becomes
J1,1(ω1, d1) ω1Φ′(λ1) 0

−
λ1

ν
κ′(π1) 0 −

rλ1

ν
κ′(π1)

J3,1(ω1, d1) 0 J3,3(ω1, d1)

 . (86)
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Computing the characteristic polynomial P[X] for the matrix (86) and applying the Routh-Hurwitz criterion provides
a necessary and sufficient condition for all the roots of a cubic polynomial to have negative real part, which in turn
ensure local stability for this equilibrium point. They boil down to the following two fairly non-intuitive conditions,
which need to be checked numerically:

J3,3(ω1, d1) < min

−J1,1(ω1, d1);−
λ1κ

′(π1)ω1Φ′(λ1)

νJ1,1(ω1, d1)
; rJ3,1(ω1, d1)

 (87)

rJ3,1(ω1, d1) − J3,3(ω1, d1)

J1,1(ω1, d1) + J3,3(ω1, d1)
+
νJ3,3(ω1, d1)J1,1(ω1, d1)

λ1κ′(πe)ω1Φ′(λ
1
)

> −1. (88)

At equilibrium, we find that demand equals

yd = c1ω1 + c2d1 +
ν(α + β + δ)

u0
(89)

When yd > 1, this equilibrium is not economically meaningful, since in this case (67) leads to vanishing inventories
in finite time and the model ceases to make sense. Accordingly, this restricts the constant capacity utilization u0 to the
range

u0 ≥
ν(α + β + δ)

1 − c1ω1 − c2d1
, (90)

in which case the relative inventory level v = V/Y converges to the equilibrium value

v1 =
1 − c1ω1 − c2d1 − ν(α + β + δ)/u0

α + β
, (91)

with the Keen model of [11] corresponding to structurally unstable special case with yd = 1 and v1 = 0.

Debt crisis. As described in [9], a key feature of the original Keen model [11] is that it admits an equilibrium of
the form (ω, λ, d) = (0, 0,+∞), that is to say, corresponding to unbounded growth in the debt ratio at the same time
that the wage share and employment rate decrease to zero. The analysis in [9] was done using a change the variable
q = 1/d and observing that (ω, λ, q) = (0, 0, 0) becomes an equilibrium point for the transformed system.

In the present case, we see that this change of variable turns the third equation in (73) into

q̇ = q
[
κ(u0, πe)

ν
− δ(u0) + i(ω, 1/q) − r

]
− q2

[
(1 − c1)ω −

c2

q

]
.

Using the price dynamics (31), with demand given by the (30) and consumption of the form θ(ω, d) = c1ω + c2d we
find that the term qi(ω, 1/q) in the expression above becomes

qi(ω, 1/q) = q
[
ηp(mω − 1) + ηq

(
c1ω +

κ(u0, πe)
u0

− 1
)]

+ ηqc2,

from which we deduce that q = 0 does not lead to q̇ = 0 in the transformed system. Observe that a similar problem
arises with the term ωi(ω, 1/q) originating from the first equation in (73) whenever γ , 1. More generally, we
conclude that the system (73) does not exhibit an equilibrium characterized by d → +∞ provided the consumption
function has a wealth effect that grows at least linearly in d.

On the other hand, system (73) admits a different type of debt crisis corresponding to no economic activity and a
finite debt ratio, namely, an equilibrium of the form (ω, λ, d) = (0, 0, d2) where d2 satisfies

κ(1 − rd2)
ν

− δ = r − c2 − i(0, d2) (92)

with

i(0, d2) = −ηp + ηq

c2d2 +
κ(1 − rd2)

u0
− 1

 . (93)
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The Jacobian matrix (75) at point (0, 0, d2) becomes
Φ(0) − α − (1 − γ)i(0, d2) 0 0

0 r − c2 − i(0, d2) − α − β 0
J3,1(0, d2) 0 J3,3(0, d2)

 .
The conditions for local stability of (0, 0, d2) then read

Φ(0) − α − (1 − γ)i(0, d2) < 0, r − c2 − i(0, d2) < α + β, J3,3(0, d2) < 0. (94)

Because (93) cannot be solved exactly, all three conditions must be checked numerically. That is to say, local stability
of the debt crisis equilibrium (0, 0, d2) cannot be ruled out a priori.

Deflationary equilibria. Another undesired type of equilibrium, similar to the new one found in [10], appears in the
monetary version of the long-run dynamics and corresponds to a very specific situation when decreasing real wages,
due to low employment rate, are compensated by deflation in the economy. Similar to Section 3.4, these equilibria are
of the form (ω3, 0, d3) where ω3 and d3 are solutions to the nonlinear equations

i(ω3, d3) =
Φ(0) − α

1 − γ
(95)

(c1 − 1)ω3 = d3

r − c2 −
κ(1 − ω3 − rd3)

ν
+ δ − i(ω3, d3)

 (96)

where

i(ω3, d3) = ηp(mω3 − 1) + ηq(c1ω3 + c2d3 − 1) + ηq
κ(1 − ω3 − rd3)

u0
. (97)

Observe that (81) implies that i(ω3, d3) < 0, confirming that this equilibrium corresponds to a deflationary economy.
The Jacobian matrix (75) at this point, J(ω3, 0, d3) becomes

J1,1(ω3, d3) ω3Φ′(0) 0

0
κ(1 − ω3 − rd3)

ν
− α − β − δ 0

J3,1(ω3, d3) 0 J3,3(ω3, d3)

 . (98)

Inverting the order of ω and λ thus provide a lower triangular matrix, from which we can immediately obtain the three
eigenvalues. Assuming ω3 > 0, the conditions for local stability of (ω3, 0, d3) then read

ηpm + ηq

c1 −
κ′(1 − ω3 − rd3)

u0

 > 0,
κ(1 − ω3 − rd3)

ν
− δ < α + β, J3,3(ω3, d3) < 0, (99)

all of which must be checked numerically. In other words, local stability of the deflationary equilibrium (ω3, 0, d3)
cannot be ruled out a priori either.

5. Short-run dynamics

5.1. Supply-demand tâtonnement

In contrast with Section 4, we now consider what happens when only short-run effects are taking into account. For
this, suppose that α + β = 0, so that the long-run equilibrium corresponds to an economy with zero growth. In this
case, expected sales and investment in planned inventory should be driven solely by short-run fluctuations in demand,
and we accordingly set

ge(u, πe) = 0. (100)
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Inserting this into (31), (34), and (35), we see that the inventory ratio and instantaneous growth rate of the economy
become

v =
[1 + fdηd]ye − 1

ηd
, g(ye, yd) = ηe(1 + fdηd)(yd − ye) + ηd(yd − 1). (101)

Similarly, because the long-run equilibrium level for capital is constant, investment is only necessary in order to
replace depreciated capital, so that we can set

κ(u, πe) = νδ(u). (102)

The system (41) then becomes 
ω̇ = ω[Φ(λ) − (1 − γ)i(ω, yd, ye)]
λ̇ = λg(ye, yd)
ḋ = d[r − g(ye, yd) − i(ω, yd, ye)] + ω − θ(ω, d)
ẏe = −yeg(ye, yd) + ηe(yd − ye)
u̇ = ug(ye, yd)

(103)

To proceed with the analysis further, we now consider the type of short business cycles first reported in [12], which
are attributed to the response of firms to changes in inventory, but with lags in information. Accordingly, we focus
exclusively on the fluctuations generated by the adjustment terms related to the parameters ηe, ηd, ηq and set ηp = 0
and Φ(·) ≡ 0, thereby ignoring both the labour cost push in (31) and the effect of employment in the wage bargaining
equation (32). This leads to

i(ω, yd, ye) = i(yd, ye) = ηq(yd − ye). (104)

Assuming further that δ(u) = δu for δ > 0 and that

θ(ω, d) = c1ω + c2d = c1ω (i.e. c2 = 0) (105)

we find that yd = c1ω + νδ, so that the growth rate of yd is the same as the one of ω. We then obtain that (103)
decouples into a two-dimensional system for the variables yd and ye of the form{

ẏd = −(1 − γ)ydηq(yd − ye)
ẏe = ηe(yd − ye) − yeg(ye, yd) (106)

and an auxiliary system for (ω, λ, d) that can be solved after (yd, ye) have been determined.
This is a situation with constant level of capital, and investment answering to running costs and depreciation only.

The productivity and the population size are assumed to be constant. Firms adjust their expectations by replicating the
demand with relaxation parameter ηe. Inventories aim at being a fraction fd of that expected demand, with relaxation
parameter ηd. Prices move only to accommodate inventories, via the parameter ηq. Wages respond to inflation though
the parameter γ and the aggregate real purchasing power is affected by i(yd, ye). We are thus in a strictly short-run
supply-demand tâtonement mechanism.

5.2. Phase plan analysis
It is easy to see that {yd ≥ 0} is invariant by (106), which induces that {ye ≥ 0} is also invariant. Nothing, however,

bounds either these two variables or the auxiliary function g(ye, yd) from above. Consequently, great care shall be
taken in the interpretation of the model dynamics, since it allows for λ > 1, u > 1 or v < 0 without any direct
feedback.

We rewrite the system (106) into the following form{
ẏd = −(1 − γ)ydηq(yd − ye)
ẏe = yeη0(ye − y−e ) − yd(ηd + η0)(ye − y+

e ) (107)

where η0 = ηe(1 + fdηd) and
y−e =

ηe − ηd

η0
< y+

e =
ηe

ηd + η0
< 1.
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Figure 1: Discriminant regions for directional quadrants of the vector field (106) [black lines, black arrows]. Sample phase trajectories given with
initial point (yd , ye) = (1.5, 1.7) for γ = 0.3 [orange dotted-line] and γ = γ0 = 0.625 [green line]. Numerical approximation of the basin of
attraction of the finite-time blow-up [dotted red line] with γ = 0.3. Parameters (ηe, ηd , ηq, fd) = (2.5, 0.75, 0.25, 0.05).

The above inequalities hold for any positive parameters configuration. The isocline ẏd = 0 is given by the lines yd = 0
and ye = yd, and it easily follows that ẏd < 0 on {0 ≤ ye < yd} and ẏd > 0 on {ye > yd}.

On the other hand, the isocline ẏe = 0 is given by the following two functions of yd:

n±(yd) =
(ηd + η0)yd + η0y−e

2η0
±

1
2η0

√
∆(yd),

with ∆(yd) =
(
(ηd + η0)yd + η0y−e

)2
− 4η0y+

e (ηd + η0)yd. The polynomial ∆(yd) itself has two real roots y−d < y+
d given

by
y±d =

η0

η0 + ηd

(
2y+

e − y−e ± 2
√

y+
e (y+

e − y−e )
)
.

It is easy to see that y−d > 0, since ∆(0) = (η0y−e )2 > 0, and that y+
d < 1, since ∆(1) = (ηd fdηe)2 > 0. Moreover, on the

interval (y−d , y
+
d ) ⊂ (0, 1) we have that ∆(yd) < 0, so that the curves n±(yd) are not defined and ẏe > 0. Alternatively, on

[0, y−d ) ∪ (y+
d ,+∞), we have that ẏe < 0 for ye ∈ (n−(yd), n+(yd)) and ẏe > 0 for ye ∈ (0, n−(yd)) ∪ (n+(yd),+∞).

Notice that ye = y−e or ye = y+
e imply ẏe > 0 for all yd. This actually provides limit cases n+(0) = y−e and

limyd→+∞ n−(yd) = y+
e . In addition, we can show that

∂n−
∂yd

(0) =
η0 + ηd

η0

(
3
2

+ 2
ηd(ηd + η0 − ηe)

(ηd + η0)(ηe − ηd)

)
which is greater than one provided ηe > ηd. In that case, we find that {ẏe < 0, yd ≤ y−d } ∩ {yd = ye} = ∅. On the other
hand, for large values of yd, we have that

n+(yd) =
ηd + η0

η0
yd + o(|yd |) for yd → +∞, (108)

so that {ẏe > 0, yd > y+
d } ∩ {yd = ye} = ∅. This is summed up by black thick lines and arrows giving the directional

quadrants of the system in each area on Figure 1.
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5.3. Equilibrium points
Three equilibria are possible for (107). The first equilibrium (yd, ye) = (1, 1) corresponds to the interior equilibrium

(44) in the general model with (α + β) = 0. At this equilibrium, expected sales equals output and equals demand:
the tâtonnement is successful. Moreover, the equilibrium inflation rate and the growth rate are both zero, λ and u are
constant, and inventory provides a constant buffer v = fd between production and sales.

The Jacobian matrix of (107) is[
−(1 − γ)ηq(2yd − ye) (1 − γ)ηqyd

ηe − ye(η0 + ηd) ηd − ηe + 2η0ye − (η0 + ηd)yd

]
.

At the first equilibrium, it simplifies into [
−(1 − γ)ηq (1 − γ)ηq

ηe − (η0 + ηd) η0 − ηe

]
which yields the characteristic equation:

X2 + X
[
(1 − γ)ηq − ηe fdηd

]
+ (1 − γ)ηqηd = 0.

All parameters being positive, and γ < 1, the real part of the two roots is negative if and only if (Routh-Hurwitz
criterion)

γ < γ0 := 1 − ηeηd fd/ηq. (109)

This equilibrium is thus locally attractive if (109) holds. When γ = γ0, the roots of the characteristic equations
are purely imaginary and the system undergoes an Andronov-Hopf bifurcation. The first Lyapunov exponent at the
bifurcation value `1(γ0) is positive, so that the bifurcation is sub-critical: the limit cycle is unstable (this is confirmed
by simulations). When γ ≥ γ0, in full generality, the equilibrium point is locally repelling.

The second equilibrium is given by (yd, ye) = (0, 0) and means the collapse of the market, with all variables
dwindling to zero. At this point the Jacobian matrix is

J(0, 0) =

[
0 0
ηe ηd − ηe

]
,

and we see that this equilibrium is unstable for ηd > ηe and fails to be asymptotically stable, even if ηd < ηe, since the
kernel of the Jacobian is of dimension one.

If the system does not converge toward (1, 1) nor (0, 0), there exists a singular attractive state for (106) charac-
terized by a finite-time blow-up towards (+∞,+∞). By writing the system under the form (h, x) = (1/yd, yd/ye), we
obtain the dynamics  ḣ = (1 − γ)ηq

(
1 − 1

x

)
ẋ =

(
(1 − γ)ηq + η0

)
−1
h + (η0 + ηd + (1 − γ)ηq) x

h − (η0 − ηd)x − ηex2.
(110)

We are interested in the finite-time blow-up for both h and x toward 0, since n+(yd) is super-linearly increasing in yd,
according to (108). We are able to express (110) as a second order non-linear differential equation:

ḧ = (1 − γ)ηqηd

(
1
h
− 1

)
− (ηe − ηd)ḣ +

ḣ
h

(
η0 − ηd − (1 − γ)ηq

)
+

ḣ2

h

(
1 −

η0

(1 − γ)ηq

)
. (111)

and the local behavior defined by limh,x→0 ḣ = −∞. In that case, factorizing by ḣ2/h allows to approximate (111)
around that point by

ḧ ∼h↓0
ḣ2

h

(
1 −

η0

(1 − γ)ηq

)
.

This is a generalized Emdem-Fowler equation [15], whose solution is of the form

h(t) = a2

(
η0

(1 − γ)ηq
t + a1

) (1−γ)ηq
η0

,
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reaching zero in finite time for any parameters a1, a2 > 0. This situation translates into a singular behaviour: when
expectations and demand are very high, inventories must decrease to answer expected sales, and prices are pushed
down to control unplanned inventories. However this stimulates the aggregate demand, which in turns boost the
expectations. The growth rate of Y shrinks and the situation gets worse.

5.4. Price adjustment and information lag: another view

In the present case, assumption (31) takes on a major role about firms speed of price adjustment, where it is
assumed that they take into account direct unplanned inventory investment. This has a significant impact on the
stability of a supply-demand equilibrium.

Consider an alternative assumption to (31) with prices adjusting with the difference between desired and observed
inventory levels:

ṗ
p

= ηp

(
m

c
p
− 1

)
− ηq

Vd − V
Y

(112)

which, along with previous assumptions, provides the inflation rate i(ye) = ηq(1 − ye)/ηv. Computations provide an
alternative short-run business cycles system of the form{

ẏd = −(1 − γ)yd
ηq

ηv
(1 − ye)

ẏe = ηe(yd − ye) − yeg(ye, yd),
(113)

that we compare with (106). The slight difference with the latter concerns the first equation, for which the isocline is
given by {ye = 1} instead of {yd = ye}. Equilibrium points are interestingly the same, i.e., a supply-demand equilibrium
(1, 1), a market collapse (0, 0), and a finite-time blow-up toward (+∞,+∞). The impact on stability is however much
more involved. The Jacobian for the first equilibrium is given by[

0 (1 − γ)ηq/ηd

ηe − η0 − ηd η0 − ηe

]
(114)

Since all entries of the matrix above are positive, both root of the characteristic equation are positive. This equilibrium
point is thus locally repelling. We observe on Figure 2 that points starting in the close neighborhood of (1, 1) converge
to a semi-stable limit cycle. Trajectories starting in the external neighborhood of that limit cycle converge also
numerically to that limit cycle, so that the latter is locally stable. These assertions are supported by the two trajectories
starting respectively at (1.05, 0.95) and (0.95, 1.15) on Figure 2. This seems to correspond strongly to a Kitchin cycle
[12], where lag in information and decision adjustment (through parameters ηd, ηe and ηq) affect prices, output,
demand, inventory and employment in a periodic manner. This cycle is locally stable, that is, it attracts a whole region
including it.

At the bad equilibrium (0, 0) the Jacobian equals

J(0, 0) =

[
−(1 − γ)ηq/ηd 0

ηe ηd − ηe

]
(115)

where the two eigenvalues are negative if and only if ηd < ηe. Therefore, this point can be locally attractive, as the
trajectory starting at (yd, ye) = (0.7, 0.4) shows on Figure 2. Here, the low level of inventories pushes prices up, and
pulls demand down, in a spiral dynamics toward a complete shut-down of economical activities: employment and
utilization dwindle to zero, and the market shuts down.

The finite-time blow-up is similar to the previous case. See for example the trajectory starting at (yd, ye) = (0.9, 1.2)
on Figure 2.

6. Conclusions

In the present article, we have presented a general, albeit complex, stock-flow consistent model for inventory
dynamics in a closed monetary economy. The model relies heavily on adapted behaviour of firms regarding expected

19



Figure 2: Discriminant regions for directional quadrants of the vector field (113) [black lines, black arrows]. Several sample phase trajectories
given with initial points (yd , ye). Parameters (ηe, ηd , ηq, fd , γ) = (2.5, 0.5, 0.25, 0.05, 0).

sales and desired inventory levels. To gain insight, we analyze the model in two specific limiting versions: a long-
run dynamics ignoring the effect of instantaneous fluctuations in demand and a short-run one solely driven by these
fluctuations.

The long-run dynamics gives rise to a version of the Keen model [11] where demand is not necessarily equal to
output. This sheds light on the question of whether the rich set of trajectories obtained in [11] and related models of
debt-financed investment were an artefact of a strictly supply-driven model with no role for Keynesian effect demand.
As the above analysis shows, one can relax the constraints of the Keen model by allowing an independently specified
consumption function and still obtain broadly the same conclusions. The main difference is that the debt crisis,
previously characterized by an explosive debt ratio, gets replaced by an equally bad equilibrium with a finite debt
ratio but collapsing economy with vanishing wage share and employment rates. In both cases, Minskyan instability
arising from financial charges lead to the collapse of profits and an induced debt crisis.

The short-run dynamics reveals inventory cycles related to nominal rigidity of demand. For given speeds of expec-
tations adjustment and inventory stocks, a high degree of nominal illusion is necessary to ensure local stability. Yet,
this situation can show divergence as the model does not include long-run feedback channels. A second dimension,
illustrated by the difference in behavior in Sections 5.3 and 5.4, is the type of information on inventory used for price
adjustment. By replacing unplanned inventory investment with mismatch in desired inventory levels as the factor
determining price adjustments, we create a lag in information that gives rise a stable limit cycle which we interpret as
a Kitchin cycle. Nevertheless, this does not get rid of the divergent path, still possible if the situation is too far from
the interior equilibrium. In addition, we have the possibility of a market failure where demand and supply meet at
zero, for a condition that appears repeatedly in this section provided ηd < ηe. In other words inventories must adjust
faster than expectations to avoid this type of crash.

In its closing sentences, [18] asserts that “general-equilibrium analysis of the business cycle with inventories is
still in its infant stage.” This is also true for disequilibrium analysis of the business cycle in the burgeoning recent
literature on stock-flow consistent models [4], where inventories have received comparatively less attention than their
more glamorous financial counterparts - cash balances, government deficits and the like. We hope this paper will help
bring the analysis of inventory dynamics to a more diverse adolescence.
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