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ASSET PRICE BUBBLES IN INCOMPLETE MARKETS∗

ROBERT A. JARROW, PHILIP PROTTER, AND KAZUHIRO SHIMBO1

Cornell University

This paper studies asset price bubbles in a continuous time model using the local
martingale framework. Providing careful definitions of the asset’s market and fun-
damental price, we characterize all possible price bubbles in an incomplete market
satisfying the “no free lunch with vanishing risk (NFLVR)” and “no dominance”
assumptions. We show that the two leading models for bubbles as either charges or
as strict local martingales, respectively, are equivalent. We propose a new theory for
bubble birth that involves a nontrivial modification of the classical martingale pricing
framework. This modification involves the market exhibiting different local martin-
gale measures across time—a possibility not previously explored within the classical
theory. Finally, we investigate the pricing of derivative securities in the presence of
asset price bubbles, and we show that: (i) European put options can have no bubbles;
(ii) European call options and discounted forward prices have bubbles whose mag-
nitudes are related to the asset’s price bubble; (iii) with no dividends, American call
options are not exercised early; (iv) European put-call parity in market prices must
always hold, regardless of bubbles; and (v) futures price bubbles can exist and they
are independent of the underlying asset’s price bubble. Many of these results stand in
contrast to those of the classical theory. We propose, but do not implement, some new
tests for the existence of asset price bubbles using derivative securities.

KEY WORDS: price bubbles, local martingales, NFLVR, no dominance.

1. INTRODUCTION

Asset price bubbles have fascinated economists for centuries, one of the earliest recorded
price bubbles being the Dutch tulipmania in 1634–1637 (Garber 1989, 1990), followed by
the Mississippi bubble in 1719–1720 (Garber 1990), the related South Sea bubble of 1720
(Garber 1990; Temin and Voth 2004), up to the 1929 U.S. stock price crash (White 1990;
De Long and Shleifer 1991; Rappoport and White 1993; Donaldson and Kamstra 1996)
and the more recent NASDAQ price bubble of 1998–2000 (Ofek and Richardson 2003;
Brunnermeier and Nagel 2004; Cunando, Gil-Alana, and Perez de Gracia 2005; Battalio
and Schultz 2006; Pastor and Veronesi 2006). Motivated by these episodes of sharp price
increases followed by price collapses, economists have studied questions related to the
existence of price bubbles, both theoretically and empirically.
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Sufficient conditions for the existence and nonexistence of price bubbles in economic
equilibrium has been extensively investigated. Bubbles cannot exist in finite horizon ra-
tional expectation models (Tirole 1982; Santos and Woodford 1997). They can arise,
however, in markets where traders behave myopically (Tirole 1982), where there are irra-
tional traders (De Long et al. 1990), in infinite horizon growing economies with rational
traders (see Tirole 1985; O’Connell and Zeldes 1988; Weil 1990), economies where ra-
tional traders have differential beliefs and when arbitrageurs cannot synchronize trades
(Abreu and Brunnermeier 2003) or when there are short sale/borrowing constraints
(Santos and Woodford 1997; Scheinkman and Xiong 2003a). For good reviews, see
Camerer (1989) and Scheinkman and Xiong (2003b). In these models, albeit for different
reasons, arbitrageurs cannot profit from and thereby eliminate price bubbles (via their
trades). Equilibria with bubbles share many of the characteristics of sunspot equilibrium
where extrinsic uncertainty can affect the allocation of resources solely because of traders’
self-confirming beliefs (see Cass and Shell 1983; Balasko, Cass, and Shell 1995). Indeed,
in bubble economies, the self-confirming beliefs often correspond to the expectation that
one can resell the asset to another trader at a higher price (see Harrison and Kreps 1978;
Scheinkman and Xiong 2003b).2

Equilibrium models impose substantial structure on the economy, in particular, in-
vestor optimality and a market-clearing mechanism equating aggregate supply to ag-
gregate demand. Price bubbles have also been studied in less restrictive settings, using
the insights and tools of mathematical finance. These papers are mainly concerned with
the characterization of bubbles and the pricing of derivative securities in finite horizon
economies satisfying the “no free lunch with vanishing risk (NFLVR)” hypothesis (see
Loewenstein and Willard 2000a,b; Cox and Hobson 2005; Heston, Loewenstein, and
Willard 2007). Herein, bubbles violate many of the classical option pricing theorems,
and in particular, put-call parity. In contrast to equilibrium pricing, these violations
occur due to the absence of sufficient structure on the economy within the NFLVR
framework. Nevertheless, put-call parity is almost never empirically violated (e.g., see
Klemkosky and Resnick 1908; Kamara and Miller 1995; Ofek and Richardson 2003),3

suggesting that more structure than only NFLVR is needed to understand price bubbles
in realistic economies.

The missing structure is the classical notion of no dominance (see Merton 1973),
which has largely been forgotten in the mathematical finance literature. No dominance
is stronger than NFLVR, but substantially weaker than imposing a market equilibrium.
Adding this hypothesis to NFLVR, Jarrow, Protter, and Shimbo (2006) recently studied
bubbles in complete market economies with infinite trading horizons. They show that the
addition of no dominance excludes all asset price bubbles. Consequently, if bubbles are
to exist, markets must be incomplete. This insight motivates this paper, which extends
Jarrow, Protter, and Shimbo’s analysis to incomplete markets.

Given in this paper is a nonnegative stochastic price process S = (St)t≥0 and a risk-
free money market account r = (rt)t≥0, both defined on a filtered complete probability
space (�,F, F, P), where F = (Ft)t≥0. The First Fundamental Theorem of asset pricing
(see Delbaen and Schachermayer 1994) states that there is no arbitrage in the sense of
NFLVR, if and only if there exists an equivalent probability measure Q rendering S into a

2These models study bubbles in competitive markets where all traders act as price takers. Of course,
bubbles can arise due to market manipulation behavior as well (see Jarrow 1992 and Bank and Baum 2004,
for this class of models). These models are not discussed in this paper.

3In private discussions with professional option traders, put-call parity is uniformly viewed as holding
across all assets classes, regardless of price bubbles.
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σ -martingale. However, because S is nonnegative, it is bounded below (by zero). Because
any σ -martingale bounded below is a local martingale, only local martingales need to
be considered. Hence, under Q the price process S could be a uniformly integrable
martingale, just a martingale, or even a strict local martingale. Which form the price
process takes relates to whether or not price bubbles exist and their characterization.

To define the concept of a bubble, we first need to define the asset’s fundamental price.
Traditionally, in a complete market, the fundamental price was defined to be the arbitrage
free price as in Harrison and Kreps (1978), i.e., the asset’s discounted expected cash flows
using the martingale measure. As the subject has evolved, however, fundamental prices
and market prices have often been confused. We define each of these prices carefully,
rigorously clarifying the distinction. Furthermore, there is another complication in an
incomplete market. By the Second Fundamental Theorem of asset pricing, there are a
multiplicity of local martingale measures that could be used to define the fundamental
price. Using the insights of Jacod and Protter (2009) and Schweizer and Wissel (2008),
we select the unique local martingale measure Q consistent with the market pricing of
the traded derivative securities.

As shown by Jarrow et al. (2006) in the continuous time setting, but otherwise well-
known in the discrete time economics literature (see Diba and Grossman 1987; Weil 1990),
a problem with the current theory of bubbles is that bubbles can end, or “burst,” but that
they cannot be “born” after the model begins. That is, they must exist at the start of the
model or not at all. Of course, this property contradicts economic intuition and historical
experience. We introduce a new theory for bubble birth which involves a nontrivial
modification of the classical martingale pricing framework. This modification involves
the market exhibiting different local martingale measures across time—a possibility
not previously explored within the classical theory. Shifting local martingale measures
corresponds to regime shifts in the underlying economic fundamentals (endowments,
beliefs, risk aversion, institutional structures, technology).

The basic idea can be explained as follows. In an incomplete market, there are an infinite
number of local martingale measures. When pricing derivatives, the market “chooses” a
unique measure if enough derivatives trade (see Jacod and Protter 2009; Schweizer and
Wissel 2008). This unique measure defines the fundamental price. A change in the measure
selected can create bubbles. For example, at the start of the model, suppose that the market
“chooses” a local martingale measure Q0 which admits no bubbles. Then, at some future
random time, the market exhibits a regime shift and it “chooses” a different measure
Q1 which creates a bubble. This change of measure leaves the price process unchanged,
but will change the price of some derivative because the market is incomplete. This
regime shift could be due to intrinsic uncertainty (Froot and Obstfeld 1991) or extrinsic
uncertainty (Cass and Shell 1983)—“a sunspot.” This change in measures can be thought
of as roughly analogous to a phase change in an Ising model. This modification requires a
nontrivial extension to standard NFLVR theory, which assumes a fixed local martingale
measure for all times. Our paper contains this extension.

In the popular press, bubbles are conjectured to exist sector wide. Recent examples
might include the NASDAQ price bubble of 1998–2000, or the “housing bubble” either
here (Case and Shiller 2003) or earlier in Japan (Stone and Ziemba 1993). We show how
the theory of bubbles for individual assets is easily extended to bubbles in market indexes
and/or market portfolios.

Given the existence of bubbles in asset prices, an interesting set of questions arises as
to how this existence impacts the pricing of derivative securities—calls, puts, forwards,
futures; whether bubbles can independently exist in the derivative securities themselves;
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and whether bubbles can, in fact, invalidate the well-known put-call parity relation.
Partial answers to these questions were obtained in models using only the NFLVR
assumption (see Cox and Hobson 2005). We revisit these questions herein using both the
NFLVR and no dominance assumptions.

First, we extend the definition of an asset’s fundamental price to the fundamental
price for a derivative security. This involves one subtlety. The derivative security’s payoffs
are written on the market price, and not the fundamental price, of the underlying asset.
Hence, the derivative’s fundamental price must reflect this distinction. Given the proper
definition, we show that European put options can have no bubbles, but that European
call options can. In fact, the magnitude of the bubble in a European call option’s price
must be related to the magnitude of the bubble in the underlying asset’s price. Alternatively
stated, bubbles in the underlying stock price imply that there exists no local martingale
measure such that the expected discounted value of the call option’s payoff equals the
market price. Thus, risk neutral valuation cannot be used to price call options in the
presence of asset price bubbles.

Second, using Merton’s (1973) original argument, but in our context, we show that
European put-call parity always holds for market prices. In addition, put-call parity also
holds for the fundamental prices of the relevant securities.

Third, we study American call option pricing under the standard no dividend assump-
tion, and we show that the market price of a European call option must equal the market
price of the American call option, even in the presence of asset price bubbles. This is
due to the fact that American calls are not exercised early. This result extends a previous
theorem of Merton’s (1973) in this regard. Relative to its fundamental price, American
call options themselves can have no bubbles, unlike their European counterparts. This
follows because the fundamental value’s stopping time (as distinct from the market price’s
exercise time) explicitly incorporates the impact of the price bubble. The fundamental
value is stopped early because a bubble generates an effect on the asset’s price process
that is equivalent to a continuous dividend payment.

Finally, we study forward and futures prices. We show that the discounted forward
price of a risky asset can have a bubble, and if it exists, it must equal the magnitude of the
bubble in the asset’s price. With respect to futures, in the existing finance literature, the
characterization of a futures price implicitly (and sometimes explicitly) uses the existence
of a given local martingale measure which makes the futures price a martingale (e.g.,
see Duffie 2001, p. 173 or Shreve 2004, p. 244). Because futures prices have bounded
maturities, this excludes (by fiat), the existence of futures price bubbles. Thus, to study
bubbles in futures prices, we first need to generalize the characterization of a futures
price to remove this implicit (or explicit) restriction. Accomplishing this extension, we
then show that futures prices can have bubbles, both positive and negative, and unlike
discounted forward prices, the magnitude of a futures price bubble need not equal the
magnitude of the underlying asset price’s bubble. In a world of deterministic interest rates,
however, no dominance implies that forward prices equal futures prices and therefore,
their bubbles must be identical. This insight extends the classical work of Jarrow and
Oldfield (1981) and Cox, Ingersoll, and Ross (1981) in this regard.

Our extension also generates an unexpected insight. Traditionally, the study of bubbles
has been viewed from two apparently different perspectives, one we call the local martin-
gale approach, which we discussed earlier, and the other based on finitely additive linear
operators (or “charges”), as typified in Gilles (1988), Gilles and Leroy (1992), and Jarrow
and Madan (2000). We show these two approaches are, in fact, the same in Theorem 8.3.
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A related issue, in a portfolio context, has been studied by Cvitanic, Schachermayer, and
Wang (2001).

Before concluding, we comment on the existing literature testing for asset price bubbles
in various markets (e.g., Flood and Garber 1980; Evans 1986; West 1987, 1988; Diba
and Grossman 1988; Donaldson and Kamstra 1996). As is well known, testing for price
bubbles in the asset prices themselves involves the specification of the local martingale
measure Q, and hence represents a joint hypothesis. We add no new insights in this regard.
However, given our increased understanding of the pricing of derivative securities with
asset price bubbles, some new tests using call and put prices are proposed. Empirical
implementation of these proposed tests await subsequent research.

An outline for this paper is as follows. Section 2 provides the model setup, whereas
Section 3 defines the fundamental price and price bubbles. Section 4 characterizes all pos-
sible asset price bubbles. Examples are provided in Section 5. Section 6 studies derivatives
securities and Section 7 clarifies forward and futures price bubbles. Section 8 connects the
local martingale approach with the charge approach to price bubbles. Finally, Section 9
concludes with a brief discussion of the empirical literature with respect to price bubbles.

2. THE MODEL

Important in studying bubbles is the precise mathematical definition of a bubble. Histor-
ically, there are two approaches: one we term the local martingale approach (Loewenstein
and Willard 2000a,b; Cox and Hobson 2005; and Heston et al. 2007) and the other we
call the charges approach (Gilles 1988; Gilles and Leroy 1992; Jarrow and Madan 2000).
In Section 8, we show that these two approaches are the same. Therefore, without loss
of generality, we first present the local martingale approach. This section presents the
necessary model structure.

2.1. The Traded Assets

Let (�,F, F, P) be a filtered complete probability space. We assume that the filtration
F = (Ft)t≥0 satisfies the “usual hypotheses.” (See Protter 2005, for the definition of the
usual hypotheses and any other undefined terms in this paper.) We assume that our
economy contains a traded risky asset and a money market account. We take the money
market account as a numeraire. In particular, the price of one unit of the money market
account is the constant value 1. Changing the numeraire is standard in this literature,
and after the change of numeraire, the spot interest rate is zero. Consequently, all prices
and cash flows defined later are relative to the price of the money market account.

Let τ be a stopping time which represents the maturity (or life) of the risky asset.
Let D = (Dt)0≤t<τ be a càdlàg semimartingale process adapted to F and representing
the cumulative dividend process of the risky asset. Let Xτ ∈ Fτ be the time τ terminal
payoff or liquidation value of the asset. We assume that both Xτ , D ≥ 0. Throughout
this paper, we use either (Xt)t≥0 or X to denote a stochastic process and Xt to denote the
value of the process sampled at time t. We also adopt a convention that if we give a value
of a process at each t in the definition of a process, we define the process by choosing its
càdlàg version unless otherwise stated (see Protter 2001, for a related discussion).

The market price of the risky asset is given by the nonnegative càdlàg semimartingale
S = (St)0≤t≤τ . Note that for t such that �Dt > 0, St denotes a price ex-dividend, because
S is càdlàg.
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Let W be the wealth process associated with the market price of the risky asset, i.e.,

Wt = 1{t<τ }St +
∫ t∧τ

0
d Du + Xτ 1{τ≤t}.(2.1)

The market value of the wealth process is the position in the stock plus all accumulated
dividends, and the terminal payoff if t ≥ τ . Because the risky asset does not exist after τ ,
we focus on [0, τ ] by stopping every process at τ , and then F = Fτ .

2.2. No Free Lunch with Vanishing Risk

Key to understanding an arbitrage opportunity is the notion of a trading strategy. A
trading strategy is defined to be a pair of adapted processes (π, η) representing the number
of units of the risky asset and money market account held at time t with π ∈ L(W).4 The
corresponding wealth process V of the trading strategy (π, η) is given by

Vπ,η
t = πt St + ηt.(2.2)

Assume temporarily that π is a semimartingale. Then, a self-financing trading strategy
with Vπ

0 = 0 is a trading strategy (π, η) such that the associated wealth process Vπ,η is
given by

Vπ,η
t =

∫ t

0
πudWu

=
∫ t

0
πud Su +

∫ t∧τ

0
πud Du + πτ Xτ 1{τ≤t}

=
(

πt St −
∫ t

0
Su−dπu − [π c, Sc]t

)
+

∫ t∧τ

0
πud Du + πτ Xτ 1{τ≤t}

= πt St + ηt(2.3)

where we have used integration by parts, and where

ηt =
∫ t∧τ

0
πud Du + πτ Xτ 1{τ≤t} −

∫ t

0
Su−dπu − [π c, Sc]t.(2.4)

Discarding the temporary assumption that π is a semimartingale, we can define a self-
financing trading strategy (π, η) to be a pair of processes, with π predictable and η optional
such that:

Vπ,η
t = πt St + ηt =

∫ t

0
πudWu = (πW)t,

where π ∈ L(W) for P. As noted, a self-financing trading strategy starts with zero dollars,
Vπ,η

0 = 0, and all proceeds from purchases/sales of the risky asset are financed/invested
in the money market account. Because equation (2.4) shows that η is uniquely determined
by π if a trading strategy is self-financing, without loss of generality, we represent (π, η)
by π .

To avoid doubling strategies (see Harrison and Pliska 1981), we need to restrict the
class of self-financing trading strategies further.

4See Protter (2005) for the definition of L(W). Here we are still working under the original (objective)
measure P.
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DEFINITION 2.1 (Admissibility). Let Vπ be a wealth process given by equation (2.3).
We say that the trading strategy π is a−admissible if it is self-financing and Vπ

t ≥ −a for
all t ≥ 0 almost surely. We say a trading strategy is admissible if it is self-financing and
there exists an a ∈ R+ such that Vπ

t ≥ −a for all t almost surely. We denote the collection
of admissible strategies by A.

The notion of admissibility corresponds to a lower bound on the wealth process,
an implicit inability to borrow if one’s collateralized debt becomes too large (e.g., see
Loewenstein and Willard 2000a, for a related discussion). The restriction to admissible
trading strategies is the reason bubbles can exist in our economy (see Jarrow et al.
2006).

We can now introduce the meaning of an arbitrage-free market. As shown in the
mathematical finance literature (see Delbaen and Schachermayer 1994, 1998a,b; Protter
2001), the appropriate notion is that of No Free Lunch with Vanishing Risk (NFLVR).
Let5

K = {
Wπ

∞ = (π · W)∞ : π ∈ A
}

(2.5)

C = (
K − L+

0

) ∩ L∞(2.6)

DEFINITION 2.2 (NFLVR). We say that a market satisfies NFLVR if

C̄ ∩ L+
∞ = {0}(2.7)

where C̄ denotes the closure of C in the sup-norm topology on L∞.

Roughly, NFLVR effectively excludes all self-financing trading strategies that have
zero initial investment, and that generate nonnegative cash flows for sure and strictly
positive cash flows with positive probability (called, simple arbitrage opportunities), plus
sequences of trading strategies that approach these simple arbitrage opportunities. We
assume that our market satisfies NFLVR.

ASSUMPTION 2.3. The market satisfies NFLVR.

Key to characterizing a market satisfying NFLVR is an equivalent local martingale
measure.

DEFINITION 2.4 (Equivalent Local Martingale Measure). Let Q be a probability mea-
sure equivalent to P such that the wealth process W is a Q-local martingale. We call Q
an Equivalent Local Martingale Measure (ELMM), and we denote the set of ELMMs
by Mloc(W).

By the First Fundamental Theorem of Asset Pricing (Delbaen and Schachermayer
1998a,b), this implies that the market admits an equivalent σ -martingale measure.
By Proposition 3.3 and Corollary 3.5, Ansel and Stricker (1994, pp. 307, 309), a σ -
martingale bounded from below is a local martingale. (For the definition and properties of
σ -martingales, see Emery 1980; Delbaen and Schachermayer 1998a,b; Jacod and
Shiryaev 2003, Section III.6e; Protter 2005). Thus, we have the following theorem:

5 L∞ is the set of a.s. bounded random variables and L+
0 is the set of nonnegative finite-valued random

variables.
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THEOREM 2.5 (First Fundamental Theorem). A market satisfies NFLVR if and only if
there exists an ELMM.

Theorem 2.5 holds even if the price process is not locally bounded due to the as-
sumption that Wt is nonnegative.6 In Jarrow et al. (2006), we studied the existence and
characterization of bubbles under NFLVR in complete markets. In this paper, we discuss
market prices and bubbles under NFLVR in incomplete markets. Hence, by the Second
Fundamental Theorem of asset pricing (see, e.g., Protter 2005), this implies that the
ELMM is not unique in general, that is |Mloc(S)| ≥ 2, where |·| denotes cardinality. The
next section studies the properties of Mloc(S) in an incomplete market.

There is a literature that relates the difference between an equivalent strict local mar-
tingale measure and an equivalent martingale measure, in the context of the first funda-
mental theorem of asset pricing and NFLVR, to the choice of a numeraire that bounds
the asset price process (see Sin 1998; Yan 1998, 2002; Xia and Yan 2002). This literature
shows that a theory of bubbles depends crucially on the choice of the numeraire.7 For
our analysis, we choose the money market account as the numeraire, under which a
risky asset price process is typically not bounded. From an economic perspective, this is
the natural choice because a money market account represents the “riskless” investment
alternative for any investor in the economy.

2.3. The Set of Equivalent Local Martingale Measures

Let MUI(W) be the collection of equivalent measures Q such that W is a Q-uniformly
integrable martingale. We call such a measure an Equivalent Uniformly Integrable Mar-
tingale Measure (EUIMM). Then, MUI(W) is a subset of Mloc(W). Let

MNUI(W) = Mloc(W)\MUI(W)(2.8)

be the subset ofMloc(W) such that W is not a uniformly integrable martingale. In general,
both of the sets MUI(W) and MNUI(W) are nonempty. To see this in a particular case,
consider the following lemma.

LEMMA 2.6. This example is a simplified version of the example in Delbaen and Schacher-
mayer (1998a,b). Let B1, B2 be two independent Brownian motions. Fix k > 1 and let
σ = inf{E(B2)t = k}, where E(X) is the stochastic exponential of X given as the solution of
the stochastic differential equation dYt = Yt−d Xt, Y0 = 1. (Here we need to assume that X
has no jumps smaller than −1 to ensure that X is always positive.) Define the processes Z
and M by

Zt = E(B2)t∧σ , Mt = E(B1)t∧σ .(2.9)

Then, Z is a uniformly integrable martingale, M is a nonuniformly integrable martingale,
and the product ZM is a uniformly integrable martingale.

6In Delbaen and Schachermayer (1998a,b), the driving semimartingale (price process) takes value in R
d

and is not locally bounded from below.
7Indeed, if two assets have bubbles relative to the money market account, they need not have a bubble

relative to each other (using one of them as the numeraire).
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Proof. Observe that M and Z are nonnegative local martingales. Since B1 and B2 are
independent, [B1, B2] ≡ 0 and

Mt Zt = E(B1 + B2 + [B1, B2])t∧σ = E(B1 + B2)t∧σ .(2.10)

In particular, MZ is a local martingale. Z is a uniformly integrable martingale because it
is bounded.

E[M∞] = E[Mσ 1{σ<∞}] + E[M∞1{σ=∞}] = E[Mσ 1{σ<∞}]

= E
[∫

Mu P(σ ∈ du)
]

=
∫

E[Mu ]P(σ ∈ du)

= P(σ < ∞),(2.11)

where the second line of the equations above follows because σ and M are independent.
Moreover, because the stopping time σ is the hitting time of k, we have

0 ≤ E(B2)t∧σ ≤ k,

which implies that E[E(B2)σ ] = 1 (since E(B2) is bounded). However,

1 = E[E(B2)σ ] = 0P(σ = ∞) + kP(σ < ∞),

which implies that P(σ < ∞) = 1
k , and finally E[M∞] = P(σ < ∞) = 1

k . It follows that
M is not a uniformly integrable martingale, since M0 = 1 �= 1

k . Similarly, we can show
that

E[M∞ Z∞] = E[M∞ Z∞1{σ<∞}] = kE[Mσ 1{σ<∞}] = k × 1
k

= 1(2.12)

and it follows that MZ is a uniformly integrable martingale. �
COROLLARY 2.7. There exists an NFLVR economy such that both MU I (W) and

MNU I (W) are nonempty.

Proof. In lemma 2.6, let Q be a probability measure under which B1, B2 are in-
dependent Brownian motions. Since M is not uniformly integrable under Q, Q ∈
MNUI(M). Define a new measure R on F∞ by d R = Z∞d Q. Then by construction R ∈
MUI(M). �

2.4. No Dominance

As shown in Jarrow et al. (2006), NFLVR is not sufficient in a complete market to
exclude bubbles. Also needed is the additional hypothesis of no dominance (originally
used by Merton 1973). This section introduces the necessary structure for the notion of
no dominance.

For each admissible trading strategy π ∈ A, its wealth process V is given by

Vπ
t =

∫ t

0
πudWu,(2.13)
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where Vπ
t is a σ -martingale bounded from below. Therefore, it is a local martingale under

each Q ∈ Mloc(W).
For the remainder of the paper, let ν represent some fixed and constant (future) time.

Let φ = (	, 
ν) denote a payoff of an asset (or admissible trading strategy) where: (i)
	 = (	t)0≤t≤ν is an arbitrary càdlàg nonnegative and nondecreasing semimartingale
adapted to F, which represents the asset’s cumulative dividend process; and (ii) 
ν ∈ Fν

is a nonnegative random variable, which represents the asset’s terminal payoff at time ν.
Finally, let �0 be the collection of all payoffs available in this form. Unfortunately, this

set �0 of asset payoffs is too large and lacks certain desirable properties. We, therefore,
need to restrict our attention to the subset � of �0 defined by

DEFINITION 2.8 (Set of Super-Replicated Cash Flows).

Let � := {
φ ∈ �0 : ∃π ∈ A, a ∈ R+ such that 	ν + 
ν ≤ a + Vπ

ν

}
.(2.14)

The set � represents those asset cash flows that can be super-replicated by trading in
the risky asset and money market account. As seen later, it is the relevant set of cash flows
for our no dominance assumption. We first show that this subset of asset cash flows is a
convex cone.

LEMMA 2.9. � is closed under addition and multiplication by positive scalars, i.e., it is a
convex cone.

Proof. Fix φ1, φ2 ∈ � and let φ = φ1 + φ2, where φi = (	i , 
i ,νi
) with maturity νi .

Without loss of generality, we can take ν1 ≤ ν2. There exists π1, π2 such that

	i
t + 
i ,νi

1{νi ≤t} ≤ ai +
∫ t

0
π i

udWu, i = 1, 2(2.15)

Let 	t = 	1
t + 	2

t + 
1,ν1
1{ν1=t}, ν = ν2, and 
ν = 
2,ν2

.

	t + 
ν1{ν=t} ≤ (a1 + a2) +
∫ t

0

(
π1

u + π2
u

)
dWu = a +

∫ t

0
πudWu,(2.16)

where a = a1 + a2, π = π1 + π2. The proof for multiplication is trivial. �
If φ ∈ � then for each Q ∈ Mloc(W),

EQ[	ν + 
ν ] ≤ a + EQ
[
Vπ

ν

] ≤ a.(2.17)

The first inequality follows because Vπ is a wealth process of admissible trading strategies.
The second inequality follows because Vπ

ν is a nonnegative (because both 	ν and 
ν are
nonnegative) Q-local martingale bounded below, and hence a Q-supermartingale such
that Vπ

0 = 0. Therefore, each asset φ ∈ � is integrable under any ELMM. This is the
reason for restricting our attention to the set of cash flows � ⊂ �0.

This set � is large enough to contain many of the assets of interest in derivatives
pricing. For example:

EXAMPLE 2.10 (Call Option). Consider a call option on S maturing at time T with
strike price K. Assume that the stock does not pay dividends. Then, we can make the
identification: W = S, 	 ≡ 0, ν = T, and 
ν = (ST − K)+.

It is easily seen that this claim is super-replicated by the trading strategy π = (1{t≤T})t≥0

with a = S0. Therefore, the payoff to this call option is in �.
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To motivate the definition of no dominance, suppose that there are two different ways
of obtaining a cash flow φ ∈ �. Assume that we can either buy an asset A which produces
the cash flow φ, or that we can create an admissible trading strategy, a portfolio B, that
also produces the cash flow φ. Further, suppose that the price of A is higher than the
construction cost of B. In this illustration, portfolio B dominates asset A, because it has
the same cash flows but a lower price.

At first glance, this situation would seem to generate a simple arbitrage trading strategy
(i.e., violate NFLVR). Indeed, one would like to short asset A and long the trading strat-
egy B. However, for many market economies, this combined trading strategy would not
be admissible because of the short position in asset A. Hence, not all such “mispricings”
are excluded by the NFLVR assumption (e.g., see Jarrow et al. 2006). To exclude such
“mispricings,” we need an additional assumption.

We note that if traders prefer more wealth to less, then no rational agent would ever
buy A to hold in their optimal portfolio. If a trader wanted the cash flow φ, then they
would hold the trading strategy B instead. This implies that a necessary condition for
an economic equilibrium is that the price of A and the construction cost of B must
coincide. Consequently, we would not expect to see any dominated assets or portfolios
in a well-functioning market.

To formalize this idea, let us denote the market price of φ at time t by �t(φ). Fix
φ = (	, 
ν) ∈ �. For a pair of stopping times σ < μ ≤ ν, define the net gain Gσ,μ(φ),
by purchasing σ and selling at μ ≤ ν, by

Gσ,μ(φ) = �μ(φ) +
∫ μ

σ

d	s + 
ν1{ν=μ} − �σ (φ).(2.18)

DEFINITION 2.11 (Dominance). Let φ1, φ2 ∈ � be two assets. If there exists a pair of
stopping time σ < μ ≤ ν such that

Gσ,μ(φ2) ≥ Gσ,μ(φ1), a.s.

and such that E[1{G2
σ,μ>G1

σ,μ}|Fσ ] > 0 a.s., then we say that asset 1 is dominated by asset 2
at time σ .

Finally, we impose the following assumption.

ASSUMPTION 2.12 (No Dominance). Let the market price be represented by a function
�t : � → R+ such that there are no dominated assets in the market.

This is Merton’s (1973) no dominance assumption in modern mathematical terms.
Note that this assumption consists of two parts. One, the fact that the market price is
a function, implies that for each asset cash flow there is a unique market price. And,
two, it implies that the market price must satisfy no dominance. In essence, it codifies
the intuitively obvious idea that, all things being equal, financial agents prefer more to
less. Different from Assumption 2.3, it does not require an admissible trading strategy to
exploit any deviations. For an example which is consistent with NFLVR, but excluded
by No Dominance, see Jarrow et al. (2006).

It is also important to note that no dominance also excludes suicide strategies (see
Harrison and Pliska 1981 for a definition and related discussion). The notion of domi-
nance is also related to the maximal elements used in the proof of the first fundamental
theorem of asset pricing (see Delbaen and Schachermayer 1994, 1995).
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3. THE FUNDAMENTAL PRICE AND BUBBLES

In the classical theory of mathematical finance, for a primary8 asset trading in an
arbitrage-free market, there is no difference between the market price, the arbitrage-
free price, and the fundamental price, even if the market is incomplete (see Harrison and
Kreps 1979; Harrison and Pliska 1981). This is true because the classical theory only
considers finite horizon models with value processes that, under no-arbitrage, are Q-
martingales for all EMM’s Q. So, the traded asset’s market price equals its arbitrage-free
price which equals the conditional expectation of the asset’s payoffs under any Q. Here
(and to be made precise subsequently), the conditional expectation of the stock’s payoffs
is interpreted as the present value of the asset’s future cash flows, called its fundamental
value. Intuitively, defining a bubble as the difference between the asset’s market and fun-
damental prices, we see that (by fiat) classical mathematical finance theory has no price
bubbles!

In contrast, in the modern theory of mathematical finance (post Delbaen and Schacher-
mayer 1994, 1998a,b), bubbles can exist. This is the local martingale approach for bubbles
due to Loewenstein and Willard (2000a,b) and Cox and Hobson (2005). For a primary
asset trading in a NFLVR market, although there is still no difference between the market
and arbitrage-free prices, these need not equal the conditional expectation of the asset’s
payoffs—defined here as the fundamental price. Indeed, if for a given Q ∈ Mloc(W) the
asset’s price is a strict local martingale, then a bubble exists.

As shown by Jarrow et al. (2006), adding the assumption of no dominance to the
above structure precludes the existence of bubbles in a complete market. Therefore, to
study bubbles using the local martingale approach, one must investigate an incomplete
market. A complication arises. In an incomplete market, by the Second Fundamental
Theorem of Asset Pricing, there is a multiplicity of local martingale measures. To define
the fundamental price, therefore, one of these measures must be selected. Using the same
model structure, in conjunction with an arbitrary rule to choose a unique Q ∈ Mloc(W),
generates a market with bubbles. But, unfortunately, this straightforward extension still
retains the implication that bubbles cannot arise after the model starts. To obtain a
theory that incorporates bubble “birth” in an incomplete market, we need to extend the
standard local martingale approach as presented in Section 2. This is the purpose of the
next section.

3.1. The Extended Economy

This section extends the economy of Section 2 to allow for the possibility of bubble
“birth” after the model starts. A modification involves the market exhibiting different
local martingale measures across time—a possibility not previously explored. Shifting
local martingale measures corresponds to regime shifts in the underlying economy (in
any of the economy’s endowments, beliefs, risk aversion, institutional structures, or tech-
nologies). For pedagogical reasons we choose the simplest and most intuitive structure
consistent with this extension. As indicated later, our extension could be easily gener-
alized, but at a significant cost in terms of its mathematical complexity. We leave this
generalization to future research.

To begin this extension, we need to define the regime shifting process. Let (σi )i≥0 denote
an increasing sequence of random times with σ0 = 0. The random times (σi )i≥0 represent

8By primary we mean not a derivative security on the asset.
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the times of regime shifts in the economy. And, we let (Yi )i≥0 be a sequence of random
variables characterizing the state of the economy at those times (the particular regime’s
characteristics) such that (Yi )i≥0 and (σ )i≥0 are independent of each other. Moreover,
we further assume that both (Yi )i≥0 and (σ )i≥0 are also independent of the underlying
filtration F to which the price process S is adapted.

Define two stochastic processes (Nt)t≥0 and (Yt)t≥0 by

Nt =
∑
i≥0

1{t≥σi } and Yt =
∑
i≥0

Yi 1{σi ≤t<σi+1}.(3.1)

Nt counts the number of regime shifts up to and including time t, whereas Yt identifies
the characteristics of the regime at time t. Let H be a natural filtration generated by N
and Y and define the enlarged filtration G = F ∨ H (see Protter 2005, for a discussion of
some of the general theory of filtration enlargement). By the definition of G, (σi )i≥0 is an
increasing sequence of G stopping times.

Since N and Y are independent of F, every (Q, F)-local martingale is also a (Q, G)-
local martingale. By this independence, changing the distribution of N and/or Y does not
affect the martingale property of the wealth process W . Therefore, the set of ELMMs
defined on G∞ is a priori larger than the set of ELMMs defined on F∞. We are not
concerned with this enlarged set of ELMMs. We will, instead, focus our attention on
the F∞ ELMMs and sometimes write MF

loc(W) to explicitly recognize this restriction.
With respect to this restricted set, given the Radon Nikodym derivative Z∞ = d Q

d P |F∞ , we
define its density process by Zt = E[Z∞|Ft]. Of course, Z is an F-adapted process. Note
that this construction implies that the distribution of Y and N is invariant with respect
to a change of ELMMs in MF

loc(W).
The independence of the filtration H from F gives this increased randomness in our

economy the interpretation of being extrinsic uncertainty. It is well known that extrinsic
uncertainty can affect economic equilibrium as in the sunspot equilibrium of Cass and
Shell (1983). This form of our information enlargement, however, is not essential to our
arguments. It could be relaxed, making both N and Y pairwise dependent, and dependent
on the original filtration F as well. This generalization would allow bubble birth to
depend on intrinsic uncertainty (see Froot and Obstfeld 1991, for a related discussion of
intrinsic uncertainty). However, this generalization requires a significant extension in the
mathematical complexity of the notation and proofs, so it is not emphasized in the text.

3.2. The Fundamental Price

This section makes precise our definition of the fundamental price. Consistent with
the economics literature, we will define the fundamental price as the asset’s discounted
expected cash flows given a local martingale measure. The local-martingale measure Q
selected from Mloc(W) for valuation will be that measure consistent with the market
prices of the traded derivative securities. Schweizer and Wissel (2008) and Jacod and
Protter (2009) show that if enough derivative securities trade (of a certain type), then Q is
uniquely determined. These traded derivative securities effectively complete the market.
We assume the Jacod and Protter (2009) conditions hold for the remainder of the paper.

Furthermore, we hypothesize that the measure selected can depend upon the current
economic regime. As the regime shifts, so can the local martingale measure selected by
the market. This selection process thereby determines the fundamental value and the
existence or birth of price bubbles. More formally, we let the local martingale measure
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in our extended economy depend on the state of the economy at time t as represented by
the original filtration (Ft)t≥0, the state variable(s) Yt, and the number of regime shifts Nt

that have occurred. Suppose Nt = i . Denote Qi ∈ Mloc(W) as the ELMM “selected by
the market” at time t given Yi .

As in the earlier literature on bubbles, the fundamental price of an asset (or portfolio)
represents the asset’s expected discounted cash flows.

DEFINITION 3.1 (Fundamental Price). Let φ ∈ � be an asset with maturity ν and
payoff (	, 
ν). The fundamental price �∗

t (φ) of asset φ is defined by

�∗
t (φ) =

∞∑
i=0

EQi

[∫ ν

t
d	u + 
ν1{ν<∞}

∣∣∣∣Ft

]
1{t<ν}∩{t∈[σi ,σi+1)}(3.2)

∀t ∈ [0, ∞) where �∗
∞(φ) = 0.

In particular, the fundamental price of the risky asset S∗
t is given by

S∗
t =

∞∑
i=0

EQi

[∫ τ

t
d Du + Xτ 1{τ<∞}

∣∣∣∣Ft

]
1{t<τ }∩{t∈[σi ,σi+1)}.(3.3)

To understand this definition, let us focus on the risky asset’s fundamental price. At any
time t < τ , given that we are in the ith regime {σi ≤ t < σi+1}, the right side of expression
(3.3) simplifies to

S∗
t = EQi

[∫ τ

t
d Du + Xτ 1{τ<∞}

∣∣∣∣Ft

]
.

Given the market’s choice of the ELMM is Qi ∈ Mloc(W) at time t, we see that the
fundamental price equals its expected future cash flows. Note that the payoff of the asset
at infinity, Xτ 1{τ=∞}, does not contribute to the fundamental price. This reflects the fact
that agents cannot consume the payoff Xτ 1{τ=∞}.9 Furthermore, note that at time τ = ∞,
the fundamental price S∗

τ = 0. We emphasize that a fundamental price is not necessarily
the same as the market price St. Under NFLVR and no dominance, the market price St

equals the arbitrage-free price, but these need not equal the fundamental price S∗
t .

For notational simplicity, we can alternatively rewrite the fundamental price in terms
of an equivalent probability measure, indexed by time t, that is not a local martingale
measure because of this time dependence.

THEOREM 3.2. There exists an equivalent probability measure Qt∗
such that

�∗
t (φ) = EQt∗

[∫ ν

t
d	u + 
ν1{ν<∞}

∣∣∣∣Ft

]
1{t<ν}.(3.4)

Proof. Let Zi ∈ F∞ be a Radon Nykodym derivative of Qi with respect to P and
Zi

t = E[Zi |Ft]. Define

Zt∗
∞ =

∞∑
i=0

Zi 1{t∈[σi ,σi+1)}.(3.5)

9This convention is nonetheless somewhat arbitrary. The alternative convention is to include Xτ 1{τ=∞} in
the asset’s cash flows. The consequence would be that there are no type 1 bubbles (as defined subsequently).
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Then Zt∗
∞ > 0 almost surely and

EZt∗
∞ = E

[ ∞∑
i=0

Zi 1{t∈[σi ,σi+1)}

]
=

∞∑
i=0

E[Zi 1{t∈[σi ,σi+1)}]

=
∞∑

i=0

E[Zi ]E[1{t∈[σi ,σi+1)}]

=
∞∑

i=0

P(σi ≤ t < σi+1)

= 1.(3.6)

Therefore, we can define an equivalent measure Qt∗
on F∞ by d Qt∗ = Zt∗

∞d P. The
Radon–Nykodim density Zt∗

t on Gt is

Zt∗
t = d Qt∗

d P

∣∣∣∣
Gt

= E[Zt∗ |Ft] =
∞∑

i=0

E[Zi 1{t∈[σi .σi+1)}|Gt]

=
∞∑

i=0

E[Zi |Gt]1{t∈[σi .σi+1)}.(3.7)

Then

�∗
t (φ) =

∞∑
i=0

EQi

[∫ ν

t
d	u + 
ν1{ν<∞}

∣∣∣∣Ft

]
1{t<ν}∩{t∈[σi ,σi+1)}

=
∞∑

i=0

EQi

[∫ ν

t
d	u + 
ν1{ν<∞}

∣∣∣∣Gt

]
1{t<ν}∩{t∈[σi ,σi+1)}

= E

[( ∞∑
i=0

Zi

Zi
t

1{t∈[σ,σi+1)}

) (∫ ν

t
d	u + 
ν1{ν<∞}

)∣∣∣∣∣Gt

]
1{t<ν}(3.8)

and observing that

Zi

Zi
t

1{t∈[σi ,σi+1]} = Zi 1{t∈[σi ,σi+1)}∑∞
i=0 Zi

t 1{t∈[σi ,σi+1)}
,

we can continue

= E
[(∑∞

i=0 Zi 1{t∈[σi ,σi+1)}∑∞
i=0 Zi

t 1{t∈[σi ,σi+1)}

)(∫ ν

t
d	u + 
ν1{ν<∞}

)∣∣∣∣Gt

]
1{t<ν}

= E
[(

Zt∗
∞

Zt

)(∫ ν

t
d	u + 
ν1{ν<∞}

)∣∣∣∣Gt

]
1{t<ν}

= EQt∗

[∫ ν

t
d	u + 
ν1{ν<∞}

∣∣∣∣Gt

]
1{t<ν}

= EQt∗

[∫ ν

t
d	u + 
ν1{ν<∞}

∣∣∣∣Ft

]
1{t<ν}.(3.9)

�
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We call Qt∗
the valuation measure at t, and the collection of valuation measures (Qt∗

)t≥0

the valuation system.
We next introduce the notions of static and dynamic markets. Static markets cor-

respond to those markets considered in classical martingale pricing theory. Dynamic
markets are a new concept.

DEFINITION 3.3 (Static and Dynamic Markets). If Nt = 1 for all t (no regime shifts),
then

Qt∗
(A) = Q0(A) ∀A ∈ F∞, t ≥ 0.(3.10)

In this case, we say the valuation system is static. By construction, in a static market,
such a Qt∗ ∈ Mloc(W).

If the market is not static, we say that it is dynamic.

In general, markets are dynamic, although such markets are not studied in classical
martingale pricing theory. The ∗ superscript is used to emphasize that Qt∗

is the measure
chosen by the market, and the superscript t is used to indicate that it is selected at time t. In
the i th regime {σi ≤ t < σi+1}, the valuation measure coincides with Qi ∈ Mloc(W). As
noted before, since Qt∗

is a family of ELMMs and not one that is fixed, Qt∗
/∈ Mloc(W)

in general, unless the system is static.10

Given the definition of an asset’s fundamental price, we can now define the fundamental
wealth process.

For subsequent usage, we see that the fundamental wealth process of the risky asset is
given by

W∗
t = S∗

t 1{t<τ } +
∫ τ∧t

0
d Du + Xτ 1{τ≤t}.(3.11)

Then,

W∗
t =

∞∑
i=0

EQi

[∫ τ

0
d Du + Xτ 1{τ<∞}

∣∣∣∣Ft

]
1{t∈[σi ,σi+1)}(3.12)

∀t ∈ [0, ∞) and W∗
∞ = ∫ τ

0 d Du + Xτ 1{τ<∞}.
Alternatively, we can rewrite W∗

t by

W∗
t =

∞∑
i=0

EQi

[
W∗

∞|Ft
]
1{t∈[σi ,σi+1)} ∀t ∈ [0, ∞).(3.13)

In general, the choice of a particular ELMM affects fundamental values. But, for
a certain class of ELMMs, when τ < ∞ the fundamental values are invariant. This
invariant class is characterized in the following lemma.

LEMMA 3.4. Suppose τ < ∞ almost surely. In the i th regime {σi ≤ t < σi+1}, if the
market chooses Qi ∈ MU I (W), then the fundamental price of the risky asset S∗

t and
fundamental wealth W∗

t do not depend on the choice of the measure Qi almost surely.

10Although the definition of the fundamental price as given depends on the construction of the extended
economy, one could have alternatively used expression (3.4) as the initial definition. This alternative approach
relaxes the extrinsic uncertainty restriction explicit in our extended economy.
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Proof. Fix Q∗, R∗ ∈ MU I (W). τ < ∞ implies that W∞ = W∗
∞. Let WQ∗

t and WR∗
t be

the fundamental prices on {σi ≤ t < σi+1} when Qi = Q∗ and R∗, respectively. Since W
is uniformly integrable martingale under Q∗ and R∗,

WQ∗
t = EQ∗

[
W∗

∞|Ft
] = EQ∗

[
W∞|Ft

]
= Wt = ER∗

[
W∞|Ft

]
= ER∗

[
W∗

∞|Ft
]

= WR∗
t a.s. on {σi ≤ t < σi+1}(3.14)

The difference of WQ∗
t and SQ∗

t does not depend on the choice of measure. Therefore,
WQ∗

t = WR∗
t implies SQ∗

t = SR∗
t on {σi ≤ t < σi+1}. �

This lemma applies to the risky asset only. If the measure shifts from Qi ∈ MU I (W)
to Ri ∈ MU I (W), then the fundamental price of other assets can in fact change.

The next lemma describes the relationship between the fundamental prices of the risky
asset when two measures are involved, one being a measure R∗ ∈ MNUI(W).

LEMMA 3.5. Suppose τ < ∞. In the i th regime {σi ≤ t < σi+1}, consider the case where
Qi ∈ MU I (W) and Ri ∈ MNU I (W). Then,

WR∗
t ≤ WQ∗

t , a.s. on {σi ≤ t < σi+1}.(3.15)

That is, the fundamental price based on a uniformly integrable martingale measure is greater
than that based on a nonuniformly integrable martingale measure.

Proof. Pick Q∗ ∈ MUI(W) and R∗ ∈ MNUI(W). Since τ < ∞ almost surely, W∞ =
W∗

∞. Under R∗, W is not a uniformly integrable nonnegative martingale and Wt ≥
ER∗ [W∞|Ft]. Therefore,

WQ∗
t − WR∗

t = EQ∗
[
W∗

∞|Ft
] − ER∗

[
W∗

∞|Ft
]

= EQ∗
[
W∞|Ft

] − ER∗
[
W∞|Ft

]
= Wt − ER∗

[
W∞|Ft

]
≥ 0.(3.16)

�

We can now finally define what we mean by a price bubble.

3.3. Bubbles

As standard in the economics literature,

DEFINITION 3.6 (Bubble). An asset price bubble β for S is defined by

β = S − S∗.(3.17)

Recall that St is the market price and S∗
t is the fundamental value of the asset. Hence,

a price bubble is defined as the difference in these two quantities.

4. A CHARACTERIZATION OF BUBBLES

This section characterizes all possible price bubbles in both static and dynamic models.
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4.1. Static Markets

Static markets are the first natural generalization of a complete market. In a complete
market, there is only one ELMM. In a static market, there is also only one ELMM across
all times, although markets may be incomplete. Because the complete market case was
studied in Jarrow et al. (2006), and the analysis is very similar, the reader is referred to
the original paper for the relevant proofs.

By definition, in a static market, there exists a unique Q∗ ∈ Mloc(W) such that
Q∗t(A) = Q∗(A) for all t ≥ 0. Then, the fundamental wealth process W∗

t is given by

W∗
t = EQ∗

[∫ τ

t
d Du + Xτ 1{τ<∞}

∣∣∣∣Ft

]
1{t<τ }

+
∫ t∧τ

0
d Du + Xτ 1{τ≤t}

= EQ∗

[∫ τ

0
d Du + Xτ 1{τ<∞}

∣∣∣∣Ft

]
,

which is a Q∗-uniformly integrable martingale. Since W is Q∗-local martingale, this
implies that the price bubble β is a Q∗-local martingale.

Recall that the stopping time τ represents the maturity of our risky asset.

THEOREM 4.1. If there exists a nontrivial bubble β �≡ 0 , then we have three possibilities:

(1) β is a local martingale (which could be a uniformly integrable martingale) if P(τ =
∞) > 0.

(2) β is a local martingale but not a uniformly integrable martingale if is unbounded, but
with P(τ < ∞) = 1.

(3) β is a strict Q∗-local martingale,11 if τ is a bounded stopping time.

As indicated, there are three types of bubbles that can be present in an asset’s price.
Type 1 bubbles occur when the asset has an infinite life with a payoff at {τ = ∞}. Type 2
bubbles occur when the asset’s life is finite, but unbounded. Type 3 bubbles are for assets
whose lives are bounded.

The first question one considers when discussing bubbles is why arbitrage does not
exclude bubbles in an NFLVR economy. To answer this question, let us consider the
obvious candidate trading strategy for an arbitrage opportunity. This trading strategy is
to short the risky asset during the bubble, and to cover the short after the bubble crashes.
For type 1 and type 2 bubbles, this trading strategy fails to be an arbitrage because all
trading strategies must terminate in finite time, and the bubble may outlast this trading
strategy with positive probability. For type 3 bubbles, this trading strategy fails because
of the admissibility condition. Admissibility requires the trading strategy’s wealth to
exceed some fixed lower bound almost surely. Unfortunately, with positive probability, a
type 3 bubble can increase such that the short position’s losses violate the lower bound.
The admissibility condition is a type of short sale restriction, and these are well known
to generate bubbles in equilibrium models (see Santos and Woodford 1997; Scheinkman
and Xiong 2003a). For examples of bubbles in an NFLVR market, we refer the reader to
Jarrow et al. (2006).

In a complete market, the addition of no dominance assumption excludes these bubbles
due to the ability of an admissible trading strategy to generate a long position in the asset at

11A strict local martingale is a local martingale that is not a martingale.
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a lower cost than purchasing the asset directly (due to the bubble). Note that synthetically
creating a long position in the asset does not violate the NFLVR admissibility restriction.
Because a static market need not be complete, bubbles are not excluded by the no
dominance assumption (because the replicating strategy need not exist).

We can refine Theorem 4.1 to obtain a unique decomposition of an asset price bubble
that yields some additional insights.

THEOREM 4.2. S admits a unique (up to an evanescent set) decomposition

S = S∗ + β = S∗ + (β1 + β2 + β3),(4.1)

where β = (βt)t≥0 is a càdlàg local martingale and

(1) β1 is a càdlàg nonnegative uniformly integrable martingale with β1
t → X∞ almost

surely,
(2) β2 is a càdlàg nonnegative nonuniformly integrable martingale with β2

t → 0 almost
surely,

(3) β3 is a càdlàg nonnegative supermartingale (and strict local martingale) such that
Eβ3

t → 0 and β3
t → 0 almost surely. That is, β3 is a potential.

Furthermore, (S∗ + β1 + β2) is the greatest submartingale bounded above by W.

As in the previous Theorem 4.1, β1, β2, β3 correspond to the types 1, 2, and 3 bubbles,
respectively. First, for type 1 bubbles with infinite maturity, we see that the β1 bubble
component converges to the asset’s value at time ∞, X∞. This time ∞ value X∞ can be
thought of as analogous to fiat money, embedded as part of the asset’s price process.
Indeed, it is a residual value to an asset that pays zero dividends for all finite times.
Second, this decomposition also shows that for finite maturity assets, τ < ∞, the critical
threshold is that of uniform integrability. This is due to the fact that when τ < ∞, the
β2, β3 bubble components converge to 0 almost surely, while they need not converge in
L1. Finally, the β3 bubble components are strict local martingales, and not martingales.

As a direct consequence of this theorem, we obtain the following corollary.

COROLLARY 4.3. Any asset price bubble β has the following properties:

(1) β ≥ 0,
(2) βτ 1{τ<∞} = 0,
(3) if βt = 0 then βu = 0 for all u ≥ t, and
(4) if no dividends, then St = EQ∗ [ST|Ft] + β3

t − EQ∗ [β3
T|Ft] for any t ≤ T ≤ τ .

Condition (1) states that bubbles are always nonnegative, i.e., the market price can never
be less than the fundamental value. Condition (2) states that if the bubble’s maturity is
finite τ < ∞, then the bubble must burst on or before τ . Finally, condition (3) states
that if the bubble ever bursts before the asset’s maturity, then it can never start again.
Alternatively stated, condition (3) states that in the context of our model, bubbles must
either exist at the start of the model or they never will exist. And, if they exist and burst,
then they cannot start again (this corollary is well known in the empirical literature for
discrete time economies, see, e.g., Diba and Grossman 1987; Weil 1990). Condition (4)
shows why the market price S is not a Q∗ martingale. The difference between the market
price and its conditional expectation is due to the type 3 bubble component, because
the fundamental value, the type 1, and the type 2 bubble components are themselves Q∗

martingales.
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4.2. Dynamic Markets

In a dynamic market, there is no single ELMM generating fundamental values across
time. The valuation measures Qs∗

and Qt∗
at times s < t are usually two different mea-

sures, and neither is an ELMM. It follows, therefore, that the local martingale property
of a bubble β in a static market is no longer preserved.

The following is a trivial but important observation generalizing Corollary 4.3 to
dynamic markets.

THEOREM 4.4. Bubbles are nonnegative. That is, if β denotes a bubble, then βt ≥ 0 for
all t ≥ 0.

Proof. Fix t ≥ 0. On {σi ≤ t < σi+1}, the market chooses Qi as a valuation measure
and the fundamental price S∗

t is given by

S∗
t 1{σi ≤t<σi+1} = EQi

[∫ τ

t
d Du + Xτ 1{τ<∞} |Ft

]
1{t<τ }1{σi ≤t<σi+1}

= S∗i
t 1{σi ≤t<σi+1},(4.2)

where S∗i
t denotes a fundamental price with valuation measure Qi ∈ Mloc(W) and

S∗
t =

∑
i

S∗i
t 1{σi ≤t<σi+1}(4.3)

and

β∗
t =

∑
i

βi ,t1{σi ≤t<σi+1}.(4.4)

By Corollary 4.3, βi = S − S∗i ≥ 0 for each i and hence β∗ ≥ 0. �
Negative bubbles do not exist even in a dynamic market.
As shown in the previous section, bubble birth is not possible in a static market. In

contrast, in a dynamic market, bubble birth is possible as the next example shows.

EXAMPLE 4.5. Suppose that the measure chosen by the market shifts at time σ 0 from
Q ∈ MUI(W) to R ∈ MNUI(W). To avoid ambiguity, we denote a fundamental price
based on valuation measures Q and R by WQ∗

and WR∗
, respectively. By Lemma 3.5, we

can choose Q, R, and σ0 such that the difference of fundamental prices based on these
two measures,

WQ∗
σ0

− WR∗
σ0

≥ 0,(4.5)

is strictly positive with positive probability. Then, the fundamental price and the bubble
are given by

W∗
t = WQ∗

t 1{t<σ0} + WR∗
u 1{σ0≤t}(4.6)

βt = β R
t 1{σ0≤t}.(4.7)

And, a bubble is born at time σ 0.

As shown in Lemma 3.4, a switch from one measure Q to another measure Q′ such
that Q, Q′ ∈ MUI(W) does not change the value of W∗. Therefore, if a bubble does
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not exist under Q, it also does not exist under Q′. Bubble birth occurs only when a
valuation measure changes from a uniformly integrable martingale Q ∈ MUI(W) to a
nonuniformly integrable martingale R ∈ MNUI(W).

5. EXAMPLES

In this section, we discuss several examples. Because Type 1 bubbles are simple and few
assets have infinite lifetimes, we focus on assets with finite (but possibly unbounded)
maturities.

5.1. Assets with Bounded Payoffs

We first consider those risky assets that have bounded payoffs.

THEOREM 5.1. If
∫ τ

0 d Du + Xτ is bounded, then St = S∗
t and the asset price does not

have bubbles.

Proof. By hypothesis, there exists a ∈ R+ such that
∫ τ

0 d Du + Xτ < a. Then holding a
units of the money market account dominates holding the risky asset. By No Dominance
(Assumption 2.12)

St = �t((D, Xτ )) ≤ a.(5.1)

Because a bounded local martingale is a uniformly integrable martingale, all ELMMs
are in MUI(W) and bubbles do not exist in S. �

Theorem 5.1 also holds for any arbitrary asset φ ∈ � with bounded payoffs. We now
provide some useful examples of assets with bounded payoffs.

EXAMPLE 5.2 (Arrow–Debreu Securities). Let ν be an F-stopping time such that ν ≤ τ

almost surely and A ∈ Fν . Consider an Arrow–Debreu security paying 1 at ν for ν ≤ τ

if event A happens, denoted by φA = (0, 1ν
A).12

Then, the market price of φA does not have a bubble, i.e.,

�t(φA) = �∗
t (φA) =

∑
i

EQi [1A|Ft]1{t<τ }1{σi ≤t<σi+1}.(5.2)

The market price of Arrow–Debreu securities equal the conditional valuation proba-
bility of A ∈ Fν implied by the market.

EXAMPLE 5.3 (Fixed Income Securities). Consider a default free coupon bond with
coupons of C paid at times t1, . . . , tn = ν ≤ τ and a principal payment of P at time τ ,13

where τ is the maturity date of the bond. Then, letting 	t ≡ ∑n
i=1 C1{ti ≤t} and 
ν = P,

we have φ = (	, 
ν) with 	τ + 
ν bounded by the sum of all the coupons and principal

12Recall that we are using the money market account as the numeraire. A transformed analysis applies in
the original (dollar) economy. Here, however, the payoff to the Arrow–Debreu security needs to be redefined
to be 1 dollar at time ν. Letting Aν denote the time ν market price of the money market account, the payoff
to the Arrow–Debreu security in the numeraire is then 1/Aν units at time ν, and not 1 unit. This change has
no affect on our analysis, because if the spot rate of interest r ≥ 0 almost surely, with A0 = 1, then 1/Aν ≤ 1
almost surely.

13As with the Arrow–Debreu securities, these payoffs are in units of the money market account and they
need to be appropriately transformed to get dollar prices in the original economy.
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payments. Then, by Theorem 5.1, the default free bond price has no bubbles, i.e.,

�t(φ) = �∗
t (φ)

=
∑

i

EQi

[
n∑

i=1

C1{ti >t} + P1{ν>t}|Ft

]
1{t<τ }1{σi ≤t<σi+1}.(5.3)

Although this example applies to default free bonds, the same logic can be used to
show that credit risky bonds, credit default swaps, and collateralized default obligations
(CDOs) exhibit no bubbles. This is because all of these fixed income securities’ payoffs
are bounded. For example, in the case of credit risky bonds, the cash flows are bounded
by the sum of the promised payments. In the case of credit default swaps and CDOs,
the maximum possible payments can be computed at origination of these contracts (see
Lando 2004, for a description of these different instruments).

5.2. Black–Scholes Type Economies

It is interesting to study the standard Black–Scholes economy in both static and
dynamic markets, yielding perhaps some unexpected, but new insights.

EXAMPLE 5.4 (Static Market, Finite Horizon). Fix T ∈ R+ and let St be a nondividend
paying stock following a geometric Brownian motion, i.e.,

St = exp
{(

μ − σ 2

2

)
t + σ Bt

}
∀t ∈ [0, T],(5.4)

where μ, σ ∈ R+, and B is a standard Brownian motion. Then, S is a Q-martingale,
where Q is the probability measure on FT defined by the Radon–Nikodym derivative
d Q/d P = E(−(μ/σ )B)T.

This is the standard Black–Scholes model, and we see by construction that there are
no stock price bubbles.

EXAMPLE 5.5 (Static Market, Infinite Horizon). If we simply extend formula (5.4)
from [0, T] to [0, ∞), then the situation changes dramatically. On an infinite horizon, St

converges to 0 almost surely.14 The fundamental value of the stock (recall that it pays no
dividends over [0, ∞)), is S∗

t = 0. By definition, therefore,

βt = St − S∗
t = St,

and the entire stock price is a bubble!
In this case, Q is not an EMM on F∞. Indeed, P and Q are singular on F∞. Hence,

S is not a uniformly integrable martingale nor a (regular) martingale under the Q given
earlier, but only a Q strict local martingale.

Although this example is plausible under NFLVR, when we also introduce the no
dominance assumption 2.12, this example becomes problematic. Note that if the stock
pays no dividends on [0, ∞), then no dominance in conjunction with the Black–Scholes
economy being complete implies that the asset has zero value, i.e., St ≡ 0. In this case,
the model trivializes and becomes useless.

Therefore, if we want to use the Black–Scholes model in a static market, we need
to restrict it to the finite horizon case. And, then one needs to interpret ST as either:

14This follows due to the fact that μ − σ 2

2 < 0 because μ = 0 in the normalized economy.
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(i) a liquidating dividend (final cash flow) or (ii) the resale value at time T . In either
case, because the Black–Scholes economy as given by expression (5.4) implies a complete
market, we know that under both NFLVR and no dominance, there cannot be bubbles.

EXAMPLE 5.6 (Dynamic Market, Infinite Horizon). This example can be considered
as an extension of the Black–Scholes formula, which is well defined on [0, ∞). It is also
an example of a dynamic market in which bubble birth occurs.

Let B1, B2 be two independent Q-Brownian motions. Fix k > 1. Let

σ = inf
{
E(B2)t = k

}
.(5.5)

Define the processes Z and S by

Zt = E(B2)t∧σ , St = E(B1)t∧σ .(5.6)

We regard S as a stock process that pays no dividends D ≡ 0, and where the stock can
default at time τ = σ . If it defaults, it pays a final cash flow at the default time equal to
Xτ = Sσ .

The key difference of this example from the standard Black–Scholes model is the
explicit introduction of a default time τ = σ , so that S does not converge to 0 almost
surely as t → ∞. However, as in Lemma 2.6,

EQ[S∞] = EQ[E(B1)σ 1{σ<∞}] = Q(σ < ∞) = 1
k
,(5.7)

so S is a nonuniformly integrable martingale.
Let R ∈ Mloc(W) be the probability measure defined by dR/dQ|Ft = Zt. As shown in

Lemma 2.6, SZ is a Q-uniformly integrable martingale. It follows that S is an R-uniformly
integrable martingale, since

ER[S∞|Ft] = EQ[S∞ Z∞|Ft]
Zt

= Zt St

Zt
= St a.s.(5.8)

Observe that S is a geometric Brownian motion stopped by σ under Q and R. Thus, S
coincides with standard Black–Scholes model on {t < σ }.

Let us now introduce the regime shifting times σi , and suppose that at each of these
times the market shifts from Q to R or vice-versa. Then when shifting from R to Q, a bubble
is born. This is a Black–Scholes such as economy that is infinite horizon, but where the
stock price process, prior to default, exhibits bubble birth and bubble disappearance.

5.3. Market Indices

Although the previous discussion concentrates on a single risky asset S, the theory
remains unchanged if there are multiple risky assets and S represents a vector of risky
asset price processes. It also applies to market indices. Let M denote the market price of
an asset defined as an (weighted) average of (finitely many) individual risky assets trading
in the market (e.g., Dow Jones Industrials, S&P 500 Index, etc.). Of course, the future
cash flows associated with this portfolio are also a weighted average of the cash flows
from the individual assets. As before, we can define the fundamental price of this index.
If any asset in the market index has a bubble, then the market and the fundamental prices
of this index differ, and a bubble exists.



168 R. A. JARROW, P. PROTTER, AND K. SHIMBO

EXAMPLE 5.7 (Bubbles in an Index Model). In portfolio theory, the return on an
individual asset Rt is often modeled using an index model:

Rt = bRM
t + εt,(5.9)

where b is constant, RM
t denotes the return on the index, and εt is a idiosyncratic return

that is independent of RM
t .

Taking the stochastic exponential of both sides of this expression, we obtain the stock
price process St, i.e.,

St = E(R)t = E(bRM)tE(ε)t.(5.10)

If we assume, as is standard in the literature, that idiosyncratic risk earns no risk premium,
then ε is a local martingale under both the physical and the valuation measures.

Let us consider a static market with the valuation measure Q ∈ Mloc(S). Since E(bRM)
and E(ε) are independent and b is a constant, the stock price process, S = E(R), is a Q-
uniformly integrable martingale if and only if both E(RM) and E(ε) are Q-uniformly
integrable martingales. This implies that under the index model bubbles can exist in a
stock because the bubble exists in a market index, or because it exists within the stock’s
idiosyncratic component itself.

6. DERIVATIVE SECURITIES

This section considers bubbles in derivative securities written on the risky asset. We focus
on the standard derivatives: forward contracts, European and American call, and put
options. We first need to formalize the definition of the fundamental price of a derivative
security. To simplify the notation, we assume that the risky asset S pays no dividends over
the time interval (0, T], where τ > T almost surely. We define an arbitrary (European
type) derivative security on the risky asset S to be a financial contract that has a random
payoff at time T , where T is called the maturity date. The payoff is given by HT(S), where
HT is a functional on (Su)u≤T. As is true in practice, our definition of a derivative security
reflects the fact that the financial contract’s payoffs are written on the market price of the
risky asset, and not its fundamental value. This is a subtle and important observation.

We denote the time t market price of a derivative security H by �H
t . We study derivative

pricing in a dynamic market (hence a static market is a special case). Therefore, we
assume that the market chooses a collection of ELMMs (Qi )i≥0 ∈ Mloc(W) such that
the derivative security’s market price �H

t is a Qi -local martingale over the i th regime
{σi ≤ t < σi+1}.

Then, analogous to the risky asset, the fundamental price of the derivative security
is defined to be the conditional expectation of the derivative’s time T payoff using the
valuation measure Qt∗

determined by (Qi )i≥0 ∈ Mloc(W), i.e., EQt∗ [HT(S)|Ft].
The derivative security’s price bubble δt is defined as the difference between its market

price and fundamental value,

δt = �H
t − EQt∗ [HT(S)|Ft].

The following lemma will prove useful in the subsequent analysis:

LEMMA 6.1. Let HT, H′
T be the payoffs of two derivative securities with the same matu-

rity date.
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Let �t(H′) have no bubble, i.e.,

�H′
t = EQt∗ [H′

T(S)|Ft].(6.1)

If HT(S) ≤ H′
T(S) almost surely, then

�H
t = EQt∗ [HT(S)|Ft].(6.2)

Proof. Because derivative securities have bounded maturities, we only need to consider
type 3 bubbles. Let L be a collection of stopping times on [0, T]. Then for all L ∈
L, �L(H) ≤ �L(H′) by No Dominance (Assumption 2.12). Since �(H′) is a martingale
on [0, T], it is a uniformly integrable martingale and is in class (D) on [0, T]. Then �(H)
is also in class (D) and is a uniformly integrable martingale on [0, T] (see Jacod and
Shiryaev 2003, Definition 1.46, Proposition 1.47). Therefore, type 3 bubbles do not exist
for this derivative security. �

This lemma states that if there is a derivative security with no bubble and whose payoff
dominates another derivative security’s payoff, then the dominated derivative security’s
market price will have no bubble as well. This, of course, is an extension of Theorem 5.1
to derivative securities.

6.1. European Call and Put Options

In this section, we consider three standard derivative securities: a forward contract, a
European put option, and a European call option; all on the same risky asset. Each of
these derivative securities are defined by their payoffs at their maturity dates. A forward
contract on the risky asset with strike price K and maturity date T has a payoff [St − K ].
We denote its time t market price as V f

t (K). A European call option on the risky asset with
strike price K and maturity T has a payoff [St − K ]+, with time t market price denoted
as Ct(K). Finally, a European put option on the risky asset with strike price K and
maturity T has a payoff [K − St]+, with time t market price denoted as Pt(K).15 Finally,
let V f

t (K)∗, Ct(K)∗, and Pt(K)∗ be the fundamental prices of the forward contract, call
option, and a put option, respectively.

A straightforward implication of the definitions is the following theorem.

THEOREM 6.2 (Put–Call Parity for Fundamental Prices).

C∗
t (K) − P∗

t (K) = V f ∗
t (K).(6.3)

Proof. At maturity T ,

(ST − K)+ − (K − ST)+ = ST − K(6.4)

Because a fundamental price of a contingent claim with payoff function H is
EQt∗ [H(S)T|Ft] ,

C∗
t (K) − P∗

t (K) = EQt∗ [(ST − K)+|Ft] − EQt∗ [(K − ST)+|Ft]

= EQt∗ [ST − K|Ft]

= V f ∗
t (K).(6.5)

�
15To be precise, we note that the strike price is quoted in units of the numeraire for all of these derivative

securities.
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Note that put–call parity for the fundamental price does not require the no dominance
Assumption 2.12. It only requires that the asset’s market price process satisfies NFLVR.
Furthermore, put–call parity for the fundamental prices holds regardless of whether or
not there are are bubbles in the asset’s market price.

Perhaps surprisingly, put–call parity also holds for market prices, regardless of whether
or not the underlying asset price has a bubble.

THEOREM 6.3 (Put–Call Parity for Market Prices).

Ct(K) − Pt(K) = V f
t (K) = St − K .(6.6)

Proof. This is a direct consequence of no dominance (Assumption 2.12). �
This theorem and proof are identical to that originally contained in Merton (1973). It

depends crucially on the no dominance assumption. If only NFLVR holds, then put–call
parity in market prices need not hold. For an example, see Jarrow et al. (2006). For
related discussions of the economy without no dominance (Assumption 2.12), see also
Cox and Hobson (2005) and Heston et al. (2007). Note that this theorem also values the
forward contract.

THEOREM 6.4 (European Put Price). For all K ≥ 0,

Pt(K) = P∗
t (K).(6.7)

The proof of this theorem is trivial. Note that the payoff to the put option is bounded
by K, hence by Theorem 5.1 the result follows. Hence, European put options always
equal their fundamental values, regardless of whether or not the underlying asset’s price
has a bubble. We will revisit this observation when we discuss the empirical testing of
bubbles in the paper’s conclusion.

THEOREM 6.5 (European Call Price). For all K ≥ 0,

Ct(K) − C∗
t (K) = St − EQt∗ [ST|Ft].(6.8)

Proof.

V f
t (K) = St − K

= (St − EQt∗ [ST|Ft]) + (EQt∗ [ST|Ft] − K)

= V f ∗
t (K) + (St − EQt∗ [ST|Ft]).(6.9)

Using put–call parity in fundamental prices:

C∗
t (K) − P∗

t (K) = V f ∗
t (K)(6.10)

Using put–call parity in market prices,

Ct(K) − Pt(K) = V f
t (K)(6.11)

By subtracting equation (6.10) from equation (6.11),[
Ct(K) − C∗

t (K)
] − [

Pt(K) − P∗
t (K)

] = V f
t (K) − V f ∗

t (K)

= St − EQt∗ [ST|Ft]

= δt,(6.12)
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because the put option has a bounded payoff, Pt(K) = P∗
t (K) and Ct(K) − C∗

t (K) =
δt. �

Because call options have finite maturity, call option bubbles must be of type 3, if they
exist. The magnitude of such a bubble is independent of the strike price and it is related
to the magnitude of the asset’s price bubble. In a static market, corollary 4.3 shows that

St − EQ∗ [ST|Ft] = β3
t − EQ∗

[
β3

T|Ft
]
,

where β3
t is the type 3 bubble component in the underlying stock.16 Here, the call option’s

bubble equals the difference between the type 3 bubble in the underlying stock less the
expected type 3 bubble remaining at the option’s maturity.

A second and important implication of this theorem is that even if the market satisfies
NFLVR and no dominance, a stock price bubble implies that there exists no valuation
measure Qt∗

such that the expected discounted value of the call option’s payoffs equals its
market price. Here, the standard martingale valuation methodology is not able to match
market prices.

6.2. American Options

This section investigates the pricing of American options in a static market. Hence,
there is a unique local martingale measure Q selected by the market. Because the time
value of money plays an important role in analyzing the early exercise decision of Amer-
ican options, we need to modify the notation to make explicit the numeraire. In this
regard, we denote the time t value of a money market account as

At = exp
(∫ t

0
rudu

)
,(6.13)

where r is the nonnegative adapted process representing the default free spot rate of
interest. To simplify comparison with the previous sections, we still let St denote the risky
asset’s price in units of the numeraire.

DEFINITION 6.6 (The Fundamental Price of an American Option). The fundamental
price V A∗

t (H) of an American option with payoff function H and maturity T is given by

V A∗
t (H) = sup

η∈[t,T]
EQ[H(Sη)|Ft],(6.14)

where η is a stopping time and the market selected Q ∈ Mloc(S).

This definition is a straightforward extension of the standard formula for the valuation
of American options in the classical literature. It is also equivalent to the fair price as
defined by Cox and Hobson (2005) when the market is complete. We apply this definition
to a call option with strike price K and maturity T . Letting CA∗

t (K) denote the American
call’s fundamental value, the definition yields

CA∗
t (K) = sup

η∈[t,T]
EQ

[(
Sη − K

Aη

)+ ∣∣∣∣Ft

]
.(6.15)

16In an analogous theorem in Jarrow et al. (2006), they used the implicit assumption that T = τ which
would imply that EQ∗ [β3

T |Ft ] = 0.
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Let CA(K)t be the market price of this same option, and CE(K)t the market price of
an otherwise identical European call. Then, the following theorem is provable using
standard techniques.

THEOREM 6.7. Assume that the jump process of the asset’s price, �S := (	St)t≥0, where
	St = St − St−, satisfies the regularity conditions of Lemma A.1. Then, for all K

CE
t (K) = CA

t (K) = CA∗
t (K).(6.16)

Proof.

(i) By Theorem A.2 with G(x, u) = [x − K/Au ]+,

CA∗
(K)t = sup

t≤τ≤T
E[(Sτ − K/Aτ )+|Ft]

= E[(ST − K/AT)+|Ft] + (St − E[ST|Ft])

= CE∗
t (K) + β3

t − E
[
β3

T|Ft
]

= CE
t (K).(6.17)

The last equality is by Theorem 6.5. This equality implies, using Merton’s original
no dominance argument, that the American call option is not exercised early. The
reason is that the European call’s value is at least the value of a forward contract
on the stock with delivery price K, and this exceeds the exercised value.

(ii) A unit of an American call option with arbitrary strike K is dominated by a unit
of an underlying asset. Therefore, by No Dominance (Assumption 2.12),

CA
t (K) ≤ St.(6.18)

Let γt := CA
t (K) − CA∗

t (K) be a bubble of an American call option with strike K.
Because American options have finite maturity, γt is of type 3 and is a strict local
martingale. Then by (i) and a decomposition of St,

CE∗
t (K) + β3

t − E
[
β3

T|Ft
] + γt = CA∗

t (K) + γt

= CA
t (K) ≤ St

= S∗
t + β1

t + β2
t + β3

t ,(6.19)

and therefore

γt ≤ [
S∗

t − CE∗
t (K) + β1

t

] + β2
t + E

[
β3

T|Ft
]
.(6.20)

The right side of equation (6.20) is a uniformly integrable martingale on [0, T].
Hence γ is a nonnegative local martingale dominated by a uniformly integrable
martingale. Therefore, γt ≡ 0. �

This theorem is the generalization of Merton’s (1973) famous no early exercise the-
orem, i.e., given the underlying stock pays no dividends, otherwise identical American
and European call options have identical prices. This extension is the first equality in
expression (6.16), applied to the options’ market prices. Just as in the classic theory, this
implies that an American call option on a stock with no dividends is not exercised early.

The second equality implies that American call option prices exhibit no bubbles,
even if there is an asset price bubble! This result follows because the stopping time
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associated with the American call’s fundamental value (as distinct from the exercise
strategy of the American call’s market price) explicitly incorporates the price bubble into
the supremum. Indeed, the fundamental value of the American call option is the minimal
supermartingale dominating the value function. If there is a price bubble, then the stop-
ping time associated with the American call option’s fundamental value is stopped early
with strictly positive probability. This is understood by examining the difference between
the fundamental values of the European and American call. If stopping early had no
value, then it must be true that CA∗

t (K) = CE∗
t (K). However, by Theorem 6.5, an asset

price bubble creates a difference between an American and European calls’ fundamental
prices, i.e.,

CA∗
t (K) − CE∗

t (K) = β3
t − EQ

[
β3

T|Ft
]

> 0.

The intuition for the possibility of stopping early is obtained by recognizing that the
market price equals the fundamental value plus a price bubble. The price bubble is a
nonnegative supermartingale that is expected to decline. Its effect on the market price of
the stock is therefore equivalent to a continuous dividend payout. And, it is well known
that continuous dividend payouts make early exercise of (the fundamental value of) an
American call possible.

7. FORWARD AND FUTURES PRICES

This section studies both forward and futures prices trading in a static market. As in the
previous section, there is a unique local martingale measure Q selected by the market.
In the classical theory, differences between forward and futures prices can only arise in
a stochastic interest rate economy. Consequently, we need to make explicit the money
market account numeraire in the notation for the asset’s price process. In this regard,
we let S denote the dollar price of the risky asset, and S/A the price in units of the
numeraire. Then, Q ∈ Mloc(S) implies that S/A is a Q-local martingale. To simplify the
presentation, we also assume that the risky asset pays no dividends over the time interval
(0, T], where τ > T almost surely.

For some key results, we need to introduce trading in default free zero-coupon bonds.
In this regard, we let p(t, T) be the time t market price of a sure dollar paid at time T .
Because zero coupon bonds have bounded payoffs, by Theorem 5.1, we know that zero-
coupon bonds have no bubbles, hence this market price also represents the fundamental
price. However, this distinction will not be used later.

7.1. Forward Prices

Forward contracts were defined in Section 6. Recall that a forward contract on the
risky asset S with strike price K and maturity T is defined by its time T payoff [ST − K ].
The time t forward price for this contract, denoted ft,T, is defined to be that strike price
K that gives the T-maturity forward contract zero market value at time t. Given these
definitions, it is easy to prove the following theorem.

THEOREM 7.1.

ft,T × p(t, T) = St.

Proof. By No Dominance (Assumption 2.12), any two trading strategies yielding the
same payoff have the same market price. Let Portfolio A be a unit of a long forward
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contract and ft,T units of a zero coupon bond maturity at time T . Let Portfolio B be a
unit of the underlying asset. Let �A and �B denote market prices of each portfolio. Then

0 + ft,T p(t, T) = �A
t = �B

t = St(7.1)

because both portfolios have the same payoff ST at maturity. �
This is an intuitive and well-known result which follows directly from the no dominance

Assumption 2.12.

COROLLARY 7.2 (Forward Price Bubbles).

(1) ft,T ≥ 0.
(2) ft,T ·p(t,T)

At
is a Q-local martingale for each Q ∈ Mloc(W).

(3) ft,T · p(t, T) = S∗
t + βt where βt = St − S∗

t .

Proof. The proof follows trivially because the risky asset’s price has these properties
and p(t,T) is nonnegative. �

Thus, we see that discounted forward prices inherit the properties of the risky asset’s
price bubble. In fact, any bubble present in the discounted forward price for a risky asset
must be equal to the bubble in the risky asset’s market price.

7.2. Futures Prices

A futures contract is similar to a forward contract. It is a financial contract, written
on the risky asset S, with a fixed maturity T . It represents the purchase of the risky asset
at time T via a prearranged payment procedure. The prearranged payment procedure
is called marking-to-market. Marking-to-market obligates the purchaser (long position)
to accept a continuous cash flow stream17 equal to the continuous changes in the futures
prices for this contract. The time t futures prices, denoted Ft,T, are set (by market conven-
tion) such that newly issued futures contracts (at time t) on the same risky asset with the
same maturity date T , have zero market value. Hence, futures contracts (by construction)
have zero market value at all times, and a continuous cash flow stream equal to d Ft,T. At
maturity, the last futures price must equal the asset’s price FT,T = ST (see Duffie 2001 or
Shreve 2004, for further clarification).

With respect to futures contracts, in the existing finance literature, the characterization
of a futures price implicitly (and sometimes explicitly) uses the existence of a given local
martingale measure Q under which the futures price is a martingale (e.g., see Duffie
2001, p. 173 or Shreve 2004, p. 244). Because futures prices have bounded maturities, this
excludes (by fiat), the existence of futures price bubbles. Thus, to study bubbles in futures
prices, we first need to generalize the characterization of a futures price to remove this
implicit (or explicit) restriction.

Let us construct a portfolio long one futures contract. The discounted wealth process
of this portfolio, denoted VF

t , is then given by

VF
t =

∫ t

0

1
Au

d Fu,T =
(

Ft,T

At
− F0,T

)
+

∫ t

0

Fu,T

Au
rudu,(7.2)

where At = exp(
∫ t

0 rudu) and the second equality is due to an integration by parts.

17For simplicity, we assume that futures contracts are marked-to-market continuously.
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If (VF
t )t≥0 is not locally bounded from below, then buying a futures contract is not

an admissible trading strategy. In the context of our model, this implies that futures
contracts cannot trade. To avoid this contradiction, given that we already assume futures
contracts trade, we assume (without further loss of generality) that VF

t is locally bounded.
Let (Tn)n≥1 be a sequence of stopping times such that (VF

Tn∧t)t≥0 is bounded from
below for each n. Then, there exists a Q ∈ Mloc(W) such that VF is a local martingale
by applying the First Fundamental Theorem of asset pricing to the market with the
assets (At, VF

t )t≥0, stopped at Tn , each n. Note that by stopping, VF is locally a Q-local
martingale, and hence a Q-local martingale.

DEFINITION 7.3. Semimartingales (Ft,T)0≤t≤T satisfying the following properties are
called NFLVR futures price processes.

(1) VF
t is locally bounded from below, i.e., there exists a sequence of stopping times

(Tn)n≥1 such that (VF
t∧Tn

)t≥0 is bounded from below for each n.
(2) There exists a Q ∈ Mloc(W) such that (VF

t∧Tn
)t≥0 is a Q-local martingale, where

(Tn)n≥1 is the sequence of stopping times satisfying condition 1.
(3) FT,T = ST.

Let �F denote the class of all NFLVR futures price processes. We also note that
futures contracts are not replicable using an admissible trading strategy which uses only
the risky asset, hence any NFLVR futures price process also satisfies the no dominance
assumption.

Note that we do not require futures prices (Ft,T)t≥0 to be nonnegative.
With this definition, the following theorem immediately follows.

THEOREM 7.4. Fix a Q ∈ Mloc(W). Assume that S is in L1(d Q)
Define (F ′

t,T)t≥0 = (EQ[ST|Ft])t≥0. Then, (F ′
t,T)t≥0 ∈ �F .

Proof. Since St is nonnegative, F ′
t,T = EQ[ST|Ft] ≥ 0. By equation (7.2),

VF ′
t =

(
F ′

t,T

At
− F ′

0,T

)
+

∫ t

0

F ′
u,T

Au
rudu ≥ −F ′

0,T(7.3)

and VF ′
t is admissible. F ′

T,T = ST is trivial. Since (F ′
t,T)t≥0 is a martingale and 1/A is

continuous, VF ′
is a local martingale. �

As expected, the classical definition of a futures price (Duffie 2001, p. 173 or Shreve
2004, p. 244) gives an acceptable NFLVR futures price process. The classical futures price
is a uniformly integrable martingale, and hence exhibits no bubbles. However, this is not
the only possible NFLVR futures price process.

THEOREM 7.5 (Futures Price Bubbles). Let β be a local Q-martingale, locally bounded
from below,18 with βT = 0. Also assume that S is in L1(d Q).

Define (Ft,T)t≥0 by

Ft,T = EQ[ST|Ft] + βt.(7.4)

Then, (Ft,T)t≥0 ∈ �F .

Proof. Observe that EQ[ST|Ft] ≥ 0 for each t by the nonnegativity of ST. Since βt is
locally bounded from below, (Ft,T)t≥0 is also locally bounded from below. Without loss

18We note that β is not restricted to being nonnegative.
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of generality (by stopping) we assume that (Ft,T)t≥0 is bounded from below by −C for
some C ≥ 0. Then

VF
t ≥ −F0,T − C

At
+ K

(
1
At

− 1
)

≥ −F0,T − C.(7.5)

Therefore Ft,T ∈ �F . �
We see that futures price bubbles are consistent with futures contracts trading in a

market satisfying NFLVR and no dominance.
In the classical approach, futures prices are given by Ft,T = EQ[ST|Ft], which is a

uniformly integrable martingale under Q. Since ST is nonnegative, Ft,T is nonnegative.
However, in an economy which allows bubbles, as Theorem 7.5 shows, a bubble can be
negative if Ft,T < EQ[ST|Ft].

In a world of deterministic interest rates, in the presence of bubbles, using the original
argument of Merton (as referenced in Cox et al. 1981), one can generate the payoffs to a
futures contract using a self-financing trading strategy involving forward contracts. No
dominance, therefore, implies that forward prices equal futures prices. This extends the
classical results of Jarrow and Oldfield (1981) and Cox et al. (1981) in this regard. Con-
sequently, under deterministic interest rates, forward price bubbles must equal those in
futures prices. Of course, this equivalence does not extend to the more realistic stochastic
interest rate economies included under Theorem.7.5.

8. CHARGES

This section shows the equivalence between the local martingale approach (Loewenstein
and Willard 2000a,b; Cox and Hobson 2005; Heston et al. 2007) and the charges ap-
proach (Gilles 1988; Gilles and Leroy 1992; Jarrow and Madan 2000) to bubbles. This
correspondence is obtained via a generalization of the arbitrage-free price system used
by Harrison and Kreps (1979) and Harrison and Pliska (1981).

8.1. Price Operators

This section introduces the concept of a price operator. We start with the price function
�t : � → R+ introduced in the no dominance Assumption 2.12 that gives for each φ ∈ �,
its time t price �t(φ). Let �m ⊂ � represent the set of traded assets. For our economy
�m = {1, S}.

The no dominance assumption implies the following lemma.

LEMMA 8.1 (Positivity and Linearity on �). Let “≥t” denote dominance in the sense of
Assumption 2.12 at time t.

(1) Let φ′, φ ∈ �. If φ′ ≥t φ for all t, then �t(φ′) > �t(φ) for all t almost surely.
(2) Let a, b ∈ R+ and φ′, φ ∈ �. Then, a�t(φ′) + b�t(φ) = �t(aφ′ + bφ) for all t al-

most surely.

Proof. Condition (1) is the definition of no dominance restated, and condition (2)
follows by assuming strict inequality (for each direction in turn), and obtaining a con-
tradiction using condition (1). �
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In particular, if
∫

(t,ν] d	u + 
ν = 0 almost surely for φ = (	, 
ν), then �t(φ) = 0
almost surely. Linearity excludes liquidity impacts as in Çetin, Jarrow, and Protter (2004),
and it implies that �t is finitely additive on �.

By Lemma 2.3, we know that the market prices of the traded assets satisfy NFLVR.
Thus, for each traded asset φ ∈ �m, �(φ) is a Qi -local martingale on the set {σ i ≤ t <

σi+1} for each i. This implies by Theorem 4.2 that for φ ∈ �m,

�t(φ) = �∗
t (φ) + δt(φ),

where δt(φ) is a nonnegative Qi -local martingale. Of course, δt(φ) is the traded asset’s
price bubble. To extend this property of �t on the set �m to all of �, we add the following
assumption.

ASSUMPTION 8.2. Let �t : � → R+ be such that for each φ ∈ �, there exists a δ such
that

�t(φ) = 1{t<ν}
∑
i≥0

(
EQt∗

[∫ ν

t
d	u + 
ν

∣∣∣∣Ft

]
+ δi

t (φ)
)

1{t∈[σi ,σi+1)}

=
(

EQt∗

[∫ ν

t
d	u + 
ν

∣∣∣∣Ft

]
+ δt(φ)

)
1{t<ν}

= �∗
t (φ) + δt(φ),(8.1)

where Qt∗
is a valuation measure, δi (φ) is a nonnegative Qi -local martingale such that

δν(φ) = 0 and

δt(φ) =
∑
i≥0

δi
t (φ)1{t∈[σi ,σi+1)}.(8.2)

We call any �t satisfying this assumption a market price operator and denote the
collection (�t)t≥0 by �. We call (�, �) a price system.

The notion of a price system was proposed in the seminal papers of Harrison and Kreps
(1979) and Harrison and Pliska (1981). In Harrison and Kreps (1979), the price system is
first defined on a collection of securities in L2, replicable by self-financing simple trading
strategies and then extended to L2(�,F, P). More importantly, the model has a finite
time horizon and every local martingale in their framework is a uniformly integrable
martingale. One of the their key conclusions (Theorem 2) is that the market admits no
simple free lunches if and only if the market price operator is given by an expectation
with respect to an equivalent martingale measure.

This theorem characterizes the existence of equivalent martingale measures, and it is
now known as the First Fundamental Theorem of asset pricing. As shown by Delbaen
and Shachermayer (e.g., 1994, 1998a,b), this is true in a much more general setting,
properly interpreted. Because every martingale on a finite time horizon is a uniformly
integrable martingale and closable, once an EMM is identified, the price of the asset before
maturity is given as a conditional expectation, which leads to their characterization of the
market price operator. In a more general setting, when the market price process of φ is a
strict Qi -local martingale or if the maturity ν is unbounded and �(φ) is a nonuniformly
integrable martingale, market prices can differ from the conditional expectation. The
bubble component δ(φ) in equation (8.1) represents this difference.
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8.2. Bubbles

In the literature, an alternative approach to explain bubbles is to introduce charges (see
Gilles 1988; Gilles and Leroy 1992; Jarrow and Madan 2000). The following theorem
shows that the local martingale characterization of market prices has a finitely additive
market price operator if and only if bubbles exist.

THEOREM 8.3. Fix t ∈ R+. The market price operator �t is countably additive if and
only if bubbles do not exist.

Proof. Fix φ ∈ � where φ = (	, 
ν). If ν ≤ t, then St = S∗
t = 0. Therefore, it suffices

to consider the case when t < ν. Define a sequence of stopping times (τn)n≥0 by τ0 = t
and

τn = inf
{

s ≥ t :
∫ s∧ν

t
d	u + 
ν ≥ n

}
∧ ν, n ≥ 1(8.3)

and define φn ∈ � by φ0 = (0, 0) and

φn = (
	τn−, 
ν1{ν<τn}

) − (
	τn−1−, 
ν1{ν<τn−1}

)
, ∀n ≥ 1(8.4)

where 	τn− is a process such that 	τn−
u = 	τn∧u − �	τn 1{τn=u} . Then for each n, φn is

bounded by n and

φ =
∞∑

n=0

φn.(8.5)

Since φn is bounded,

�t(φn) = �∗
t (φn)

= EQt∗ [	τn− − 	τn−1− + 
ν1ν∈[τn−1,τn )|Ft]1{t<ν}.(8.6)

Assume that �t is countably additive. Then

�t(φ) = �t(φ) = �t

(∑
n

φn

)
=

∑
n

�t(φn)

=
∑

n

EQt∗ [	τn− − 	τn−1− + 
ν1ν∈[τn−1,τn )|Ft]1{t<ν}

= EQt∗

[∑
n

{
	τn− − 	τn−1− + 
ν1ν∈[τn−1,τn )

}∣∣∣∣Ft

]
1{t<ν}

= EQt∗

[∫ ν

t
d	u + 
ν |Ft

]
1{t<ν},(8.7)

since 	ν− = 	ν . This implies that bubbles do not exist in the market price of φ. Since
this is true for all φ ∈ �, bubbles do not exist. Conversely, if bubbles do not exist then
the market price operator is given by a conditional expectation and countable additivity
holds. �

This theorem shows that the characterization of bubbles as charges is an alternative
perspective of our model based on the characterization of local martingales, but in essence
is not different.
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9. CONCLUSION

This section concludes the paper with a brief discussion of the existing empirical literature
testing for bubbles, followed by some suggestions for future research. As mentioned in
the introduction, there is a vast empirical literature with respect to bubbles, studying
different markets over different time periods, including:

(1) the Dutch tulipmania 1634–1637 (see Garber 1989, 1990),
(2) the Mississippi bubble 1719–1720 (Garber 1990),
(3) the South Sea bubble of 1720 (Garber 1990; Temin and Voth 2004),
(4) foreign currency exchange rates (Evans 1986; Meese 1986),
(5) with respect to German hyperinflation in the early 1920s (Flood and Garber 1980),
(6) U.S. stock prices over the 20th century (West 1987, 1988; Diba and Grossman

1988; Dezhbakhsh and Demirguc-Kunt 1990; Froot and Obstfeld 1991; McQueen
and Thorley 1994; Koustas and Serletis 2005),

(7) the 1929 U.S. stock price crash (White 1990; De Long and Shleifer 1991; Rappoport
and White 1993; Donaldson and Kamstra 1996),

(8) land and stock prices in Japan 1980–1992 (Stone and Ziemba 1993),
(9) U.S. housing prices 2000–2003 (Case and Shiller 2003), and finally

(10) the NASDAQ 1998–2000 internet stock price peak (Ofek and Richardson 2003;
Brunnermeier and Nagel 2004; Cunando et al. 2005; Battalio and Schultz 2006;
Pastor and Veronesi 2006).

The majority of these empirical studies are based on models in discrete time with
infinite horizons where there exists a martingale measure Q, and the traded assets have
no terminal payoffs at τ = ∞. By our Theorem 4.2, this last observation excludes type
1 bubbles. In discrete time models, when the current stock price is known, there are no
local martingales. Hence, by construction these models exclude type 3 bubbles as well.
Hence, the models in the existing literature have really only investigated the existence
of type 2 bubbles (i.e., Is Q a uniformly integrable martingale measure or not?). As one
might expect from such a vast literature, the evidence is inconclusive.

This empirical indeterminacy is due to the fact that to test

βt = St − EQ

[∫ ∞

t
d Du

∣∣∣∣Ft

]
�= 0,

one must assume a particular model for EQ[
∫ ∞

t d Du |Ft]. As such, these empirical tests
involve a joint hypothesis: the assumed model and the null hypothesis βt �= 0. Different
studies use different models with different conclusions obtained.

To our knowledge (as just mentioned) there appears to be no empirical study testing
for type 3 bubbles. This is an open empirical question. Theorems 6.4 and 6.5 provide
a plausible procedure for implementing such a test, assuming the market is incomplete,
of course. Using the insights from Jacod and Protter (2009), if enough European put
options trade, then we can infer the market selected ELMM Q from the put option
market prices. Next, given Q, we can compute the fundamental prices of the traded
European call options, and compare them to the calls’ market prices. If they differ, a
type 3 bubble exists. And, the magnitude of the bubble is related to the magnitude of
the type 3 bubble in the asset’s market price—providing the test for a type 3 asset price
bubble.

This proposed testing procedure, however, does not test for either type 1 or type 2
asset price bubbles. To do this, it seems as if there is no choice other than to assume a



180 R. A. JARROW, P. PROTTER, AND K. SHIMBO

particular model for the stock’s fundamental price. We look forward to the continued
empirical search for bubbles, and we hope that some of the theorems we have generated
herein will be useful in that regard.

APPENDIX

This appendix proves some lemmas and theorems used in the American option pricing
section of the text.

LEMMA A.1. Let Mu be a nonnegative càdlàg local martingale. Assume that there exists
some function f and a uniformly integrable martingale X such that

�Mu ≤ f
(

sup
t≤r<u

Mr

)
(1 + Xu),(A.1)

where �Mu = Mu − Mu−. Then for Sm = inf{u > t : Mu ≥ xm},

lim
m→∞ EQ

[
MSm 1{Sm∈(t,T)}|Ft

] = Mt − EQ[MT|Ft].(A.2)

Proof. To simplify the notation, we omit the Q subscript on the expectations operator.
Let Tn be a fundamental sequence of Mt. Then MTn

t = E[MTn
T |Ft] and hence

MTn
t = MTn

t 1{Sm=t} + E
[
MTn

Sm
1{Sm∈(t,T)}|Ft

] + E
[
MTn

T 1{Sm=T}|Ft
]

(A.3)

By hypothesis MTn
Sm

≤ xm + f (xm)(1 + �XSm ) and MTn
T ≤ xm + f (xm)(1 + XT). By the

bounded convergence theorem,

Mt = lim
n→∞ MTn

t = Mt1{Sm=t} + E[MSm 1{Sm∈(t,T)}|Ft] + E[MT1{Sm=T}|Ft].(A.4)

Since X is a uniformly integrable martingale, it is in class D and {Xτ }τ :stopping times is
uniformly integrable. Fix m. Then MTn

T , MTn
Sm

are bounded by a sequence of uniformly
integrable martingales. Therefore, taking the limit with respect to n and interchanging
the limit with the expectation yields:

Mt = lim
m→∞ E[MSm 1{Sm∈(t,T)}|Ft] + E[MT|Ft].(A.5) �

THEOREM A.2. Let M be a nonnegative local martingale with respect to F such that �M
satisfies a condition specified in Lemma A.1. Let G(x, t) : R+ × [0, T] → R+ be a function
such that

• G(x, s) ≤ G(x, t) for all 0 ≤ s ≤ t ≤ T,
• For all t ∈ [0, T], G(x, t) is convex with respect to x.
• limx→∞

G(x,t)
x = c for all t ∈ [0, T],

then

sup
τ∈[t,T]

EQ[G(Mτ , τ )|Ft] = EQ[G(MT, T)|Ft] + (c ∨ 0)(Mt − EQ[MT|Ft]).(A.6)

Proof. To simplify the notation, we omit the Q subscript on the expectations operator.
Suppose c ≤ 0. Then by monotonicity with respect to t and Jensen’s inequality applied
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to a convex function G and a nonnegative local martingale M·,

sup
τ∈[t,T]

E[G(Mτ , τ )|Ft] ≤ sup
τ∈[t,T]

E[G(Mτ , T)|Ft]

≤ E[G(MT, T)|Ft]

≤ sup
τ∈[t,T]

E[G(Mτ , τ )|Ft](A.7)

and

sup
τ∈[t,T]

E[G(Mτ , τ )|Ft] = E[G(MT, T)|Ft].(A.8)

Suppose c > 0. Fix ε > 0. Then there exists ξ > 0 such that ε > 0, and ∃ξ > 0 such
that ∀x > ξ,

G(x,0)
x > c − ε and hence G(x,u)

x > c − ε for all u ∈ [0, T]. Let {xn}n≥1 be a
sequence in (ξ, ∞) such that xn ↑ ∞. Let

Sn = inf{u > t : Mu ≥ xn} ∧ T.(A.9)

Without loss of generality we can assume that Mt < xn . Since G(·, t) is increasing in t,

sup
τ∈[t,T]

E[G(Mτ , τ )|Ft] ≥ E[G(MSn , Sn)|Ft]

= E[G(MT, T)1{Sn=T}|Ft] + E[G(MSn , Sn)1{Sn<T}|Ft]

≥ E[G(MT, T)1{Sn=T}|Ft] + E[G(MSn , 0)1{Sn<T}|Ft].(A.10)

Since MSn ≥ xn > ξ, G(MSn , 0) ≥ (c − ε)MSn . Next, let us take take a limit of n → ∞. By
Lemma A.1 applied with {Sn} and the monotone convergence theorem,

lim
n→∞ sup

τ∈[t,T]
E[G(Mτ , τ )|Ft]

≥ lim
n→∞

{
E[G(MT, T)1{Sn=T}|Ft] + (c − ε)E[MSn 1{Sn<T}|Ft]

}
≥ E[(G(MT, T)|Ft] + (c − ε)(Mt − E[MT|Ft]).

(A.11)

Letting ε → 0,

sup
τ∈[t,T]

E[G(Mτ , τ )|Ft] ≥ E[G(MT, T)|Ft] + cβt(A.12)

To show the other direction, let Gc(x, u) = cx − G(x, u). Gc(x, ·) is a nonpositive in-
creasing concave function w.r.t. x such that

lim
x→∞

Gc(·, x)
x

= 0.(A.13)

By Jensen’s inequality,

E[Gc(MT, u)|Fu ] ≤ Gc(E[MT|Fu ], u) ≤ Gc(Mu, u)(A.14)

Therefore,

G(Mu, u) ≤ c(Mu − E[Gc(MT, u)|Fu ])

= cβu + E[G(MT, u)|Fu ]

≤ cβu + E[G(MT, T)|Fu ].(A.15)
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Since this is true for all u ∈ [t, T], G(Mτ , τ ) ≤ cβτ + E[G(MT, T)|Fτ ] for all τ ∈ [t, T].
By the tower property of martingales, and a supermartingale property,

E[G(Mτ , τ )|Ft] ≤ E[cβτ + E[G(MT, T)|Fτ ]|Ft] ≤ E[G(MT, T)|Ft] + cβt.(A.16)

Therefore,

sup
τ∈[t,T]

E[G(Mτ , τ )|Ft] = E[G(MT, T)|Ft] + cβt.(A.17) �

This theorem is an extension of Theorem B.2 in Cox and Hobson in two important
ways. First, we relax the assumption that a martingale Mt be continuous. Second, the
payoff function G(·, x) allows a more general form and, in particular, it allows an analysis
of an American option in an economy with a non-zero interest rate.
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