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1. Introduction

• Market Model: We consider an n–factor Markovian market
with state variables (S1, . . . , Sd, Y 1, . . . , Y n−d) where St is the
Rd–valued process which describes the discounted prices of
traded assets and Yt is the Rn−d–valued process correspond-
ing to the values of nontraded quantities such as stochastic
volatilities which may or may not be observed directly.

For example, we treat a two factor stochastic volatility model

dSt = St[(µ(t, Yt)− r)dt + σ(t, Yt)dW1
t ]

dYt = a(t, Yt)dt + b(t, Yt)[ρdW1
t +

√
1− ρ2dW2

t ] (1)

with initial values S0, Y0 ≥ 0, for deterministic functions µ, a, b
and independent one dimensional P–Brownian motions W1

t
and W2

t with constant correlation |ρ| ≤ 1.
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• Optimal hedging portfolio: the strategy followed by an in-

vestor who, when faced with a (discounted) financial liability

B maturing at a future time T , tries to solve the stochastic

control problem

u(x) = sup
H∈A

E [U (XT −B)] , (2)

where Xt = x + (H · S)t is the discounted terminal wealth

obtained when investing according to the self financing port-

folio Ht = (H1
t , . . . , Hd

t ) and the (discounted) liability B is

assumed to be a random variable of the form B = B(ST , YT ).

• Utility function: U(x) = −e−γx

γ , where γ > 0 is the risk aver-

sion parameter.
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2. Utility based pricing

For such Markovian markets we can embed the optimal hedging

problem (2) into the larger class of optimization problems defined

by

u(t, x, s, y) = sup
H∈At

Et,s,y[U(XT −B(ST , YT ))|Xt = x], (3)

for t ∈ (0, T ), where x ∈ R denotes some arbitrary level of wealth,

At denotes admissible portfolios starting at time t and Et,s,y[·]
denotes expectation with respect to the joint probability law at

time t of the processes Su, Yu, for u ≥ t, with initial condition

St = s and Yt = y.
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Suppose that (3) has an optimizer HB
t , that is, assume that

u(t, x, s, y) = Et,s,y[U(x + (HB · S)T
t −B(ST , YT ))],

Define the certainty equivalent for the claim B at time t as the

process cB
t = cB(t, x, s, y) satisfying the equation

U(x− cB
t )) = Et,s,y[U(x + (HB · S)T

t −B(ST , YT ))]. (4)

If we set B = 0, then the optimal hedging problem becomes the

Merton optimal investment problem and we denote the certainty

equivalent by c0t = c0(t, x, s, y).
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The indifference price for the claim B is defined to be solution

πB = πB(t, x, s, y) to the equation

sup
H∈At

Et,s,y[U(x+(H·S)T
t ] = sup

H∈At

Et,s,y[U(x+πB+(H·S)T
t −B(ST , YT )].

(5)

From the definition of the certainty equivalent, we see that this

equation is equivalent to

U(x− c0t ) = U(x + πB − cB
t ), (6)

so that the indifference price is given by

πB(t, x, s, y) = cB(t, x, s, y)− c0(t, x, s, y). (7)
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3. Discrete time hedging

We now consider portfolio processes of the form

Ht =
K∑

k=1

Hk 1(tk−1,tk]
(t) (8)

where each Hk is an Rd–valued Fk−1 random variable. We take

the discrete time partition of the interval [0, T ] to be of the form

t0 = 0 < t1 =
T

K
< . . . < tk =

kT

K
. . . < tK = T

and use the notation Sj := Stj for discrete time stochastic pro-

cesses.
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The discounted wealth for self–financing portfolios is

Xj = x + (H · S)j, (9)

with the notation (H · S)j
k := (H · S)j − (H · S)k, where

(H · S)j :=
j∑

k=1

Hk∆Sk (10)

and ∆Sk := Sk − Sk−1.
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Now the dynamic programming problem for the optimal hedge

falls into K subproblems

uk−1(x) = sup
Hk∈Fk−1

Ek−1[uk(x + Hk∆Sk)], (11)

for k = K, K − 1, . . . ,1, with uK(x) = U(x − B). Similarly, the

certainty equivalent value process cB
k (x) is defined iteratively by

U(x− cB
k−1(x)) = sup

Hk∈Fk−1

Ek−1[U(x + Hk∆Sk − cB
k (x + Hk∆Sk)]

(12)

with cB
K(x) taken equal to the terminal discounted claim B.
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In our Markovian setting and with an exponential utility, the

solution of (11) and (12) as well as the optimal allocation HB

have the form wealth independent form

uk = gk(Sk, Yk) (13)

cB
k = ck(Sk, Yk) (14)

HB
k+1 = hk+1(Sk, Yk) (15)

for (deterministic) Borel scalar functions {gk, ck}K−1
k=0 and Rd–

valued functions {hk+1}K−1
k=0 on the state space S.
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4. The exponential utility allocation algorithm

We want an algorithm which will generate an approximate trad-

ing rule, based on a data set

{(Si
k, Y i

k)}i=1,...,N ;k=0,...,K

where (Si
k, Y i

k) ∈ Rn denotes the state of the ith sample path at

time tk = kT/K for the processes (St, Yt). In the special case of

an exponential utility, the theoretical optimal rule

HB
k+1 = hk(S

i
k, Y i

k)

in (15) depends only on the directly observed data {Si
k, Y i

k} and

is independent of the wealth Xi
k. For this reason our algorithm

is at this point restricted to exponential utility functions, and we

take γ = 1 for simplicity.
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1. Step k = K: The final optimal allocation is the FK−1–
random variable HB

K which solves

min
HK∈FK−1

E[exp(−H ·∆SK + B)]. (16)

Since the solution is known to be given by HB
K = hK(SK−1, YK−1)

for some deterministic function hK ∈ B(S) (the set of Borel
functions on S), we write this as

min
h∈B(S)

E[exp(−h(SK−1, YK−1) ·∆SK + B)]. (17)

On a finite set of data, we can pick an R–dimensional subspace
R(S) ⊂ B(S) of functions on S and attempt to “learn” a subop-
timal solution

argmin
h∈R(S)

E[exp(−h(SK−1, YK−1) ·∆SK + B)].
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By the central limit theorem, the expectation above can be ap-

proximated by the finite sample estimate

ΨK(h) =
1

N

N∑
i=1

exp
(
−h(Si

K−1, Y i
K−1) ·∆Si

K + B(Si
K, Y i

K)
)
(18)

This leads to the estimator hRK based on {Si
k, Y i

k} and the choice

of subspace R defined by

hRK = argmin
h∈R(S)

ΨK(h) (19)
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2. Inductive step for k = K − 1, . . . ,2: The estimate hRk of the

optimal rule hk, for the intermediate time steps 2 ≤ k < K − 1

is determined inductively given the estimates hRk+1, . . . , hRK. It is

defined to be

hRk = argmin
h∈R(S)

Ψk(h;hRk+1, . . . , hRK) (20)

where

Ψk(h) =
1

N

N∑
i=1

exp
(
−h(Si

k, Y i
k) ·∆Si

k+1 + ci
k(h

R
k+1, . . . , hRK, Si

K, Y i
K)
)

,

(21)

with

ci
k(h

R
k+1, . . . , hRK, Si

K, Y i
K) = B(Si

K, Y i
K)−

K∑
j=k+1

hRj (Si
j−1, Y i

j−1)·∆Si
j

(22)
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3. Final step k = 1: This step is degenerate since the ini-

tial values (S0, Y0) are constant over the sample. Therefore we

determine the optimal constant vector h1 ∈ Rd by solving

h1 = argmin
h∈Rd

Ψ1(h;hR2 , . . . , hRK) (23)

Finally, the optimal value

Ψ1 =
1

N

N∑
i=1

exp

−h1(S0, Y0)−
K∑

j=2

hRj (Si
j−1, Y i

j−1) ·∆Si
j + B(Si

K, Y i
K)

 ,

is an estimate of the quantity exp(cB
0 ), where cB

0 is the certainty

equivalent value of the claim B at time t = 0
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5. Numerical results

Geometric Brownian motion

We start with a one dimensional complete market in order to

test the algorithm against well known exact solutions. Consider a

market where the stock price process, discounted by the constant

interest rate r, satisfy

dSt

St
= (µ− r)dt + σdW, (24)

where µ and σ > 0 are constants and W is a one–dimensional

P–Brownian motion.

15



As it is well known, the unique equivalent martingale measure

Q has desity dQ/dP given by the stochastic exponential of the

constant market price of risk λ = (µ − r)/σ and the Merton

portfolio for this market is given by

Ĥt =
µ− r

γσ2

1

St
. (25)

We can now compare the hedging portfolio “learned” by our

algorithm with the “true” optimal hedging portfolio given

HB
t = Ĥt +HB

t , (26)

where HB
t is the Black–Scholes delta hedging portfolio replicating

B. Similarly, the indifference prices calculated by the algorithm

can be compared with the Black–Scholes price for the same

claim.
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We fix the parameters of the model at

S0 = 1, µ = 0.1, σ = 0.2 and r = 0.02

over the period of one year T = 1 and discrete time intervals of
1/50.

We apply the allocation algorithm with N = 100000 to two sce-
narios: (i) the Merton investment problem; and (ii) the hedging
problem for the writer of a single written at–the–money Euro-
pean put. Then, for comparison to theory, we use the same
Monte Carlo simulations, but rehedged weekly according to the
theoretical formula (26).

As for the subspace R(S), we use the three dimensional space
spanned by the functions {1, s, s2}.
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Reciprocal affine stochastic volatility models

We now take µ and r to be constants and σ(t, Yt) =
√

Yt in (1).

Define

Rt = R(t, Yt) =
(1− ρ2)(µ− r)2

2Yt
, (27)

which we postulate to be a CIR process, that is

dRt = α(κ−Rt)dt + β
√

Rt

[
ρdW1

t +
√

1− ρ2dW2
t

]
, (28)

for constants α, κ, β > 0 with 4ακ > β2.
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We then obtain from the Itô formula that

a(t, Yt) = αYt +
2(β2 − ακ)

(1− ρ2)(µ− r)2
Y 2

t , (29)

b(t, Yt) = −
(

2

1− ρ2

)1/2
β

(µ− r)
Y

3/2
t . (30)

It follows from the Hamilton–Jacobi–Bellman equations associ-

ated with (3), that indifference prices and optimal hedging port-

folios for pure volatility claims of the form B = B(YT ) can be

explicitly computed using a Fourier trasnform technique. We

use these as benchmarks for our more general Monte Carlo al-

gorithm.
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We fix the model parameters at reasonable values:

α = 5, β = 0.04, κ = 0.001,

µ = 0.04, r = 0.02, ρ = 0.5

and initial squared volatility ranging in the interval [0,0.5]. With

these parameters the squared volatility process has a mean rever-

sion time of approximately two months and an equilibrium dis-

tribution with expected value approximately 40%. We calculate

the price of a put option on volatility with payoff (0.15 − σ2
T )+.

When not mentioned the risk aversion parameter is set to γ = 1.
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We now run the algorithm with the same model parameters as

before (in particular γ = 1). To account for the portfolio depen-

dence in both St and Yt we took R(S) to be the six–dimensional

space spanned by the functions {1, y, y2, s, sy, s2}.

We first applied the allocation algorithm to a volatility put option

with payoff (0.15 − σ2
T )+ and time to maturity at T = 0.2 and

computed the indifference prices with Y0 varying in the interval

[0,0.5].
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Next we consider a put option on the stock, that is, with payoff

(K − ST )+. The following pictures show the indifference prices

and implied volatility surface with N = 10000 simulations.
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