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Abstract

In papers written in the fifties, especially in the series Quantum
Mechanics and Geometry, Mario Schönberg introduces and analyzes
several algebraic structures obtained from simple geometric objects,
such as vectors and points. With these geometric algebras, he then pro-
ceedes to investigate a new algebraic formalism for the physical world,
in particular for quantum mechanics, based on a deeper mathematical
understanding of space-time and its relations with other properties of
matter. In this work, we single out a special anticommutative algebra
and, as an application to physics, relate it to the algebra of operators
for fermionic second quantization.

Let En be an n-dimensional inner product space over a field k and let E∗n
be its dual. Denote by B = {I1, . . . , In} an orthonormal basis for En and by
B∗ = {I1, . . . , In} the dual basis for E∗n, with the property that 〈Ij , Ik〉 = δkj ,
where 〈V,U〉 denotes the linear functional U applied to the vector V. The
contravariant vectors in this space are then written as V =

∑
j V

jIj , while
the covariant vectors are expressed as U =

∑
j UjI

j .
Define the associative, anticommutative, unital algebra Gn as the alge-

bra generated by the elements associated with the vector V and U above
satisfying the following algebraic identities:

[V,V′]+ = 0, [U,U′]+ = 0, [V,U]+ = 〈V,U〉1Gn , (1)

where [a,b] denotes the anticommutator ab + ba.
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Therefore, a basis for Gn consists of the 22n elements of the form

(I1)r1 · · · (In)rn(In)sn · · · (I1)s1

with the exponents r, s taking the values 0 and 1. That is, Gn is of order
22n, with a generic element written as

Γ =
0,...,n∑
p,q

C
k1,...,kq
j1,...,jp

Ij1 · · · IjpIkq · · · Ik1 , (2)

where the coefficients Ck1,...,kq
j1,...,jp

are antisymmetric under permutations of each
the sets {k1, . . . , kq} ⊂ {1, . . . , n} and {j1, . . . , jp} ⊂ {1, . . . , n} separately.

As it can be seen, Gn is the graded algebra of antisymmetric covariant
and contravariant tensors of all orders, which is embedded in the usual tensor
algebra.

To each element Γ above one can associate the element

Γ =
0,...,n∑
p,q

C
k1,...,kq
j1,...,jp

Ik1 , · · · , IkqIjp · · · Ij1 , (3)

which defines an invariant involution Γ 7→ Γ in Gn.
In the grading for Gn observed above, we note that the vector spaces

G0,0 and Gn,n, obtained respectively from the tensors with p = q = 0 and
p = q = n, are one dimensional, thus being isomorphic to k. In the space
Gn,n, let us select the elements

P = I1 · · · InIn · · · I1 (4)
P = I1 · · · InIn · · · I1, (5)

which are idempotents, that is, P2 = P and P2 = P, and have the property
that IjP = PIj = 0 and IjP = PIj = 0.

If we now define the pair of commuting idempotent elements Nj = IjIj
and Nj = IjIj , we obtain that

P = N1 · · ·Nn (6)
P = N1 · · ·Nn, (7)

together with the important relation Nj + Nj = 1Gn .
From the elements above, we can introduce

Pk1,...,kq
j1,...,jp

= Ikq · · · IkqPIjp · · · Ij1 , (8)
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where j1 < . . . < jp and k1 < . . . < kq, with p, q = 0, . . . , n. These elements
are lineraly independent, due to the following multiplication rule, which
follows from the properties of P:

Pk1,...,kq
j1,...,jp

Pi1,...,ir
h1,...,hs

= δp,rδ
i1,...,ip
j1,...,jp

Pk1,...,kq
h1,...,hs

. (9)

Thus the set of 22n elements of the form Pk1,...,kq
j1,...,jp

constitutes a basis for
Gn, that is, we can write a generic element Γ ∈ Gn as

Γ =
0,...,n∑
p,q

A
j1,...,jp
k1,...,kq

Pk1,...,kq
j1,...,jp

, (10)

with the coefficients Aj1,...,jpk1,...,kq
being antisymmetric as before.

The space GnP of antisymmetric covariant tensors of all orders can be
obtained from elements of the form

Ψ =
0,...,n∑
p

Aj1,...,jpP
j1,...,jp . (11)

Analogously, the space PGn of antisymmetric contravariant tensors of all
orders can be obtained from elements of the form

Φ =
0,...,n∑
p

Aj1,...,jpPj1,...,jp . (12)

Let us now define the adjoint of an element Γ as

Γ† =
0,...,n∑
p,q

(
A
j1,...,jp
k1,...,kq

)∗
Pj1,...,jp
k1,...,kq

, (13)

where A∗ denotes the adjoint of the matrix A.
The map Γ 7→ Γ† is a involution which, like the map Γ 7→ Γ introduced

before, does not depend on the coordinate system used for the underlying
vector space. Moreover, we have that Ψ† = Φ and Φ† = Ψ. Therefore

Ψ†Ψ =
0,...,n∑
p

∣∣Aj1,...,jp∣∣2 P (14)

from where we obtain a metric on antisymmetric tensors of all orders which
is induced by the metric in En.
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Returning to the involution Γ 7→ Γ, if Γ is written as in (10), then the
coefficients A of Γ in the same basis are

A
j1,...,jp
k1,...,kq

= (−1)
(p−q)(p+q−1)

2 δ
j1,...,jp
k1,...,kq

A
jp+1,...,jn
kq+1,...,kn

. (15)

From the above relation, we conclude that this involution acts on the sub-
space GnP by mapping an element of the form Ψ into one of the form
P1,...,nΦ, and on the subspace PGn by mapping elements of the form Φ into
those of the form ΨP1,...,n.

Schönberg [2, 3] observes that the application of this algebras to second
quantization is carried out when we take Gn as an algebra over the complex
numbers, which makes it the n-th order analogue of the Jordan-Wigner
algebra of creation and anihilation operators for the second quantization of
fermions.

If we identify the elements Ij and Ij respectively with the anihilation
and creation operators, then P corresponds to the projection onto the vac-
cum state. Moreover, the elements Nj become identified with the number
operator, while the operator for total number of particles is given by the
element N =

∑n
j=1 Nj .

The state vectors for a fermionic field are given by the elements Ψ ∈
Gn(P), with the metric of En extended to it through the map Γ 7→ Γ†.
Finally, the map Γ 7→ Γ, which transforms Nj into 1Gn −Nj , corresponds
to the permutation of particles and holes, that is, to charge conjugation for
a fermionic quantum field.
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Perspectivas em F́isica Teórica, Anais do Simpósio de F́isica em
homenagem ao 70◦ aniversário do Prof. Mário Schenberg, IFUSP, 1984.
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