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Successes and Limitations of Real Options

I According to a recent survey, 26% of CFOs in North America
“always or almost always” consider the value of real options in
projects.

I This is due to familiarity with the option valuation paradigm
in financial markets and its lessons.

I But most of the literature in Real Options is based on one or
both of the following assumptions: (1) infinite time horizon
and (2) a perfectly correlated spanning asset.

I Though some problems have long time horizons (30 years or
more), most strategic decisions involve much shorter times.

I The vast majority of underlying projects are not perfectly
correlated to any asset traded in financial markets.



Alternatives

I The use of well–known numerical methods (e.g binomial trees
or finite differences) allows to consider finite–time horizons.

I As for the spanning asset assumption, the absence of perfect
correlation with a financial asset leads to an incomplete
market.

I Replication arguments can no longer be applied to value
managerial opportunities.

I Instead, one needs to rely on risk preferences.

I The most widespread way to do this in the strategic decision
making literature is to introduce a risk adjusted discount
factor, which replaces the risk–free rate, and use dynamic
programming.

I This approach lacks the intuitive understanding of
opportunities as options.



Utility-based methods

I We treat an investment opportunity as an option on a
non–traded asset and price it using the framework of
indifference pricing.

I For investments with a fixed exercise date (European option),
this problem was treated, for instance, in Hobson and
Henderson (2002).

I For early exercise investment (American option), the problem
was solved in Herderson (2005) for the case of infinite time
horizon.

I A different utility–based framework (not using indifference
pricing), was treated in Hugonnier and Morellec (2004), using
the effect of shareholders control on the wealth of a risk
averse manager.

I For finite time horizons, a different version of the problem was
solved Porchet, Touzi and Warin (2008) using the reflected
BSDEs approach introduced in complete markets by
Hamadène and Jeanblanc (2007).



A gentle introduction to BSDEs in Finance

I Given a terminal random variable ξ ∈ FT and a generator
function f (t, y , z), a solution of a backward SDE is a pair of
adapted processes (Y ,Z ) satisfying

Yt = ξ −
∫ T

t
f (s,Ys ,Zs)ds −

∫ T

t
Z ′

sdWs , (1)

or equivalently

dYt = f (t,Yt ,Zt)dt + Z ′
tdWt (2)

YT = ξ (3)

I Theorem (Pardoux/Peng 1990): If ξ is square-integrable and
f is uniformly Lipschitz, then the BSDE has a unique
square-integrable solution.



First example: pricing and hedging in a complete market

I Consider the market

dBt = Btrrdt, (4)

dS i
t = S i

t

µtdt +
n∑

j=1

σij
t dW j

t

 (5)

I Given a claim ξ ≥ 0, we look for a portfolio (V , π) satisfying

dXt = rtXtdt + π′tσ(dWt + λtdt) (6)

XT = ξ (7)

where µt − r1d = σλt

I We see that this corresponds to a linear BSDE with

Yt = Xt (8)

Zt = σ′πt (9)

f (t,Yt ,Zt) = rYt + λ′tZt (10)



The Markovian Case

I For given (t, x), let S t,x
s be the solution of the forward SDE

Ss = x+

∫ s

t
µ(u,Su)du+

∫ s

t
σ(u,Su)dWu, t ≤ s ≤ T (11)

I Consider than the associated BSDE

Ys = Φ(S t,x
T )−

∫ T

s
f (u,S t,x

u ,Yu,Zu)du −
∫ T

s
Z ′

udWu (12)

I When the coefficients satisfy certain Lipschitz and growth
conditions, it can be shown that the solution can be written
as Y t,x

s = u(s,S t,x) and Z t,x
s = σ′v(s,S t,x

s ) for deterministic
Borel functions u(·, ·) and v(·, ·).

I Under additional regularity conditions on f and Φ (such as
uniform continuity in x), it can be shown that the function
u(t, x) = Y t,x

t is a viscosity solution of the PDE

ut + Lu − f (t, x , u, σ′ux) = 0, (13)

where L is the generator of St .



Second example: utility maximization

I Now let rt = 0 and consider the market

dS i
t = S i

t

µi
tdt +

n∑
j=1

σij
t dW j

t

 , i = 1, . . . , d ≤ n. (14)

where µi
t , σ

ij
t are predictable uniformly bounded, σt is

uniformly elliptic and let λt be a solution of

σtλt = µt . (15)

I As before, the wealth in a self–financing portfolio satisfies

Xπ
t = x +

∫ t

0
π′sσs(dWs + λsds) (16)

I We are then interested in the optimization problem

u(x) := sup
π∈A

E
[
−e−γ(Xπ

T +B)
]

(17)



Second example (continued): supermartingales

I To solve (17), we follow Hu/Imkeller/Muller (2004) and look
for a family of processes Rπ such that

I Rπ
T = U(Xπ

T + B)
I Rπ

0 = R0 for all π ∈ A.
I Rπ

t is a supermartingale for all π ∈ A.
I There exists a π∗ ∈ A such that Rπ∗

t is a martingale.

I To construct such family we set

Rπ
t := −e−γ(Xπ

t +Y B
t ), (18)

I Here (Y B ,Z ) is a solution of the BSDE

Y B
t = B −

∫ T

t
f (s,Zs)ds −

∫ T

t
Z ′

sdWs , (19)

for a function f to be determined.



Second example (continued): the generator

I To determine f , we write Rπ
t as the product of a local

martingale and a decreasing process.
I Using the definitions of Xπ and Yt we find

Rπ
t = −eγ(x−Y0)e−γ[

R t
0 (π′sσs+Z ′

s )dW+
R t
0 (π′sσsλ+f (s,Ys ,Zs)ds)]

= −eγ(x−Y0)e−γ
R t
0 (π′sσs+Z ′

s )dW− 1
2

R t
0 γ2‖π′sσs+Z ′

s‖2dse
R t
0 v(s,πs ,Zs)ds ,

where v(t, π, z) = −γπ′σtλt − γf (t, z) + 1
2γ2‖π′σt + z ′‖2.

I We therefore seek for f such that v(t, πt ,Zt) ≥ 0 for all
πt ∈ A and v(t, π∗t ,Zt) = 0 for some π∗t ∈ A.

I Rearranging terms in v , we see that it suffices to take

f (t, z) = zλt −
1

2γ
‖λt‖2 (20)

π∗t σt =
λt

γ
− Zt (21)

I This can be extended for the case of constrained portfolios.



Reflected BSDEs

I Given a terminal condition ξ, a generator function f (t, y , z)
and an obstacle Ct with CT ≤ ξ, a solution of a reflected
BSDE is a triple (Yt ,Zt ,At) satisfying

1. Yt = ξ −
∫ T

t
f (s,Ys ,Zs)ds −

∫ T

t
Z ′

sdWs + (AT − At),
2. Yt ≥ Ct

3. At is continuous, increasing, A0 = 0, and
∫ T

0
(Yt −Ct)dAt = 0.

I Proposition (El Karoui et al - 1997): Under further
square–integrability conditions on (Yt ,Zt ,At) we have that

Yt = ess sup
τ

E

[
−
∫ τ

t
f (s,Ys ,Zs)ds + Cτ1{τ<T} + ξ1{τ=T}|Ft

]



The obstacle problem for PDEs

I Consider again the solution S t,x
s for the forward SDE (11) and

let

ξ = Φ(S t,x
T )

Cs = g(s,S t,x
s )

f (s, y , z) = f (s,S t,x
s , y , z)

I Then, under certain continuity, integrability and growth
conditions for Φ, g , f , it can be shown that the function
u(t, x) = Y t,x

t is a viscosity solution of the obstacle problem

min[−ut − Lu−f (t, x , u, σ′ux), u(t, x)− h(t, x)] = 0

u(T , x) = Φ(x)



Third example: American options in a complete market

I Let dSt = rStdt + σStdW Q
t .

I It is well-known that the price of an American put option on
St is given by the Snell envelope

Pt = ess sup
τ

EQ [e−r(τ−t)(K − Sτ )
+|Ft ].

I We can see that this corresponds to a reflected BSDE with

Yt = e−rtPt , f (t, y , z) = 0

ξ = e−rT (K − ST )+, Ct = e−rt(K − St)
+

I Moreover, setting u(t,St) = e−rtPt , we have that

max[ut + Lu,e−rt(K − x)+ − u(t, x)] = 0

u(T , x) = e−rT (K − ST )+



The option to invest in an incomplete market

I Again let rt = 0 and a two–factor model where discounted
prices are given by

dSt = µ1Stdt + σ1StdW 1
t

dVt = µ2Vtdt + σ2Vt(ρdW 1
t +

√
1− ρ2dW 2

t )

I In our previous notation this corresponds to

σ =

(
σ1 0

σ2ρ σ2

√
1− ρ2

)
, λ =

(
µ1/σ1

1√
1−ρ2

[µ2/σ2 − ρµ1/σ1]

)
I Here St represents the price of a traded asset, whereas Vt is

the current value of a project.

I We then model investment in the project as an American call
option on V with strike price equals to the sunk cost, which is
assumed to grow at rate rt for simplicity.



Preferences
I Consider then an agent trying to solve the Merton problem

u0(t, x) = sup
π

E[−e−γXπ
T |Xt = x ]

I Here πt is the amount invested in the stock at time t and

dXt = πt
dSt

St
= πtσ(dW 1

t + λ1ds).

I We denote the solution to this Merton problem by

M(t, x) = −e−γxe−
µ2

2σ2 (T−t).

I Finally, consider the modified problem

u(t, x , v) = sup
π,τ

E[M(τ,Xπ
τ + (Vτ − I )+)|Xt = x ,Vt = v ].

I The indifference price for the option to invest in the project is
the value p satisfying

u0(x) = u(x − p, v)



System of reflected BSDEs

I From our previous example u0(x) = −e−γ(x+Y 1
0 ) where

Y 1
t = −

∫ T

t
f 1(Z 1

t )dt −
∫ T

t
Z 1

t · dWt , (22)

for f 1(z1, z2) = z1λ1 −
λ2

1
2γ .

I Similarly, we will show that u(x , v) = −e−γ(x+Y 2
0 ) where

Y 2
t = (VT − I )+ −

∫ T

t
f 2(Z 2

t )dt −
∫ T

t
Z 2

t · dWt + (AT − At)

Y 2
t ≥ (Vt − I )+ + Y 1

t

A0 = 0,

∫ T

0
(Y 2

t − (Vt − I )+ − Y 1
t )dAt = 0.

for f 2(z1, z2) = γ
2

(
λ2
γ − z2

)2
+ z · λ− ‖λ‖2

2γ .



Sketch of the proof

I For this choices, it follows that Rπ
t = −eγ(Xπ

t +Y 2
t ) is a

supermartingale for any π.
I Now let 0 ≤ τT be an arbitrary stopping time, π ∈ A[0,τ ] and

π̄ ∈ A(τ,T ]. From the dynamic principle satisfied by Y 1 + t
it follows that

E
[
−e

−γ
“
Xπ

τ +(Vτ−I )++
R T

τ π̄ dS
S

”]
≤ −e−γ(Xπ

τ +(Vτ−I )++Y 1
τ )

I We then have

E
[
−e−γ(Xπ

τ +(Vτ−I )++Y 1
τ )
]
≤ E

[
−e−γ(Xπ

τ +Y 2
τ )
]

≤ −e−γ(x+Y 2
0 )

I We obtain equalities by setting

τ∗ = inf{0 ≤ t ≤ T : Y 2
t = (Vt − I )+ + Y 1

t }

π∗t σ =

{
λ1/γ − Z 2

1,t 0 ≤ t ≤ τ∗

λ1/γ − Z 1
1,t τ < t ≤ T



The indifference price process

I From the definition it is then clear that p = Y 2
0 − Y 1

0 .

I Moreover, we have that the process pt := Y 2
t − Y 1

t satisfies
the reflected BSDE

pt = (VT − I )+ −
∫ T

t
f (Zt)dt −

∫ T

t
Zt · dWt + (AT − At)

pt ≥ (Vt − I )+, A0 = 0,

∫ T

0
(pt − (Vt − I )+)dAt = 0,

where f (z1, z2) = z1λ1 + γ
2 (z2)

2

I We can then characterize the indifference price as the initial
value of the viscosity solution of an obstacle problem and
calculate it numerically.



Sensitivities of indifference price

I Using comparison results for solutions of reflected BSDEs we
can deduce the following properties for both the indifference
price and the investment threshold.

I If |ρ1| ≤ |ρ2| then p(ρ1) ≤ p(ρ2).

I If γ1 ≤ γ2 then p(γ1) ≥ p(γ2).

I Define δ := µ̄2 − µ2, where µ̄2 is the equilibrium rate for a
financial asset with volatility σ2.

I If −σ2
2
2 ≤ δ1 ≤ δ2 then p(δ1) ≥ p(δ2).

I p is an increasing function of σ2 for δ > 0, but it is decreasing
in σ2 when δ < 0.



Dependence with Correlation and Risk Aversion
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Figure: Exercise threshold as a function of correlation and risk aversion.



Dependence with Dividend Rate
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Figure: Exercise threshold as a function of dividend rate.



Dependence with Volatility
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Figure: Exercise threshold as a function of volatility.



Dependence with Time to Maturity
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Figure: Exercise threshold as a function of time to maturity.



Depreciation

I Instead of the project value itself, we can model the output
cash–flow rate

dPt = µ2Ptdt + σ2Pt(ρdW 1
t +

√
1− ρ2dW 2

t )

I If the project has fixed lifetime T̄ from moment of
investment, then

V (Pt) = E

[∫ T̄

0
e−µ̄2tPsds

]
=

Pt

δ
[1− e−δT̄ ]

I If the project expires at an exponentially distributed time τ ,
then

V (Pt) = E

[∫ τ

0
e−µ̄2tPsds

]
=

Pt

λ + δ



The abandonment option

I The previous framework ignores the possibility of negative
cash flows arising from the active project, for instance, when
operating costs exceed the revenue.

I For a constant operating cost rate C (and no depreciation),
we have that

V (Pt) = E

[∫ ∞

t
e−µ̄2sPsds

]
−
∫ ∞

t
e−rsCds =

Pt

δ
− C

r
.

I We now suppose that the active project can be abandoned for
a fixed cost E and later restarted at a fixed cost I .

I Notice that E can be somewhat negative if there is some
scrap value to the project, as long as −I < E < 0.

I How can we value the combine entry/exit options ?



Investment strategies and stopping times

I An entry/exit strategy in this setting is a process

ξt =
∑
n≥1

1{τ2n−1≤t<τ2n}

where τ0 = 0, τ2n−1 are investment times and τ2n are
abandonment time.

I For a given ξ, we consider the wealth process

dXπ,ξ
t = πtσ(dW 1

t + λ1dt), τk ≤ t < τk+1

Xπ,ξ
τ2n−1

= Xπ,ξ

τ−2n−1

+ V (Pτ2n−1)− I

Xπ,ξ
τ2n

= Xπ,ξ

τ−2n

− E



Utility valuation

I We can then show that

u(t, x ,P) = sup
π,ξ

E
[
−e−γXπ,ξ |Xπ,ξ

t = x
]

= −ex+Y 2
0 ,

I Here Y 2
0 is the solution of the following system of reflected

BSDE

Y 1
t = max(VT ,−E )−

∫ T

t
f 1(Z 1

t )dt −
∫ T

t
Z 1

t · dWt + (A1
T − A1

t )

Y 2
t = max(VT − I , 0)−

∫ T

t
f 2(Z 2

t )dt −
∫ T

t
Z 2

t · dWt + (A2
T − A2

t )

Y 2
t ≥ Y 1

t + (V (Pt)− I )+, Y 1
t ≥ Y 2

t − E

A1
0 = 0,

∫ T

0
(Y 1

t − Y 1
t + E )dA1

t = 0

A2
0 = 0,

∫ T

0
(Y 2

t − (V (Pt)− I )+ − Y 1
t )dA2

t = 0


