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1. Program

• Given a probability space (Ω,F , µ), construct a Banach man-

ifold M of all probability measures equivalent to µ.

• Extend the Fisher information

gij =
∫
∂ log p(x, θ)

∂θi
∂ log p(x, θ)

∂θj
p(x, θ)dx (1)

to a well defined scalar product on TpM and prove Chentsov’s

theorem.
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• Obtain the infinite dimensional analogues for the exponential

and mixture connections acting on the tangent bundle TM
and establish their Amari duality with respect to the Fisher

scalar product.

• Define the infinite dimensional α-connections and prove that

∇(α) =
1 + α

2
∇(e) +

1− α

2
∇(m). (2)

• Define statistical divergences and prove projection/minimization

theorems.
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2. Wandering in Orlicz Spaces

Consider Young functions of the form

Φ(x) =
∫ |x|
0

φ(t)dt, x ≥ 0, (3)

where φ : [0,∞) 7→ [0,∞) is nondecreasing, continuous and such

that φ(0) = 0 and lim
x→∞φ(x) = +∞. This include the monomials

|x|r/r, for 1 < r <∞, as well as the following examples:

Φ1(x) = coshx− 1, (4)

Φ2(x) = e|x| − |x| − 1, (5)

Φ3(x) = (1 + |x|) log(1 + |x|)− |x| (6)
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The complementary of a Young function Φ of the form (3) is
given by

Ψ(y) =
∫ |y|
0

ψ(t)dt, y ≥ 0, (7)

where ψ is the inverse of φ. One can verify that (Φ2,Φ3) and
(|x|r/r, |x|s/s), with r−1 + s−1 = 1, are examples of complemen-
tary pairs.

We say that Ψ1 ≺ Ψ2 (Ψ1 is weaker than Ψ2), if there exist a
constant a > 0 such that

Ψ1(x) ≤ Ψ2(ax), x ≥ x0, (8)

for some x0 ≥ 0 (depending on a). For example,

|x| ≺ Φ3 ≺
|x|r

r
≺
|x|s

s
≺ Φ2 (9)

whenever 1 < r ≤ s <∞.
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Two Young functions Ψ1 and Ψ2 are equivalent if Ψ1 ≺ Ψ2 and

Ψ2 ≺ Ψ1. For example, the functions Φ1 and Φ2 are equivalent,

both being of exponential type.

A Young function Φ : R 7→ R+ satisfies the ∆2-condition if

Φ(2x) ≤ KΦ(x), x ≥ x0 ≥ 0, (10)

for some constant K > 0. Examples of functions in this class are

the monomials |x|r/r, r ≥ 1 and the function Φ3.
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Now let (Ω,Σ, P ) be a probability space. The Orlicz space as-

sociated with a Young function Φ defined as

LΦ(P ) =
{
f : Ω 7→ R,measurable :

∫
Ω

Φ(αf)dP <∞, for some α > 0
}
.

(11)

If we identify functions which differ only on sets of measure zero,

then LΦ is a Banach space when furnished with the Luxembourg

norm

NΦ(f) = inf
{
k > 0 :

∫
Ω

Φ(
f

k
)dP ≤ 1

}
, (12)

or with the equivalent Orlicz norm

‖f‖Φ = sup
{∫

Ω
|fg|dµ : g ∈ LΨ(µ),

∫
Ω

Ψ(g)dP ≤ 1
}
, (13)

where Ψ is the complementary Young function to Ψ.
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If Φ and Ψ are complementary Young functions, f ∈ LΦ(P ),

g ∈ LΨ(P ), then we have the generalized Hölder inequality:∫
Ω
|fg|dP ≤ 2NΦ(f)NΨ(g). (14)

It follows that LΦ ⊂
(
LΨ

)∗
for any pair of complementary Young

functions.

If Ψ2 ≺ Ψ1 then there exist a constant k such that ‖·‖Ψ2
≤ k‖·‖Ψ1

and therefore LΨ1(P ) ⊂ LΨ2(P ).

If two Young functions are equivalent, the Banach spaces asso-

ciated with them coincide as sets and have equivalent norms.
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Now define

MΦ(P ) =
{
f ∈ LΦ :

∫
Ω

Φ(kf)dP <∞, for all k > 0
}
. (15)

Lemma 1 Let (Φ,Ψ) be a complementary pair of Young func-

tions, Φ continuous, Φ(x) = 0 iff x = 0. Then:

1. MΦ(P ) is the closure of L∞(Ω,Σ, P ) in the LΦ(P )–norm.

2.
(
MΦ(P )

)∗
is isometrically isomorphic to LΨ(P ).

If, moreover, Φ satisfies the ∆2-condition, then MΦ(P ) = LΦ(P ).
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3. The Pistone-Sempi Manifold

Consider the set

M≡M(Ω,Σ, µ) = {f : Ω 7→ R, f > 0 a.e. and
∫
Ω
fdµ = 1}.

For each point p ∈M, let LΦ1(p) be the exponential Orlicz space
over the probability space (Σ,Ω, pdµ) and consider its closed sub-
space of p-centred random variables

Bp = {u ∈ LΦ1(p) :
∫
Ω
updµ = 0} (16)

as the coordinate Banach space.

In probabilistic terms, the set LΦ1(p) correspond to random vari-
ables whose moment generating function with respect to the
probability pdµ is finite on a neighborhood of the origin.
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They define one dimensional exponential models p(t) associated
with a point p ∈M and a random variable u:

p(t) =
etu

Zp(tu)
p, t ∈ (−ε, ε). (17)

Define the inverse of a local chart around p ∈M as

ep : Vp → M

u 7→
eu

Zp(u)
p. (18)

Denote by Up the image of Vp under ep. Let e−1
p be the inverse

of ep on Up. Then a local chart around p is given by

e−1
p : Up → Bp

q 7→ log

(
q

p

)
−
∫
Ω

log

(
q

p

)
pdµ. (19)
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For any p1, p2 ∈M, the transition functions are given by

e−1
p2
ep1 : e−1

p1
(Up1 ∩ Up2) → e−1

p2
(Up1 ∩ Up2)

u 7→ u+ log

(
p1
p2

)
−
∫
Ω

(
u+ log

p1
p2

)
p2dµ.(20)

Proposition 2 For any p1, p2 ∈M, the set e−1
p1

(Up1∩Up2) is open
in the topology of Bp1.

We then have that the collection {(Up, e−1
p ), p ∈M} satisfies the

three axioms for being a C∞–atlas for M. Moreover, since all
the spaces Bp are isomorphic as topological vector spaces, we
can say that M is a C∞–manifold modeled on Bp ≡ TpM.

Given a point p ∈M, the connected component of M containing
p coincides with the maximal exponential model obtained from

p: E(p) =
{

eu

Zp(u)
p, u ∈ Bp

}
.

11



4. The Fisher Information and Dual Connections

Let 〈·, ·〉p be a continuous positive definite symmetric bilinear

form assigned continuously to each Bp ' TpM. A pair of con-

nection (∇,∇∗) are said to be dual with respect to 〈·, ·〉p if

〈τu, τ∗v〉q = 〈u, v〉p (21)

for all u, v ∈ TpM and all smooth curves γ : [0,1] →M such that

γ(0) = p,γ(1) = q, where τ and τ∗ denote the parallel transports

associated with ∇ and ∇∗, respectively.

Equivalently, (∇,∇∗) are dual with respect to 〈·, ·〉p if

v (〈s1, s2〉p) = 〈∇vs1, s2〉p + 〈s1,∇∗vs2〉p (22)

for all v ∈ TpM and all smooth vector fields s1 and s2.
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The infinite dimensional generalisation of the Fisher information

is given by

〈u, v〉p =
∫
Ω
(uv)pdµ, ∀u, v ∈ Bp. (23)

This is clearly bilinear, symmetric and positive definite. More-

over, continuity follows from that fact that, since LΦ1(p) '
LΦ2(p) ⊂ LΦ3(p), the generalised Hölder inequality gives

|〈u, v〉p| ≤ K‖u‖Φ1,p‖v‖Φ1,p, ∀u, v ∈ Bp. (24)
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If p and q are two points on the same connected component of

M, then the exponential parallel transport is given by

τ
(1)
pq : TpM → TqM

u 7→ u−
∫
Ω
uqdµ. (25)

To obtain duality with respect to the Fisher information, we

define the mixture parallel transport on TM as

τ
(−1)
pq : TpM → TqM

u 7→
p

q
u, (26)

for p and q in the same connected component of M .
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Proposition 3 Let p and q be two points in the same connected

component of M. Then p
qu ∈ Bq, for all u ∈ Bp.

Theorem 4 The connections ∇(1) and ∇(−1) are dual with re-

spect to the Fisher information.

Proof: We have that

〈τ(1)u, τ(−1)v〉q =

〈
u−

∫
Ω
uqdµ,

p

q
v

〉
q

=
∫
Ω
u
p

q
vqdµ−

(∫
Ω
uqdµ

) ∫
Ω

p

q
vqdµ

=
∫
Ω
uvpdµ

= 〈u, v〉p, ∀u, v ∈ Bp,
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5. α–connections

We begin with Amari’s α-embeddings

`α : M → Lr(µ)

p 7→
2

1− α
p

1−α
2 , α ∈ (−1,1), (27)

where r = 2
1−α. Observe that `α(p) ∈ Sr(µ), the sphere of radius

r in Lr(µ).

Using the chain rule, the push-forward of the map `α can be
implemented as

(`α)∗(p) : TpM = Bp → T
rp1/r

Sr(µ)

u 7→ p
1−α
2 u, (28)

observing that p
1−α
2 u is indeed an element of T

rp1/r
Sr(µ).
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The tangent space to Sr(µ) at rp1/r is

T
rp1/r

Sr(µ) =
{
g ∈ Lr(µ) :

∫
Ω
gp1−1/rdµ = 0

}
. (29)

For each f ∈ Sr(µ), a canonical projection from the tangent

space T
rp1/r

Lr(µ) onto the tangent space T
rp1/r

Sr(µ) can be

uniquely defined by

Π
rp1/r

: T
rp1/r

Lr(µ) → T
rp1/r

Sr(µ)

g 7→ g −
(∫

Ω
gp1−1/rdµ

)
p1/r. (30)
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We are now ready to define the α-connections. In what follows,

∇̃ is used to denote the trivial connection on Lr(µ).

Definition 5 For α ∈ (−1,1), let γ : (−ε, ε) → M be a smooth

curve such that p = γ(0) and v = γ̇(0) and let s ∈ S(TM) be a

differentiable vector field. The α-connection on TM is given by

(∇αv s) (p) = (`α)
−1
∗(p)

[
Π
rp1/r

∇̃(`α)∗(p)v
(`α)∗(γ(t))s

]
. (31)

Theorem 6 The exponential, mixture and α-covariant deriva-

tives on TM satisfy

∇α =
1 + α

2
∇(1) +

1− α

2
∇(−1). (32)

Corollary 7 The connections ∇α and ∇−α are dual with respect

to the Fisher information 〈·, ·〉p.
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