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1. Introduction

• Market Model: We consider two factor stochastic volatility

models of the form

dS̄t = S̄t[µ(t, Yt)dt + σ(t, Yt)dW1
t ]

dYt = a(t, Yt)dt + b(t, Yt)[ρdW1
t +

√
1− ρ2dW2

t ] (1)

with initial values S̄0, Y0 ≥ 0, for deterministic functions µ, a, b

and independent one dimensional P–Brownian motions W1
t

and W2
t with constant correlation |ρ| ≤ 1.
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• Optimal hedging portfolio: the strategy followed by an in-
vestor who, when faced with a (discounted) financial liability
B maturing at a future time T , tries to solve the stochastic
control problem

u(x) = sup
H∈A

E [U (XT −B) |X0 = x] , (2)

where XT is the discounted terminal wealth obtained when
investing HtS̄t dollars on the risky asset and ηtCt dollars in a
riskless cash account with value Ct initialized at C0 = 1 and
governed by

dCt = rtCtdt. (3)

• Utility function: U(x) = −e−γx

γ , where γ > 0 is the risk aver-
sion parameter.
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For self–financing portfolios, the wealth process satisfies

CtXt := HtS̄t + ηtCt = x +
∫ t

0
HudS̄u +

∫ t

0
ηudCu. (4)

In addition to the self–financing condition, economic reasoning

imposes further restrictions on the class A of admissible portfo-

lios.

Finally, the liability B is assumed to be a random variable of

the form B = B(ST , YT ), for some (bounded) Borel function

B : R2
+ → R.
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The market model in terms of the discounted prices St = S̄t/Ct

is

dSt = St[(µ(t, Yt)− r)dt + σ(t, Yt)dW1
t ],

dYt = a(t, Yt)dt + b(t, Yt)[ρdW1
t +

√
1− ρ2dW2

t ] (5)

and it is immediate that the discounted wealth process satisfies

dXt = HtdSt = HtSt[(µ(t, Yt)− r)dt + σ(t, Yt)dW1
t ], (6)

so that the only relevant control in (2) is Ht, with the holdings

in the cash account being determined by ηt = Xt −HtSt.
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2. Utility based pricing

For such Markovian markets we can embed the optimal hedging

problem (2) into the larger class of optimization problems defined

by

u(t, x, s, y) = sup
H∈At

Et,s,y[U(XT −B(ST , YT ))|Xt = x], (7)

for t ∈ (0, T ), where x ∈ R denotes some arbitrary level of wealth,

At denotes admissible portfolios starting at time t and Et,s,y[·]
denotes expectation with respect to the joint probability law at

time t of the processes Su, Yu satisfying (5) for u ≥ t, with initial

condition St = s and Yt = y.
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Suppose that (7) has an optimizer HB
t , that is, assume that

u(t, x, s, y) = Et,s,y[U(x + (HB · S)T
t −B(ST , YT ))],

Define the certainty equivalent for the claim B at time t as the

process cB
t = cB(t, x, s, y) satisfying the equation

U(x− cB
t )) = Et,s,y[U(x + (HB · S)T

t −B(ST , YT ))]. (8)

If we set B = 0, then the optimal hedging problem becomes the

Merton optimal investment problem and we denote the certainty

equivalent by c0t = c0(t, x, s, y).
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The indifference price for the claim B is defined to be solution

πB = πB(t, x, s, y) to the equation

sup
H∈At

Et,s,y[U(x+(H·S)T
t ] = sup

H∈At

Et,s,y[U(x+πB+(H·S)T
t −B(ST , YT )].

(9)

From the definition of the certainty equivalent, we see that this

equation is equivalent to

U(x− c0t ) = U(x + πB − cB
t ), (10)

so that the indifference price is given by

πB(t, x, s, y) = cB(t, x + πB(t, x, s, y), s, y)− c0(t, x, s, y). (11)
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The advantage of using an exponential utility is that we can
factorize the value function u(t, x, s, y) in (7) as

u(t, x, s, y) = −e−γx inf
H∈At

Et,s,y

[
e−γ

(
(H·S)T

t −B(ST ,Yt)
)]

=: U(x)v(t, s, y).

(12)

It follows directly from (8) that the certainty equivalent is wealth
independent and given by

cB(t, s, y) =
1

γ
log v(t, s, y), (13)

and analogously for the Merton problem. Thus the indifference
price process for the claim B obtained from an exponential utility
is given by

πB(t, s, y) = cB(t, s, y)− c0(t, s, y) =
1

γ
log

v(t, s, y)

v0(t, s, y)
. (14)
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3. The HJB approach

Direct substitution of (12) into the HJB problem for the value

function u(t, x, s, y) leads to an optimizer of the form

HB
t = hB(t, s, y) =

1

γ

∂sv

v
+

bρ

γsσ

∂yv

v
+

(µ− r)

γsσ2
. (15)

The partial differential equation satisfied by the optimal function

v(t, s, y) is then

∂tv +
1

2

(
s2σ2∂2

ssv + 2bρsσ∂2
ysv + b2∂2

yyv
)
+

[
a−

bρ(µ− r)

σ

]
∂yv

−
1

2

[
1

v
(bρ∂yv + sσ∂sv)

2 +
(µ− r)2

σ2
v

]
= 0, (16)

subject to the terminal condition v(T, s, y) = eγB(s,y).
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From (13), we find that the certainty equivalent process cB(t, s, y)
is a solution to the partial differential equation

∂tc
B +

1

2
(s2σ2∂2

ssc
B + 2sσbρ ∂2

sycB + b2∂2
yycB) +

[
a−

bρ(µ− r)

σ

]
∂ycB

−
(µ− r)2

2γσ2
+

γ

2
b2(1− ρ2)(∂ycB)2 = 0, (17)

with terminal condition cB(T, s, y) = B(s, y). The partial dif-
ferential equation satisfied by c0(t, s, y), the certainty equivalent
for Merton’s problem, is identical to (17), but with the terminal
condition c0(T, s, y) = 0.

Using (15), the optimal portfolio can be obtained in terms of
the certainty equivalent process by

hB(t, s, y) = ∂sc
B +

bρ

sσ
∂ycB +

(µ− r)

γsσ2
. (18)
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For pure volatility claims of the form B = B(YT ), the equation

for the certainty equivalent cB
t = cB(t, y) is reduced to

∂tc
B+

[
a−

bρ(µ− r)

σ

]
∂ycB+

1

2
b2∂2

yycB−
(µ− r)2

2γσ2
+

γ

2
b2(1−ρ2)(∂ycB)2 = 0,

(19)

subject to the terminal condition cB(T, y) = B(y). Following

Zariphopoulou (2001) we now use the transformation

cB(t, y) =
1

γ(1− ρ2)
log f(t, y), (20)

to reduce (19) to the linear parabolic final value problem
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∂tf +
1

2
b2∂2

yyf +

[
a−

bρ(µ− r)

σ

]
∂yf −

(1− ρ2)(µ− r)2

2σ2
f = 0,

f(T, y) = eγ(1−ρ2)B(y). (21)

We can use the Feynman–Kac formula to represent the solution

to the problem above as

f(t, y) = Ẽt,y

[
e−
∫ T
t R(s,Ys)dseγ(1−ρ2)B(YT )

]
, (22)

where we define

R(t, y) =
(1− ρ2)(µ(t, y)− r)2

2σ(t, y)2
, (23)
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and Ẽt,y[·] denotes the expectation with respect to the probability
law at time s = t of the solution to

dYs =

[
a−

b(µ− r)ρ

σ

]
ds + b

[
ρdW̃1

s +
√

1− ρ2dW̃2
s

]
,

Yt = y (24)

for a pair of independent one dimensional P̃–Brownian motions
W̃1

t , W̃2
t , for a probability measure P̃ on (Ω,F , (Ft)t∈[0,T ]). If we

further required S to be a P̃ martingale, the comparison with (5)
leads to the identification

dW̃1
t = dW1

t + λ̃1
t dt

dW̃2
t = dW2

t , (25)

where

λ̃1
t =

µ(t, Yt)− r

σ(t, Yt)
. (26)
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4. Reciprocal affine models

We now take µ and r to be constants and σ(t, Yt) =
√

Yt, so that

(23) becomes

Rt = R(t, Yt) =
(1− ρ2)(µ− r)2

2Yt
, (27)

which we postulate to be a CIR process. Since our calculations

are going to take place under the measure P̃ , we specify the

dynamics for Rt as

dRt = α̃(κ̃−Rt)dt + β
√

Rt

[
ρdW̃1

t +
√

1− ρ2dW̃2
t

]
, (28)

for constants α̃, κ̃, β > 0 with 4α̃κ̃ > β2.
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It follows from (25) that the dynamics of Rt under the economic

measure P is

dRt = α(κ−Rt)dt + β
√

Rt

[
ρdW1

t +
√

1− ρ2dW2
t

]
, (29)

where α =
(
α̃− βρ

√
2

1−ρ2

)
and ακ = α̃κ̃.

We then obtain from the Itô formula that

a(t, Yt) = αYt +
2(β2 − ακ)

(1− ρ2)(µ− r)2
Y 2

t , (30)

b(t, Yt) = −
(

2

1− ρ2

)1/2
β

(µ− r)
Y

3/2
t . (31)
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5. Pricing and hedging formulas

We need to compute expressions of the form

I := Ẽt

[
e−
∫ T
t Rsdsg(RT )

]
, (32)

for functions g : R+ → R. Provided its Fourier transform is well

defined and invertible, we can express g as

g(R) =
1

2π

∫ ∞
−∞

e−iuRĝ(u)du, (33)

where

ĝ(u) =
∫ ∞
−∞

eiuRg(R)dR. (34)

16



Exchanging the order of integration, we have

I = I(Rt, t, T ) =
1

2π

∫ ∞
−∞

Ψ(u)ĝ(u)du, (35)

where Ψ can be computed as

Ψ(u) = Ψ(u, Rt, t, T ) := Ẽt

[
e−
∫ T
t Rsdse−iuRT

]
= exp[M(u, t, T ) + N(u, t, T )Rt].(36)

Here

N(u) = N(u, t, T ) =
(b2 + iu)b1 − (b1 + iu)b2e∆(t−T )

(b2 + iu)− (b1 + iu)e∆(t−T )
,

M(u) = M(u, t, T ) =
−2ακ

β2
log

(
b2 + iu

b2 −N

)
+ ακb1(t− T ),(37)

with b2 > b1 being the two roots of x2 − 2α̃
β2x − 2

β2 and ∆ =√
α̃2 + 2β2.
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Setting g(RT ) = eγ(1−ρ2)B(RT ), we obtain from (14), (20) and

(22) that the indifference price of the volatility claim B = B(RT )

is simply

πB =
δ

γ
log


Ẽt

[
e−
∫ T
t Rsdseγ(1−ρ2)B(RT )

]
Ẽt[e

−
∫ T
t Rsds]


=

1

γ(1− ρ2)
log

[
I(Rt, t, T )

Ψ(0, Rt, t, T )

]
. (38)
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The number of shares of stock to be held in order to optimally

hedge against the claim B is

hB(t, y) =
1

γs

[
bρ

γ(1− ρ2)
√

y

∂ log I

∂y
+

(µ− r)

γy

]
(39)

=
1

γs

(µ− r)

y

 βρ√
2(1− ρ2)

∫∞
−∞Ψ(u)N(u)ĝ(u)du∫∞

−∞Ψ(u)ĝ(u)du
+ 1

 ,

whereas the number of shares held in the Merton portfolio is

h0(t, y) =
1

s

[
bρ

γ(1− ρ2)
√

y

∂ logΨ(0)

∂y
+

(µ− r)

γy

]

=
1

γs

(µ− r)

y

 βρ√
2(1− ρ2)

N(0) + 1

 . (40)
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6. Numerical results (act I)

We illustrate the range of possibilities for model parameters fixed

at reasonable values:

α = 5, β = 0.04, κ = 0.001,

µ = 0.04, r = 0.02, ρ = 0.5

and initial squared volatility ranging in the interval [0,0.5]. With

these parameters the squared volatility process has a mean rever-

sion time of approximately two months and an equilibrium dis-

tribution with expected value approximately 40%. We calculate

the price of a put option on volatility with payoff (0.15 − σ2
T )+.

When not mentioned the risk aversion parameter is set to γ = 1.
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7. The Monte Carlo approach

We now consider discrete time hedgings, where the portfolio

processes have the form

Ht =
K∑

k=1

Hk 1(tk−1,tk]
(t) (41)

where each Hk is an Rd–valued Fk−1 random variable. We take

the discrete time partition of the interval [0, T ] to be of the form

t0 = 0 < t1 =
T

K
< . . . < tk =

kT

K
. . . < tK = T

and use the notation Sj := Stj for discrete time stochastic pro-

cesses.
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The discounted wealth for self–financing portfolios is

Xj = x + (H · S)j, (42)

with the notation (H · S)j
k := (H · S)j − (H · S)k, where

(H · S)j :=
j∑

k=1

Hk∆Sk (43)

and ∆Sk := Sk − Sk−1.
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Now the dynamic programming problem for the optimal hedge

falls into K subproblems

uk−1(x) = sup
Hk∈Fk−1

Ek−1[uk(x + Hk∆Sk)], (44)

for k = K, K − 1, . . . ,1, with uK(x) = U(x − B). Similarly, the

certainty equivalent value process cB
k (x) is defined iteratively by

U(x− cB
k−1(x)) = sup

Hk∈Fk−1

Ek−1[U(x + Hk∆Sk − cB
k (x + Hk∆Sk)]

(45)

with cB
K(x) taken equal to the terminal discounted claim B.
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In our Markovian setting and with an exponential utility, the

solution of (44) and (45) as well as the optimal allocation HB

have the form wealth independent form

uk = gk(Sk, Yk) (46)

cB
k = ck(Sk, Yk) (47)

HB
k+1 = hk+1(Sk, Yk) (48)

for (deterministic) Borel scalar functions {gk, ck}K−1
k=0 and Rd–

valued functions {hk+1}K−1
k=0 on the state space S = R2

+.
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The exponential utility allocation algorithm

We want an algorithm which will generate an approximate trad-

ing rule, based on a data set

{(Si
k, Y i

k)}i=1,...,N ;k=0,...,K

where (Si
k, Y i

k) ∈ Rn denotes the state of the ith sample path at

time tk = kT/K for the processes given by (5). In the special

case of an exponential utility, the theoretical optimal rule

HB
k+1 = hk(S

i
k, Y i

k)

in (48) depends only on the directly observed data {Si
k, Y i

k} and

is independent of the wealth Xi
k. For this reason our algorithm

is at this point restricted to exponential utility functions, and we

take γ = 1 for simplicity.
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1. Step k = K: The final optimal allocation is the FK−1–
random variable HB

K which solves

min
HK∈FK−1

E[exp(−H ·∆SK + B)]. (49)

Since the solution is known to be given by HB
K = hK(SK−1, YK−1)

for some deterministic function hK ∈ B(S) (the set of Borel
functions on S), we write this as

min
h∈B(S)

E[exp(−h(SK−1, YK−1) ·∆SK + B)]. (50)

On a finite set of data, we can pick an R–dimensional subspace
R(S) ⊂ B(S) of functions on S and attempt to “learn” a subop-
timal solution

argmin
h∈R(S)

E[exp(−h(SK−1, YK−1) ·∆SK + B)].
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By the central limit theorem, the expectation above can be ap-

proximated by the finite sample estimate

ΨK(h) =
1

N

N∑
i=1

exp
(
−h(Si

K−1, Y i
K−1) ·∆Si

K + B(Si
K, Y i

K)
)
(51)

This leads to the estimator hRK based on {Si
k, Y i

k} and the choice

of subspace R defined by

hRK = argmin
h∈R(S)

ΨK(h) (52)
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2. Inductive step for k = K − 1, . . . ,2: The estimate hRk of the

optimal rule hk, for the intermediate time steps 2 ≤ k < K − 1

is determined inductively given the estimates hRk+1, . . . , hRK. It is

defined to be

hRk = argmin
h∈R(S)

Ψk(h;hRk+1, . . . , hRK) (53)

where

Ψk(h) =
1

N

N∑
i=1

exp
(
−h(Si

k, Y i
k) ·∆Si

k+1 + ci
k(h

R
k+1, . . . , hRK, Si

K, Y i
K)
)

,

(54)

with

ci
k(h

R
k+1, . . . , hRK, Si

K, Y i
K) = B(Si

K, Y i
K)−

K∑
j=k+1

hRj (Si
j−1, Y i

j−1)·∆Si
j

(55)
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3. Final step k = 1: This step is degenerate since the ini-

tial values (S0, Y0) are constant over the sample. Therefore we

determine the optimal constant vector h1 ∈ Rd by solving

h1 = argmin
h∈Rd

Ψ1(h;hR2 , . . . , hRK) (56)

Finally, the optimal value

Ψ1 =
1

N

N∑
i=1

exp

−h1(S0, Y0)−
K∑

j=2

hRj (Si
j−1, Y i

j−1) ·∆Si
j + B(Si

K, Y i
K)

 ,

is an estimate of the quantity exp(cB
0 ), where cB

0 is the certainty

equivalent value of the claim B at time t = 0
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8. Numerical results (act II)

We run the algorithm with the same model parameters as before

(in particular γ = 1). To account for the portfolio dependence

in both St and Yt we took R(S) to be the six–dimensional space

spanned by the functions {1, y, y2, s, sy, s2}.

We first applied the allocation algorithm to a volatility put option

with payoff (0.15 − σ2
T )+ and time to maturity at T = 0.2 and

computed the indifference prices with Y0 varying in the interval

[0,0.5].
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Next we consider a put option on the stock, that is, with payoff

(K − ST )+. The following pictures show the indifference prices

and implied volatility surface and term structure obtained with

N = 10000 simulations.
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