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Axiomatic Interest Rate Theory
We recall the following axioms of Hughston and Rafailidis (2005),
whereby (Ω,F ,P) is probability space (physical measure) Ft is the
filtration generated by a (k–dimensional) Brownian motion Wt , St
are continuous semimartingales and ξt > 0 is an adapted price
process (natural numeraire):

1. There exists a strictly increasing asset with absolutely
continuous price process Bt (bank account).

2. If St is the price of any asset with an adapted dividend rate
Dt then

St
ξt

+

∫ t

0

Ds

ξs
ds is a martingale (1)

3. There exists an asset that offers a dividend rate sufficient to
ensure that the value of the asset remains constant (floating
rate note).

4. There exists a system of discount bond price processes PtT

satisfying
lim

T→∞
PtT = 0.
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The state price density

I Define Vt = 1/ξt (state price density).

I Since BtVt is a martingale (A2) and Bt is strictly increasing
(A1), we have

Et [VT ] = Et

[
BTVT

BT

]
< Et

[
BTVT

Bt

]
=

BtVt

Bt
= Vt ,

which means that Vt is a positive supermartingale.

I Writing Bt = B0 exp
(∫ t

0 rsds
)

for an adapted process rt > 0

and
d(BtVt) = −(BtVt)λtdWt ,

for an adapted vector process λt , we have that the dynamics
for Vt is

dVt = −rtVtdt − VtλtdWt . (2)
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Conditional variance representation

I Integrating (2), taking conditional expectations and the limit
T →∞ (all well–defined thanks to (A3) and (A4)) leads to

Vt = Et

[∫ ∞
t

rsVsds

]
.

I Now let σt be a vector process satisfying σ2
t = rtVt and define

the square integrable random variable

X∞ :=

∫ ∞
0

σsdWs .

I It then follows from the Ito isometry that

Vt = Et

[
(X∞ − Xt)

2
]
, (3)

where Xt := Et [X∞] =
∫ t

0 σsdWs .
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Wiener chaos

I It is well known that any X ∈ L2(Ω,F∞,P) can be
represented as a Wiener chaos expansion

X =
∞∑
n=0

Jn(φn), (4)

where

φn 7→ Jn(φn) =

∫
∆n

φn(s1, . . . , sn)dWs1 . . . dWsn . (5)

I The deterministic functions φn ∈ L2(∆n) are called the chaos
coefficients and are uniquely determined by the random
variable X .
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First order chaos

I In a first order chaos model we have

X∞ =

∫ ∞
0

φ(s)dWs .

I In this case σs = φ(s), so that Mts := Et [σ
2
s ] = φ2(s) and

Vt =

∫ ∞
t

Mtsds =

∫ ∞
t

φ2(s)ds

I This corresponds to a deterministic interest rate theory, since

PtT =

∫∞
T φ2(s)ds∫∞
t φ2(s)ds

, ftT =
φ2(T )∫∞

T φ2(s)ds
= rT .

I The remaining asset prices can be stochastic, however.
Indeed, for a derivative with payoff HT we have

Ht =
Et [VTHT ]

Vt
=

VT

Vt
Et [HT ] = PtTEt [HT ]
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Factorizable second order chaos: definition

I In a second order chaos model we have

X∞ =

∫ ∞
0

φ1(s)dWs +

∫ ∞
0

∫ s

0
φ2(s, u)dWudWs

I This is said to be factorizable when φ1(s) = α(s) and
φ2(s, u) = β(s)γ(u).

I In this case, σs = φ(s) + β(s)Rs where

Rt =

∫ t

0
γ(s)dWs

is a martingale with quadratic variation Q(t) =
∫ t

0 γ
2(s)ds.

I Notice that the scalar random variable Rt is the sole state
variable for the interest rate model at time t, even in the case
of a multidimensional Brownian motion Wt .
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Factorizable second order chaos: bond prices
I Defining ZtT =

∫∞
T Mtsds, we see that bond prices are given

by

PtT =
ZtT

Ztt
.

I Integrating the expression for Mts gives

ZtT =

∫ ∞
T

Mtsds = A(T ) + B(T )Rt + C (T )(R2
t − Q(t)),

where

A(T ) =

∫ ∞
T

(α2(s) + β2(s)Q(s))ds

B(T ) = 2

∫ ∞
T

α(s)β(s)ds, C (T ) =

∫ ∞
T

β2(s)ds

I Therefore

PtT =
A(T ) + B(T )Rt + C (T )(R2

t − Q(t))

A(t) + B(t)Rt + C (t)(R2
t − Q(t))
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Factorizable second order chaos: option prices
I The price at time zero of an option with payoff (PtT − K )+ is

ZBC (0, t,T ,K ) =
1

V0
E
[
Vt (PtT − K )+] =

1

V0
E
[
(ZtT − KZtt)

+] ,

I Fixing t,T and K , it follows that

ZtT − KZtt = A + BY + CY 2,

where Y = R(t)/
√

Q(t) ∼ N(0, 1) and

A = [A(T )− KA(t)]− [C (T )− KC (t)]Q(t)

B = [B(T )− KB(t)]
√
Q(t), C = [C (T )− KC (t)]Q(t)

I Therefore, defining p(y) = A + By + Cy2, we have

ZBC (0, t,T ,K ) =
1

A(0)
√

2π

∫
p(y)≥0

p(y)e−
1
2
y2
dy ,

which can be calculated explicitly in terms of the roots of the
polynomial p(y).

I Analogous expressions can be derived for puts, swaptions,
caps, floors, etc...
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One–variable third order chaos

I Consider now

X∞ =

∞∫
0

α(s)dWs +

∞ s∫∫
0 0

β(s)dWudWs +

∞ s u∫∫∫
0 0 0

δ(s)dWvdWudWs

=

∫ ∞
0

[
α(s) + β(s)Ws +

1

2
δ(s)(W 2

s − s)

]
dWs

I For fitting the initial term structure P0T , this behaves like a
first order chaos with φ(s) = α2(s) + β2(s)s + δ2(s)s2/2.

I Moreover, since

ZtT = a(T ) + b(T )Wt + c(T )W 2
t + d(T )W 3

t + e(T )W 4
t ,

general bond prices are expressed as the ratio of 4th–order
polynomials in Wt .

I Similarly, option prices can be found explicitly by integrating a
4th–order polynomial of a standard normal random variable.
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Data

I For P0T we use clean prices of treasury coupon strips in the
Gilt Market using data from the UK Debt Management Office
(DMO) at 146 dates (every other business day) from January
1998 to January 1999 with 50 maturities for each date.

I For joint calibration with option prices we also consider yield
data from money market at 53 dates (every Friday) from
September 2000 to August 2001 with 17 maturities for each
date, together with ATM caps (39 caplets) and swaptions (6
maturities and 7 tenors).

I For smile calibration we consider yield data from money
market at 53 dates (every Friday) from May 2005 to April
2006 with 22 maturities for each date, together with 140
caplets (20 maturities and 7 strikes) and 252 swaptions (6
maturities, 7 tenors and 7 strikes).
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1998 to January 1999 with 50 maturities for each date.

I For joint calibration with option prices we also consider yield
data from money market at 53 dates (every Friday) from
September 2000 to August 2001 with 17 maturities for each
date, together with ATM caps (39 caplets) and swaptions (6
maturities and 7 tenors).

I For smile calibration we consider yield data from money
market at 53 dates (every Friday) from May 2005 to April
2006 with 22 maturities for each date, together with 140
caplets (20 maturities and 7 strikes) and 252 swaptions (6
maturities, 7 tenors and 7 strikes).



Parametric specification

I Motivated by the vast literature on forward rate curve fitting
(so-called descriptive–form interest rate models), we consider
the exponential–polynomial family (Bjork and Christensen 99):

φ(s) =
n∑

i=1

 µi∑
j=1

bijs
j

 e−ci s

I Special cases in this family are the Nelson–Sigel (87),
Svensson (94) and Cairns (98) models:

φNS(s) = b0 + (b1 + b2s)e−c1s

φSv (s) = b0 + (b1 + b2s)e−c1s + b3se
c2s

φC (s) =
4∑

i=1

b1e
ci s
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Descriptive fit for yield curves



Chaos fit for yield curves



Calibration results: bonds from Jan/98 to Feb/99

Chaos Order N -L RMSPE (%) DM-NS DM-Sv

1st chaos 3 4420 4.44 -3.41 -11.46

Descriptive NS 4 2101 2.67 - -4.45

1st chaos 5 250 0.86 4.09 -3.54

factorizable 2nd chaos 6 245 0.68 4.20 0.27

one-var 2nd chaos 6 162 0.82 4.52 -2.26

one-var 3rd chaos 6 168 0.72 4.40 -1.24

Descriptive Sv 6 160 0.70 4.45 -

factorizable 2nd chaos 7 172 0.63 4.35 1.38

one-var 2nd chaos 7 160 0.69 4.48 0.22

one-var 3rd chaos 7 149 0.76 4.42 -1.43



Stability of parameters

Figure: RMSPE as a function of time.



Forward rates



Models for option price calibration
We consider the following models for option price calibration:

I The CIR process (3 parameters):

drt = κ(θ − rt) + σ
√
rtdWt .

I The Hull–White model with Svensson term structure (8
parameters):

drt = κ(Θ(t)− rt) + σ
√
rtdWt

f0t = b0 + (b1 + b2t)e−c1t + b3te
−c2t

I The rational lognormal model with Nakamura-Yu
parametrization and Svensson term structure (9 parameters):

PtT =
G1(T )Mt + G2(T )

G1(t)Mt + G2(t)

G1(t) =
α

γ + 1
(P0t)

γ+1,G2(t) = P0t − G1(t), Mt = eβWt− 1
2
β2t

f0t = b0 + (b1 + b2t)e−c1t + b3te
−c2t
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Models for option price calibration (continued)
In addition, we consider the following two Market Models:

I The lognormal forward LIBOR model with Rebonato volatility,
Schoenmakers and Coffey correlation and Svensson term
structure (13 parameters):

dF j
t = σj(t)F j

t dZ
j
t

σj(t) = a1 + (a2 + a3(Ti−1 − t))e−d1(Ti−1−t)

ρij = e−g(η1,η2,ρ∞)

f0t = b0 + (b1 + b2t)e−c1t + b3te
−c2t

I The SABR model with Svensson term structure (6 + 3 + 3
parameters):

dF j
t = σt(F

j
t )β1dZ j

t , dσt = α1σtdW
j
t , dZ j

t dW
j
t = ρ1dt

dSa,b
t = vt(S

a,b
t )β2dZ a,b

t , dσt = α2vtdW
a,b
t , dZ j

t dW
j
t = ρ2dt

f0t = b0 + (b1 + b2t)e−c1t + b3te
−c2t
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CIR fit for yields and caplets



CIR fit for yields and swaptions



Hull–White fit for yields and caplets
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LFM fit for yields and caplets



LFM fit for yields and swaptions



SABR fit for yields and caplets



SABR fit for yields and swaptions



Chaos fit for yields and caplets



Chaos fit for yields and swaptions



ATM option calibration results (I): comparison with LFM

Model N Swaption Caplet Joint

one-var 2nd chaos 6 -25.18 -24.93 -35.86

one-var 2nd chaos 7 -23.97 -3.34 -35.57

factorizable 2nd 6 -8.88 -7.89 -18.96

one-var 3rd chaos 6 -1.32 -7.41 -8.32

one-var 3rd chaos 7 4.67 -3.60 -2.19

Rational-log 9 -16.40 -13.80 -22.59

Hull-White 8 -10.53 -13.71 -14.22

CIR 3 -12.99 -17.60 -33.88

SABR 12 -13.50 -12.35 -22.81

Table: Comparison with LFM by DM-Statistics



ATM option calibration results (II): comparison with SABR

Model N SW Cpl JT

one-var 2nd chaos 6 2.35 8.21 -8.77

one-var 2nd chaos 7 2.38 10.88 -6.34

factorizable 2nd 6 1.79 11.91 -3.41

one-var 3rd chaos 6 9.04 7.46 12.18

one-var 3rd chaos 7 14.70 12.20 12.77

Rational-log 9 -3.14 -22.85 -14.52

Hull-White 8 -4.87 -11.92 -10.03

CIR 3 -3.75 -15.18 -23.42

LFM 13 13.50 12.35 22.81

Table: Comparison with SABR by DM-Statistics



Smile calibration results (I): caplets

Maturity DM Statistics

2Y -4.99

4Y -8.80

6Y -3.66

8Y -10.06

10Y -14.51

12Y -12.69

14Y -24.67

16Y -21.69

18Y -19.16

20Y -11.35

Table: DM-Statistics for Caplet Smile Calibration between one-variable
third chaos and SABR



Caplet smile calibration (I)

Figure: Caplet volatility smile/skew, Maturity: 6 years (Blue: Market
Quotes, Green: Theoretical Values)



Caplet smile calibration (II)

Figure: Caplet volatility smile/skew, Maturity: 14 years (Blue: Market
Quotes, Green: Theoretical Values)



Smile calibration results (II): swaptions

1Y 2Y 3Y 5Y 7Y 10Y

1M 0.19 1.80 -0.96 5.75 -0.55 -0.31

3M 14.81 13.33 11.65 8.36 7.41 7.56

6M 11.44 11.70 7.87 7.74 9.53 9.68

1Y 16.90 13.41 7.77 2.20 1.89 -0.53

2Y 5.55 4.71 9.53 2.14 1.63 0.34

3Y 2.49 1.78 1.82 1.82 1.82 1.82

5Y -10.96 37.15 33.05 39.51 62.14 14.25

Table: DM-Statistics for (maturity * tenor) Swaption Smile Calibration
between one-variable third chaos and SABR



Conclusions

1. We propose a systematic way to calibrate interest rate model
in the chaotic approach.

2. For term structure calibration, 3rd order chaos performs
comparably to the Svensson model, with the advantage of
being fully stochastic and consistent with non-arbitrage and
positivity conditions.

3. For ATM option calibration, chaos is comparable to lognormal
forward LIBOR models and outperforms SABR with fewer
parameters.

4. For smile calibration, chaos underperforms SABR for caplets
and overperforms it for swaptions, separately and with fewer
parameters.

5. Further work will compare chaos and SABR for joint smile
calibration (caplets and swaptions) and the same number of
parameters.
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