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Abstract

We show that on the space of faithful density matrices, the only
monotone metrics, for which the exponential and mixture affine con-
nections are mutually dual, are constant multiples of the Bogoliubov-
Kubo-Mori (BKM) metric.

Introduction

Information manifolds are equipped with two natural flat connections: the
mixture connection, obtained from the linear structure of trace class op-
erators themselves, and the exponential connection, obtained when combi-
nations of states are performed by adding their logarithms [4]. Following
Amari [1, 2], we consider duality to be the fundamental structure. Thus,
given these two connections, we find in §3 all the Riemannian metrics that
make them dual. In §4, we combine this result with Petz’s characterisation
[9] of monotone metrics to find that the BKM metric is, up to a factor, the
unique monotone metric with respect to which the exponential and mixture
connections are dual.

The Exponential and Mixture Connections

Let HN be a finite dimensional complex Hilbert space, A the subset of self-
adjoint matrices and M the set of all invertible density matrices on HN .
Then A is an N2-dimensional real vector space and M can be regarded as
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an n-dimensional manifold with n = N2 − 1. Defining the 1-embedding of
M into A as

`1 :M→A ρ 7→ log ρ,

we can use the affine structure of A to obtain an affine structure on M.
Since then M is flat, we can identify M with its tangent space. At each
point ρ ∈ M, consider the subspace Aρ = {A ∈ A : Tr(ρA) = 0} of A,
called the space of ‘scores’; we define the isomorphism

(`1)∗(ρ) : TρM→Aρ v 7→ (`1 ◦ γ)′(0),

where γ : (−ε, ε) → M is a curve in the equivalence class of the tangent
vector v. We call this isomorphism the 1-representation of the tangent space
TρM. If (θ1, . . . , θn) is a coordinate system forM, then the 1-representation

of the basis
{

∂
∂θ1

∣∣
ρ
, . . . , ∂

∂θn

∣∣
ρ

}
of TρM is

{
∂ log ρ
∂θ1 , . . . , ∂ log ρ

∂θn

}
. The 1-

representation of a vector field X on M is therefore the A-valued function
(X)(+1) given by (X)(1)(ρ) = (`1)∗(ρ)Xρ.

The exponential- or 1-connection is that got using the 1-embedding and
the following parallel transport [4]

τ (1)
ρ0,ρ1

: Tρ0M→ Tρ1M v 7→ (`1)−1
∗(ρ1)

(
(`1)∗(ρ0)v − Tr[ρ1(`1)∗(ρ0)v]

)
.

Giving the parallel transport in a ’hood of ρ is equivalent to specifying the
covariant derivative. The 1-representation of the 1-covariant derivative is(

∇(1)
∂

∂θi

∂

∂θj

)(1)

=
∂2 log ρ
∂θi∂θj

− Tr
(
ρ
∂2 log ρ
∂θi∂θj

)
(1)

The construction above corresponds to making M into an affine space and
endowing it with the natural flat connection induced by the linear struc-
ture of the space of scores, which then provide us with an affine coordinate
system.

Now let A0 be the subspace of traceless operators in A. Consider the
−1-embedding

`−1 :M→A ρ 7→ ρ,

and define, at each ρ ∈M, the −1-representation of tangent vectors as

(`−1)∗(ρ) : TρM→A0 v 7→ (`−1 ◦ γ)′(0),

where γ : (−ε, ε)→M is again a curve in the equivalence class of the tangent
vector v. In coordinates, the−1-representation of the basis

{
∂
∂θ1

∣∣
ρ
, . . . , ∂

∂θn

∣∣
ρ

}
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of TρM is
{
∂ρ
∂θ1 , . . . ,

∂ρ
∂θn

}
. As before, the −1-representation of a vector field

X on M is an A0-valued function denoted by X−.
We obtain the mixture or −1-connection by defining the flat parallel

transport

τ (−1)
ρ0,ρ1

: Tρ0M→ Tρ1M v 7→ (`−1)−1
∗(ρ1)

(
(`−1)∗(ρ0)v

)
.

Duality and the BKM Metric

Two connections ∇ and ∇∗ on a Riemannian manifold (M, g) are dual with
respect to g if and only if

Xg(Y, Z) = g (∇XY, Z) + g (Y,∇∗XZ) , (2)

for any vector fields X,Y, Z on M [1]. Equivalently, if τγ(t) and τ∗γ(t) are
the respective parallel transports along a curve γ onM, then ∇ and ∇∗ are
dual with respect to g if and only if

g(Y, Z) = g
(
τγ(t)Y, τ

∗
γ(t)Z

)
. (3)

Given any connection ∇ on (M, g), we can always find a unique con-
nection ∇∗ such that ∇ and ∇∗ are dual with respect to g. On the other
hand, given two connections ∇ and ∇∗, we can ask what are the possible
Riemannian metrics g with respect to which they are dual. In particular,
we want explore this question for the case of the exponential and mixture
connections on a manifold of density matrices.

Another concept of duality [1] is that of dual coordinate systems, re-
gardless of any connection. Two coordinate systems θ = (θi) and η = (ηi)
on a Riemannian manifold (M, g) are dual with respect to g if and only if
their natural bases for TpM are biorthogonal at every point p ∈ M, that
is, g(∂/∂θi, ∂/∂ηj) = δij . Equivalently, θ = (θi) and η = (ηi) are dual with
respect to g if and only if gij = ∂ηi/∂θ

j and gij = ∂θi/∂η
j , at every point

p ∈M, where, as usual, gij = (gij)−1.
The next theorem gives a characterisation of dual coordinate systems

in terms of potential functions, thus introducing convexity theory and the
related duality with respect to Legendre transforms.

Theorem 4 (Amari, 1985) When a Riemannian manifold (M, g) has a
pair of dual coordinate systems (θ, η), there exist potential functions Ψ(θ)
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and Φ(η) such that

gij(θ) =
∂2Ψ(θ)
∂θi∂θj

and gij =
∂2Φ(η)
∂ηi∂ηj

.

Conversely, when either potential function Ψ or Φ exists from which the
metric is derived by differentiating it twice, there exist a pair of dual coordi-
nate systems. The dual coordinate systems and the potential functions are
related by the following Legendre transforms

θi =
∂Φ(η)
∂ηi

, ηi =
∂Ψ(θ)
∂θi

and
Ψ(θ) + Φ(η)− θiηi = 0

In contrast to the case of dual connections, dual coordinate systems do
not necessarily exist on every Riemannian manifold [1]. When the addi-
tional property of flatness is required, the following theorem provides a link
between the two concepts of duality. We say that a connection ∇ on man-
ifold M is flat if M admits a global ∇-affine coordinate system. This is
equivalent to its curvature and torsion both being zero.

Theorem 5 (Amari) Suppose that ∇ and ∇∗ are two flat connections on
a manifold M. If they are dual with respect to a Riemannian metric g on
M, then there exists a pair (θ, η) of dual coordinate systems such that θ is
∇-affine and η is a ∇∗-affine.

We now consider the uniqueness of the Riemannian metric onM. Using
either the 1 or the −1 representation of the tangent bundle TM, we define a
Riemannian metric onM by a smooth assignment of an inner product 〈·, ·〉ρ
in A ⊂ B(HN ) for each point ρ ∈ M. If A(+1), B(+1) and A(−1), B(−1) are,
respectively, the 1 and −1 representations of A,B ∈ TρM, then the BKM
metric is

gBρ (A,B) = Tr
(
A(−1)B(+1)

)
=
∫ ∞

0
Tr
[
(ρ+ α)−1A−(ρ+ α)−1B−

]
dα.

(6)
The (1) and (-1) connections are dual with respect to the BKM metric [6, 5].
A natural question is whether it is the only metric with this property. The
next theorem tells us the consequences of duality alone.
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Theorem 7 If the connections ∇(1) and ∇(−1) are dual with respect to a
Riemannian metric g on M, then there exists a constant n× n matrix M ,
such that (gρ)ij =

∑n
k=1Mik(gBρ )kj.

Proof: Since the two connections are flat, by theorem 5, there exist dual
coordinate systems (θ, η) such that θ is ∇(1)-affine and η is ∇(−1)-affine.
Thus, applying theorem 4, there exist a potential function Ψ(θ) such that

gij(θ) =
∂2Ψ(θ)
∂θi∂θj

and ηi =
∂Ψ(θ)
∂θi

.

Now since θ is∇(1)-affine, there exist linearly independent operators {1, X1, ..Xn}
such that

ρ = exp
(
θ1X1 + · · ·+ θnXn − Ψ̃(θ)

)
, (8)

where Ψ̃ = log Tr exp(θiXi) is the free energy. Any such set of operators
defines a ∇(−1)-affine coordinate system through the formula η̃i = Tr(ρXi).
Differentiating Ψ̃ with respect to θi we obtain

∂Ψ̃(θ)
∂θi

= Tr(ρXi) = η̃i.

Thus η̃i = ∂Ψ̃(θ)
∂θi

and ηi = ∂Ψ(θ)
∂θi

are two ∇(−1)-affine coordinate systems, so
they must be related by an affine transformation. So there exist an n × n
matrix M and numbers (a1, . . . , an) such that

ηi =
n∑
k=1

Mikη̃k + ai,

that is,
∂Ψ(θ)
∂θi

=
n∑
k=1

Mik
∂Ψ̃(θ)
∂θk

+ ai,

and differentiating this equation with respect to θj gives

gij(θ) =
∂2Ψ(θ)
∂θi∂θj

=
n∑
k=1

Mik
∂2Ψ̃(θ)
∂θj∂θk

=
n∑
k=1

Mikg
B
kj . (9)

5



The Condition of Monotonicity

We say [3] that a metric g on A0 (the (−1) representation) is monotone iff

gSρ(SA−, SA−) ≤ gρ(A−, A−) (10)

for every ρ ∈M, A ∈ TρM, and every completely positive, trace preserving
map S : A → A.

Let M̂ be the manifold of faithful weights (the positive-definite matri-
ces). We can extend g and gB from TM to TM̂ as follows. At ρ ∈ M and
A ∈ TM̂, put A = A0ρ + A−, where A0 = TrA − 1 and TrA− = 0. Then
put

ĝρ(A,B) = A0B0 + gρ(A−, B−). (11)

For gB this extension coincides with that given by eq. (6). Then, if g is
monotone on TM, its extension is monotone on TM̂: let S be a trace-
preserving CP map on TM̂; then

ĝSρ(SA, SA) = A2
0 + gSρ(SA−, SA−) ≤ A2

0 + gρ(A−, A−) = ĝρ(A,A).

For any metric g on TM̂, and putting A(−1) = (A0, A
−), we define the

positive operator Kρ by

gρ(A,B) =
〈
A(−1),Kρ

(
B(−1)

)〉
HS

= Tr
(
A(−1)Kρ

(
B(−1)

))
, (12)

acting on TM̂ furnished with the Hilbert-Schmidt scalar product. Petz uses
the following operators on TM̂: LρA = ρA, RρA = Aρ, and has [7, 9, 10]
given a characterisation of monotone metrics on matrix spaces in terms of
operator monotone functions. He proved

Theorem 13 (Petz, 1996) A Riemannian metric g on M̂ is monotone if
and only if

Kρ =
(
R1/2
ρ f(LρR−1

ρ )R1/2
ρ

)−1
,

where Kρ is defined in (12) and f : R+ → R+ is an operator monotone
function satisfying f(t) = tf(t−1).

In particular, the BKM metric is monotone and its corresponding operator
monotone function is fB(t) = (t− 1)/ log t. Combining this characterisation
with theorem (7), we obtain the following uniqueness result.
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Theorem 14 If the connections ∇(1) and ∇(−1) are dual with respect to a
monotone Riemannian metric g on M, then g is a constant multiple of the
BKM metric.

Proof: Let Kg
ρ and KB

ρ be the operators associated with the monotone
metrics g and gB as in equation (12). Let us extend the matrix M of
theorem (7) from TM to a matrix on M̂ by M0,k = 0 = Mk,0, M0,0 = 1.
Then eq. (9) gives the following relation between the extended metrics ĝ and
ĝB, in the coordinates (θ0, θ1, . . . , θn):

ĝρ(∂i, ∂j) =
n∑
k=0

M̂ikĝ
B
ρ (∂k, ∂j). (15)

In terms of the kernels, this gives Kg
ρ = M̂KB

ρ . But then Petz’s formula for
K in theorem (13) leads to M̂ = fg(LρR−1

ρ )−1fB(LρR−1
ρ ), where fg and fB

are the operator-monotone functions corresponding to g and gB respectively.
Thus the matrix M̂ is a certain function of the operators Lρ and Rρ, but is
independent of the point ρ. We conclude that it must be a constant multiple
of the identity matri.
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