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Successes and Limitations of Real Options

I Real options accurately describe the value of flexibility in
decision making under uncertainty.

I According to a recent survey, 26% of CFOs in North America
“always or almost always” consider the value of real options in
projects.

I This is due to familiarity with the option valuation paradigm
in financial markets and its lessons.

I But most of the literature in Real Options is based on
different combinations of the following unrealistic
assumptions: (1) infinite time horizon, (2) perfectly correlated
spanning asset, (3) absence of competition.

I Though some problems have long time horizons (30 years or
more), most strategic decisions involve much shorter times.

I The vast majority of underlying projects are not perfectly
correlated to any asset traded in financial markets.

I In general, competition erodes the value of flexibility.



Alternatives

I The use of well–known numerical methods (e.g finite
differences) allows for finite time horizons.

I As for the spanning asset assumption, the absence of perfect
correlation with a financial asset leads to an incomplete
market.

I Replication arguments can no longer be applied to value
managerial opportunities.

I The most widespread alternative to replication in the
decision-making literature is to introduce a risk-adjusted rate
of return, which replaces the risk–free rate, and use dynamic
programming.

I This approach lacks the intuitive understanding of
opportunities as options.

I Finally, competition is generally introduced using game theory.

I Surprisingly, game theory is almost exclusively combined with
real options under the hypothesis of risk-neutrality !



A one–period investment model

I Consider a two–factor market where the discounted prices for
the project V and a correlated traded asset S follow:

(ST ,VT ) =


(uS0, hV0) with probability p1,
(uS0, `V0) with probability p2,
(dS0, hV0) with probability p3,
(dS0, `V0) with probability p4,

(1)

where 0 < d < 1 < u and 0 < ` < 1 < h, for positive initial
values S0,V0 and historical probabilities p1, p2, p3, p4.

I Let the risk preferences be specified through an exponential
utility U(x) = −e−γx .

I An investment opportunity is model as an option with
discounted payoff Ct = (V − e−rt I )+, for t = 0,T .



European Indifference Price

I The indifference price for the option to invest in the final
period as the amount π that solves the equation

max
H

E [U(x+H(ST−S0)] = max
H

E [U(x−π+H(ST−S0)] (2)

I Denoting the two possible pay-offs at the terminal time by Ch

and C`, the European indifference price is explicitly given by

π = g(Ch,C`) (3)

where, for fixed parameters (u, d , p1, p2, p3, p4) the function
g : R× R → R is defined as

g(x1, x2) =
q

γ
log

(
p1 + p2

p1e−γx1 + p2e−γx2

)
(4)

+
1− q

γ
log

(
p3 + p4

p3e−γx1 + p4e−γx2

)
,

with

q =
1− d

u − d
.



Early exercise

I When investment at time t = 0 is allowed, it is clear that
immediate exercise of this option will occur whenever its
exercise value (V0 − I )+ is larger than its continuation value
πC .

I That is, from the point of view of this agent, the value at
time zero for the opportunity to invest in the project either at
t = 0 or t = T is given by

C0 = max{(V0 − I )+, g((hV0 − e−rT I )+, (`V0 − e−rT I )+)}.



A multi–period model

I Consider now a continuous-time two–factor market of the form

dSt = (µ1 − r)Stdt + σ1StdW

dVt = (µ2 − r)Vtdt + σ2Vt(ρdW +
√

1− ρ2dZ ).

I We want to approximate this market by a discrete–time
processes (Sn,Vn) following the one–period dynamics (1).

I This leads to the following choice of parameters:

u = eσ1

√
∆t , h = eσ2

√
∆t ,

d = e−σ1

√
∆t , ` = e−σ2

√
∆t ,

p1 + p2 =
e(µ1−r)∆t − d

u − d
, p1 + p3 =

e(µ2−r)∆t − `

h − `
ρσ1σ2∆t = (u − d)(h − `)[p1p4 − p2p3],

supplemented by the condition p1 + p2 + p3 + p4 = 1.



Numerical Experiments - Act I

I We now investigate how the exercise threshold varies with the
different model parameters.

I The fixed parameters are

I = 1, r = 0.04, T = 10

µ1 = 0.115, σ1 = 0.25, S0 = 1

σ2 = 0.2, V0 = 1

I Given these parameters, the CAPM equilibrium expected rate
of return on the project for a given correlation ρ is

µ̄2 = r + ρ

(
µ1 − r

σ1

)
σ2. (5)

I The difference δ = µ̄2 − µ2 is the below–equilibrium
rate–of–return shortfall and plays the role of a dividend rate
paid by the project, which we fix at δ = 0.04.



Known Thresholds

I In the limit ρ → ±1 (complete market), the closed–form
expression for the investment threshold obtained in the case
T = ∞ gives V ∗

DP = 2.

I This should be contrasted with the NPV criterion (that is,
invest whenever the net present value for the project is
positive) which in this case gives V ∗

NPV = 1.

I The limit γ → 0 in our model corresponds to the McDonald
and Siegel (1986) threshold, obtained by assuming that
investors are averse to market risk but neutral towards
idiosyncratic risk.

I For our parameters, the adjustment to market risks is
accounted by CAPM and this threshold coincides with
V ∗

DP = 2



Dependence on Correlation and Risk Aversion
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Figure: Exercise threshold as a function of correlation and risk aversion.



Dependence on Volatility and Dividend Rate
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Figure: Exercise threshold as a function of volatility and dividend rate.



Dependence on Time to Maturity
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Figure: Exercise threshold as a function of time to maturity.



Values for the Option to Invest
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Figure: Option value as a function of underlying project value. The
threshold for ρ = 0 is 1.1972 and the one for ρ = 0.99 is 1.7507.



Suspension, Reactivation and Scrapping

I Let us denote the value of an idle project by F 0, an active
project by F 1 and a mothballed project by FM .

I Then

F 0 = option to invest at cost I

F 1 = cash flow + option to mothball at cost EM

FM = cash flow + option to reactivate at cost R

+ option to scrap at cost ES

I We obtain its value on the grid using the recursion formula

F k(i , j) = max{continuation value, possible exercise values}.

I As before, the decisions to invest, mothball, reactivate and
scrap are triggered by the price thresholds
PS < PM < PR < PH .



Numerical Experiments - Act II

I We calculate these thresholds by keeping track of three
simultaneous grids of option values.

I The fixed parameters now are

µ1 = 0.12, σ1 = 0.2, S0 = 1

σ2 = 0.2, V0 = 1

r = 0.05, δ = 0.05, T = 30

I = 2, R = 0.79, EM = ES = 0

C = 1, m = 0.01

ρ = 0.9, γ = 0.1



Dependence on Mothballing Sunk Cost
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Figure: Exercise thresholds as functions of mothballing sunk cost.



Dependence on Mothballing Running Cost
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Figure: Exercise thresholds as functions of mothballing running cost.



Dependence on Correlation
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Figure: Exercise thresholds as functions of correlation.



Dependence on Risk Aversion

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Risk aversion, gamma

T
h

re
s
h

o
ld

s

Thresholds Vs Risk Aversion, Increment Size: 0.5, Rho fixed at 0.6

Figure: Exercise thresholds as functions of risk aversion.



Combining options and games

I For a systematic application of both real options and game
theory in strategic decisions, we consider the following rules:

1. Outcomes of a given game that involve a “wait–and–see”
strategy should be calculated by option value arguments.

2. Once the solution for a given game is found on a decision
node, its value becomes the pay-off for an option at that node.

I In this way, option valuation and game theoretical equilibrium
become dynamically related in a decision tree.



One–period expansion option under monopoly

I Suppose now that a firm faces the decision to expand capacity
for a product with uncertain demand:

Y1 =

{
hY0 with probability p
`Y0 with probability 1− p

, (6)

correlated with a traded asset

I The expansion requires a sunk cost I .

I The state of the firm after the investment decision at time tk
is

x(k) =

{
1 if the firm invests at time tk
0 if the does not invest at time tk

(7)

I The cash flow per unit demand for the firm is denoted by
Dx(k).



The NPV solution

I If no expansion occurs at time t0, then the value of the
project at time t0 is

vout = D0Y0 + g(D0hY0,D0`Y0) = D0Y0 + π0(D0Y1).

I If expansion occurs, then the value of the project at time t0 is

vin = (D1Y0 − I ) + g(D1hY0,D1`Y0) = D1Y0 + π0(D1Y1).

I textcolorredIf the decision needs to be taken at time t0, then
according to NPV the firm should expand provided vin ≥ vout ,
that is, if the sunk cost I is smaller then

INPV = (D1 − D0)Y0 + (π0(D1Y1)− π0(D0Y1)). (8)



The RO solution

I By contrast, if the decision to invest can be postponed until
time t1, then the value of the project when no investment
occurs at time t0 is

vwait = D0Y0 + π0(C1),

where C1 denotes the random variable

C1 = C1(Y1) = max{D0Y1,D1Y1 − I} ≥ D0Y1.

I Accordingly, the firm should invest at time t0 provided
vin ≥ vwait , that is, if the sunk cost is smaller than

IRO = (D1 − D0)Y0 + (π0(D1Y1)− π0(C1)). (9)

I Since the function g is non-decreasing in each of its
arguments,

INPV − IRO = π0(C1)− π0(D0Y1) ≥ 0. (10)

I That is, according to RO, the firm is less likely to expand at
time t0.



A multi-period investment game

I Consider two firms L and F each operating a project with an
option to re-invest at cost I and increase cash–flow according
to an uncertain demand

dYt = µ(t,Yt)dt + σ(t,Yt)dW .

I Suppose that the option to re-invest has maturity T , let tm,
m = 0, . . . ,M be a partition of the interval [0,T ] and denote
by (xL(tm), xF (tm) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} the possible
states of the firms after a decision has been at time tm.

I Let Dxi (tm)xj (tm) denote the cash–flow per unit of demand of
firm i .

I Assume that D10 > D11 > D00 > D01.

I We say that there is FMA is (D10 − D00) > (D11 − D01) and
that there is SMA otherwise.



Derivation of project values (1)

I Let V
(xi (tm−1),xj (tm−1))
i (tm, y) denote the project value for firm

i at time tm and demand level y .

I Denote by v
(xi (tm),xj (tm))
i (tm, y) the continuation values:

v
(1,1)
i (tm, y) = D11y∆t +

g(V
(1,1)
i (tm+1, y

u), (V
(1,1)
i (tm+1, y

d))

er∆t

v
(1,0)
L (tm, y) = D10y∆t +

g(V
(1,0)
L (tm+1, y

u), (V
(1,0)
L (tm+1, y

d))

er∆t

v
(0,1)
L (tm, y) = D01y∆t +

g(V
(0,1)
L (tm+1, y

u), (V
(0,1)
L (tm+1, y

d))

er∆t

v
(1,0)
F (tm, y) = D01y∆t +

g(V
(1,0)
F (tm+1, y

u), (V
(1,0)
F (tm+1, y

d))

er∆t

v
(0,1)
F (tm, y) = D10y∆t +

g(V
(0,1)
F (tm+1, y

u), (V
(0,1)
F (tm+1, y

d))

er∆t

v
(0,0)
i (tm, y) = D00y∆t +

g(V
(0,0)
i (tm+1, y

u), (V
(0,0)
i (tm+1, y

d))

er∆t



Derivation of project values (2)

I For fully invested firms, the project values are simply given by

V
(1,1)
i (tm, y) = v

(1,1)
i (tm, y).

I Now consider the project value for firm F when L has already
invested and F hasn’t:

V
(1,0)
F (tm, y) = max{v (1,1)

F (tm, y)− I , v
(1,0)
F (tm, y)}.

I Similarly, the project value for L when F has invested and L
hasn’t is

V
(0,1)
L (tm, y) = max{v (1,1)

L (tm, y)− I , v
(0,1)
L (tm, y)}.



Derivation of project values (3)

I Next consider the project value for L when it has already
invest and F hasn’t:

V
(1,0)
L (tm, y) =

{
v

(1,1)
L (tm, y) if v

(1,1)
F (tm, y)− I > v

(1,0)
F (tm, y),

v
(1,0)
L (tm, y) otherwise.

I Similarly, the project value for F when it has already invest
and L hasn’t is

V
(0,1)
F (tm, y) =

{
v

(1,1)
F (tm, y) if v

(1,1)
L (tm, y)− I > v

(0,1)
L (tm, y),

v
(0,0)
F (tm, y) otherwise.



Derivation of project values (4)

I Finally, the project values V
(0,0)
i are obtained as a Nash

equilibrium, since both firms still have the option to invest.

I The pay-off matrix for the game is
Firm F

Invest Wait

Firm L
Invest (v

(1,1)
L − I , v

(1,1)
F − I ) (v

(1,0)
L − I , v

(1,0)
F )

Wait (v
(0,1)
L , v

(0,1)
F − I ) (v

(0,0)
L , v

(0,0)
F )



FMA: dependence on risk aversion.
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Figure: Project values in FMA case for different risk aversions.



FMA: dependence on correlation.
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Figure: Project values in FMA case as function of correlation.



SMA: dependence on risk aversion
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Figure: Project values in SMA case for different risk aversions.



SMA: dependence on correlation.
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Figure: Project values in SMA case as function of correlation.



SMA x FMA
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Figure: Project values for FMA and SMA.


